Kisspeptin-13 ameliorates memory impairment induced by streptozotocin in male rats via cholinergic system

Maryam Pourmir¹, Parvin Babaei¹,²*, Bahram Soltani Tehrani²,³

1. Department of Physiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
2. Cellular & Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran
3. Department of Pharmacology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran

Abstract

Introduction: Kisspeptin-13 (KP-13) is a novel endogenous factor, increases synaptic transmission and is involved in several behavioral functions such as anxiety, locomotion, epilepsy and avoidance learning. However, the role of this peptide on cognition has not been well clarified yet. Here we studied the effect of kisspeptin-13 pretreatment on spatial learning and also interaction with cholinergic and adrenergic systems.

Methods: Eighty adult male Wistar rats were divided into 10 groups: saline + saline; saline + STZ; KP-13 + STZ; propranolol + STZ; prazosin + STZ; atropine + STZ; saline + KP-13 + STZ; propranolol + KP-13 + STZ; prazosin + KP-13 + STZ; atropine + KP-13 + STZ. Streptozotocin (STZ) (3mg/Kg) was administrated intracerebroventricularly (i.c.v), kisspeptin-13 was infused (1μg/2μl, i.c.v) 30 minutes before STZ and antagonists were infused (i.p) 30 minutes before kisspeptin-13. Memory performance was measured 14 days after STZ injection using Morris Water Maze (MWM) consisting of 4 blocks and one probe tests.

Results: Pretreatment with kisspeptin-13 ameliorated acquisition (p = 0.001) and retrieval of memory impaired by STZ (P = 0.011). Moreover, we found that injection of atropine, but not propranolol or prazocin was able to reverse the memory enhancement caused by kisspeptin-13 (P = 0.037).

Conclusion: Our findings indicate that facilitatory action of kisspeptin-13 on the spatial learning and memory in STZ-induced Alzheimer’s is mediated, at least in part, through cholinergic systems.

Introduction

Alzheimer’s disease (AD) is a human neurodegenerative disorder associated with a progressive loss of neuronal synapse and cognition (Selkoe, 2001) with high incidence worldwide (Qiu et al., 2009). Considering the growing incidence of AD, finding new therapeutic strategies to combat cognitive deficits in AD is of great importance. Kisspeptin-13 (KP-13) is a neuropeptide encoded by KISS1 gene (Lee et al., 1996), playing diverse roles in brain functions such as: puberty (Shahab et al., 2005), locomotor activity (Csabafi et al., 2013), feeding (Kim et al., 2010) and anxiety (Csabafi et al., 2013). KP-13, distinct from other peptides, is dynamically regulated by neuronal activity and

Keywords:
kisspeptin;
Spatial memory;
Adrenergic system;
Cholinergic system;
Streptozotocin
Kisspeptin mechanism on memory

Physiol Pharmacol 20 (2016) 38-47 | 39

increases synaptic transmission over a long time (Arai, 2009). Receptor for KP-13, GPR54 (G-protein coupled receptor-54), is widely expressed in the brain regions related to the learning and memory, including hippocampus and amygdala (Arai and Orwig, 2008), but there is yet little information about the function of this neuropeptide in these areas. Interestingly, it is shown that kisspeptin enhances excitatory synaptic transmission in the dentate gyrus of the hippocampus and that neuronal activity leads to up regulation of Kiss1 expression in order to sustain basal levels of Brain derived neurotrophic factor (BDNF) (Arai and Orwig, 2008; Binder, 2007). Telegdy and his colleagues have reported for a first time that i.c.v. injection of KP-13 could facilitate avoidance learning in a passive avoidance paradigm (Telegdy and Adamik, 2013). In addition, KP-13 has been shown to prevent Amyloid-β (Aβ) peptide neurotoxicity in vitro (Milton et al., 2012).

On the other hand, it has been well known that different neurotransmitters play different roles in learning and memory. For example, injection of noradrenaline into the hippocampus and entorhinal cortex enhances memory formation (Izquierdo et al., 2000). The adrenergic receptors of α1, α2, and β-receptors (each with three subtypes have distinct roles in learning and memory formation (Bylund et al., 1992). The α1 receptors are mainly postsynaptic, activate phospholipase c and Ca²⁺ signaling pathways and play important role in learning and memory (Stuchlik et al., 2009; Birnbaum et al., 2004). On the other hand, propranolol infusion in basolateral amygdala revealed that β adrenergic receptors are also important in memory storage (Liang et al., 1986).

In addition, cholinergic transmission in target areas of the brain, is connected with impairments of learning and memory (Schliebs and Arendt, 2011; McNamara and Skelton, 1993; D’Hooge and De Deyn, 2001; Tinsley et al., 2011). In the forebrain, the m1, m2, and m4 receptors are the most abundant subtypes of cholinergic receptors (Flynn et al, 1995) and, m2 is the predominant subtype in the basal forebrain which is involved in learning and memory process (Levey, 1996).

Considering the expression of kisspeptin and its receptor in the regions involved in the learning and memory formation, and also evidences indicating the role of kisspeptin on behavioral regulations, we hypothesized that this neuropeptide might have positive interactions with brain adrenergic and cholinergic systems in regulation of memory engram. Therefore, the purpose of the present study was to examine the effects of KP-13 on spatial memory and also interactive effect of this neuropeptide with adrenergic and cholinergic systems in an AD model of rats. In order to approach this, AD model was induced by intracerebroventricular (i.c.v) infusion of streptozotocin which has been wildly used as a model of sporadic dementia of AD (Sharma and Gupta, 2001; Salkovic et al., 2006; Salkovic et al., 2011; Lester-Coll et al., 2006; Agrawal et al., 2011; Lannert and Hoyer, 1998). Kisspeptin was administered as pretreatment with respect to various mechanisms of memory impairment induced by STZ.

Materials and methods

Animals

Eighty adult male wistar rats weighing 200–240 g were kept in a room with 12/12 h light/dark cycle (lights on 7:00 h) and temperature of 22 ± 2 °C. The following groups were included in the study (8 animals per each group): saline + saline; saline + STZ; KP-13 + STZ; propranolol + STZ; prazosin + STZ; atropine + STZ; saline + KP-13 + STZ; propranolol + KP-13 + STZ; prazosin + KP-13 + STZ; atropine + KP-13+ STZ. The study was approved by the ethical committee of Guilan University of Medical Sciences.

Surgery

After deep anesthesia with (75 mg/ kg of ketamine and 5 mg/kg of xylazine), animals were placed in stereotaxic apparatus (Stoelting, USA) and were bilaterally implanted with 22-gauge guide steel cannula into the ventricle according to the coordination’s: AP: − 0.8; ML: ± 1.5; and DV: -3.4. (Paxinos and Watson, 2007).

Drugs & treatments

One week after the recovery period, STZ (3 mg/kg) dissolved in 0.9% saline was injected in a volume of 5μl into each lateral cerebral ventricle using Hamilton micro syringe pump for 3 consecutive days. KP-13 (1 μg/2 μl) was dissolved in saline and then administered i.c.v. 30 minutes prior to STZ for 3 days. Propranolol (10 mg/kg), prazosin (2 mg/kg) and
atropine (2 mg/kg), were dissolved in distilled water and were administered intraperitoneally (i.p.) 30 minutes before KP-13. The antagonists doses used in the present study were not effective per se on memory and were chosen according to the previous studies (Puumala et al, 1998; Decker et al, 1990; Telegdy and Adamik 2002).

Behavioral test
After 2 weeks of surgery, spatial learning and memory of animals were assessed using Morris water maze (Morris, 1981). The apparatus was consisted of a circular water tank (146 cm in diameter and 60 cm high) with a rectangular platform (10 cm) at a fixed position in the target quadrant, 2 cm below the water level. The water temperature maintained at 26°C. At the start of the experiment, rats were individually placed on the platform for 20 s in order to explore the environment and to find the cues placed on the walls. The procedure was consisted of 4-day acquisition and one day of probe memory test performed on day 5, each trial having a cutoff time of 90 s. Also visible test was carried out after the probe test to examine the animal’s vision. The time spent searching for the platform (which had been previously removed) within the target quadrant, and velocity of swimming were recorded using camera and Ethovision tracking system (Noldus, Netherland).
Statistical analysis
Repeated measure and one-way ANOVA with Tukey’s posttest were used for comparing between group differences and level of significance was $P<0.05$ in all statistical evaluations. Data were analyzed in SPSS version 19, and expressed as means ± SD.

Results
During the training sessions all groups showed significant trial effects in the learning procedure $F(5, 768) = 33.46, P < 0.001$. Escape latency time (ELT) in the 2nd, 3rd and 4th day in the STZ + saline group was significantly increased, but total time spent in the target quadrant was decreased compared with control group $P< 0.001$ (Fig.1a, Fig.1b, Fig.4b). Since there were no significant difference in swimming speed ($F(5, 768) = 0.68; p = 0.723$), the time latency to find the platform and total time spent in the target quadrant (TTS) were used as indicators of learning performance. STZ + KP rats learned to find the platform more rapidly than STZ + saline ($F = 36.799, P = 0.001$), (Fig 1a, Fig. 4b). There was significant difference in the total time spent in target quadrant between STZ + KP and STZ + saline groups (27 ±
Tukey's post hoc test showed that the pretreatment with atropin prior to KP administration significantly decreased total time spent in the target quadrant compared with saline group (16.4 ± 3.94 versus, 26.9 ± 4.68 s, P = 0.037). Infusion of propranolol, prazosin and atropine in appropriate doses, 30 minutes before STZ, did not cause any significant effect per se either on acquisition or retrieval of memory compared with STZ + saline (Fig. 2a, .2b). Although adrenergic antagonists, propranolol and prazosin slightly reduced the memory improvement by kisspeptin, it was not statistically significant P> 0.05 (Fig. 3a). As Fig 4a shows, only atropine significantly prevented the positive effect of kisspeptin on acquisition (p=0.001, Fig.4a) and retrieval of memory (p=0.037, Fig. 4b).

**Discussion**

Our study shows that i.c.v. injection of STZ, significantly impaired acquisition and retrieval of spatial memory which is in line with the previous studies (Yazdani et al, 2015; Sharma and Gupta, 2001; Salkovic et al., 2006; Salkovic et al., 2011; Lester-Coll et al., 2006; Agrawal et al., 2011). STZ induces memory impairment via different mechanisms such as: malfunction in brain glucose
metabolism (Lannert and Hoyer, 1998; Labak et al., 2010), elevation of oxidative stress (Sharma and Gupta, 2001, Ishrat et al., 2009) and disruption of cholinergic transmission (Ishrat et al., 2009; Ishrat et al., 2006).

The main finding of this study is that KP-13 infusion 30 minutes before STZ successfully ameliorated the cognitive deficits, and this effect was reversed by pretreatment of atropine. It has been previously reported that KP-13 plays a modulatory role in various physiological processes such as reproduction (D’Anglemont de Tassigny et al., 2010), feeding (Kim et al., 2010), depression (Tanaka et al., 2013) and epilepsy (Arai, 2009). Facilitatory effect of KP-13 on learning and memory in our study is in line with the previous studies (Yazdani et al, 2015; Telegdy and Adamik, 2013). Telegdy and Adamik have reported that, the effects of KP-13 on passive avoidance learning and consolidation are mediated through interactions of the a2-adrenergic, 5-HT2 serotonergic, beta-adrenergic, cholinergic and GABA-A receptors (Telegdy and Adamik, 2013). Our results in the present study contradict their findings on the adrenergic, but are in agreement with the involvement of cholinergic system.

There is no doubt about major role of acetylcholine (Ach) in the regulation of cognitive functions (Blokkland, 1995). Disturbances in cholinergic transmission in the prefrontal cortex, hippocampus, striatum or amygdala, are connected with
impairments of learning and memory (Schliebs and Arendt, 2011).
To explain how KP-13 could significantly prevent the STZ-impaired memory, and this effect was reversed by atropine as well, we can postulate that, kisseptin might enhance the Ach responses to compensate for reduction in the Ach level induced by STZ (Ishrat et al., 2006; Khan et al., 2012b; Tota et al., 2011; Grunblatt et al., 2007). It has been demonstrated that i.c.v injection of STZ disturbs glucose energy metabolism by inhibiting the insulin receptor system (Lannert and Hoyer, 1998) and decreasing the activity of ChAT in the hippocampus (Blokland and Jolles, 1993). Previous studies suggest that a period of 7 days is enough to increase acetyl cholinesterase level (AChE) upon i.c.v STZ administration (Tota et al., 2010; 2011). Therefore cognition deficit tested in our study, 14 days following STZ injection, could be partially related to cholinergic disturbances. In addition, the impairment in insulin signaling following STZ, reduces cholineacetyltransferase (ChAT) and increases oxidative stress as well (Lester-Coll et al., 2006).
In the present study, KP-13 effects were abolished by muscarinic antagonist atropine. Regarding the fact that the M1, and to a lesser extent M2 cholinergic receptors are considered as the most highly expressed muscarinic receptors in the hippocampus (Kruk et al., 2011; Binder, 2007), it is assumed that KP-13 might upregulate M1, and increases Ca²⁺ signaling (D’Anglemont de Tassigny et al., 2010), or down regulate M2 to prevent K⁺ efflux as reported in the hypothalamus before (D’Anglemont de Tassigny et al., 2010) to induce excitatory synaptic activity. However, we cannot rule out the direct effect of kisseptin via its own receptor to induce an additive effect with cholinergic system through crosstalk in signaling pathways. As Ji,ang, et al., 2015 suggested that kisseptin binds to its receptor GPR54, and activates different signaling cascades, such as phospholipase C, intracellular Ca²⁺, protein kinase C, mitogen activated protein kinases (MAPK) and ERK (Hetherington et al., 1994; Illario et al., 2003). Elevations in ERKs signaling have direct effects on neuronal function via phosphorylating proteins such as potassium channels, synapsin and NMDA receptors (Adams et al., 2000; Lewis et al., 1998; Matsubara et al., 1996; Slack et al., 2004). On the other hand, hippocampal kisseptin/GPR54 system has unusual and complex properties, in a way that, it utilizes signaling systems that are usually coupled with trophic factors such as BDNF in a positive feedback pattern, to potentiate each other. Elevation in super oxide dismutase and catalase; two antioxidant defense systems could be valuable per se, to reduce oxidative damage induced by STZ (Khan et al., 2012a; D’Anglemont de Tassigny et al., 2010).
Therefore, KP-13 improves learning and memory deficits may be through enhancing cholinergic responses, or reducing oxidative damages by increasing the level of antioxidant defense system of the brain. Taken together, these findings are in complete agreement with the literatures suggesting that kisseptin may play a more general role in behavioral regulation. However, whether or not kisseptin and acetylcholine are colocalized in the hippocampus and which subgroups of muscarinic receptors exactly mediate the kisseptine synaptic transmission remain to be elucidated.

Conclusion
In conclusion, our study indicates that centrally injected KP-13 facilitates spatial learning and memory in STZ-induced Alzheimer’s at least in part through cholinergic receptor systems. From clinical point of view, KP-13 as a novel endogenous neuropeptide has physiological role in ameliorating cognitive deficit and might be considered as a therapeutic peptide in Alzheimer’s disease.

Acknowledgment
We would like to thank Research and Technology Chancellor of Guilan University of Medical Sciences for financial support.

Conflict of Interest
The authors declare no conflict of interest in this study.

References
Agrawal R, Tyagi E, Shukla R, Nath C. Insulin receptor


Arai AC. The role of kisspeptin and GPR54 in the hippocampus. Peptides 2009; 30: 16-25.


D'Anglemont de Tassigny X, Ackroyd KJ, Chatzidaki EE, Colledge WH. Kisspeptin signaling is required for peripheral but not central stimulation of gonadotropin releasing hormone neurons by NMDA. J Neurosci 2010; 30: 8581-8590.


Hetherington PA, Austin KB, Shapiro ML. Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N -methyl- D-aspartate atedependent long-term potentiation. Hippocampus 1994; 4: 422-38.


Labak M, Foniok T, Kirk D, Rushforth D, Tomanek B,


Slack SE, Pezet S, McMahon SB, Thompson SW, Malcangio M. Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci 2004; 20: 1769-78.


Telegdy G, Adamik A. The action of orexin A on passive avoidance learning Involvement of transmitters. Regul Pept 2002; 104: 105-10.


kisspeptin mechanism on memory