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Introduction  

Alzheimer’s disease (AD) the most common cognitive 

disorders of the elderly is characterized by senile 

plaques of amyloid β (Aβ) and neurofibrillary tangles 

(Selkoe, 1997). The deposition of fibrillary Aβ is 

strongly accepted as an agent in the pathogenesis of 

AD and associated with reduced cognition, increased 

reactive oxygen species and decreased cell count in 

the hippocampus (De Felice et al., 2007). It has been 

reported that up-regulation of BDNF leads to a 

decrease in Aβ- induced neurotoxicity (Doi et al., 

2013). Cognition and memory functions are positively 

affected by brain-derived neurotrophic factor (BDNF) 

(Kim and Kim, 2013). BDNF is a member of the 

neurotrophin family of growth factors, which has been 

expressed in the highest level in the brain especially 

in the hippocampus and facilitates the release of 

glutamate and enhances the phosphorylation of the 

NR1 and NR2B subunits of the NMDA-receptor 

complex (Tyler and Pozzo-Miller, 2001). BDNF 

pathway is mediated by TrkB and p75 receptors that 

trigger the phosphatidyl-inositol 3 kinase, 
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phospholipase C gamma and intracellular signal–

regulated kinase 1/2 signaling cascades (for more 

detail see a review by Bekinschtein et al.) 

(Bekinschtein et al., 2008).  

Treadmill exercise has been accepted as a 

therapeutic strategy that induces protection in the 

brain of both human and rodents (Gharebaghi et al., 

2017; Otsuka et al., 2016). Several studies suggest 

that exercise improves learning and memory function 

through an increase in the levels of BDNF (Jeon and 

Ha, 2017). Furthermore, treadmill exercise enhances 

neurogenesis and myelin repairment via the Wnt3/ β 

catenin signaling pathway and induces an increase in 

the expression of BDNF and myelin basic protein 

(Cheng et al., 2020) .  

In the present study, we hypothesized that treadmill 

exercise might improve Aβ- induced memory 

impairment through an increase in BDNF in the 

hippocampus of rats. 

 

Materials and methods  

Animals 

Thirty-five adult male Wistar rats (250-300g) were 

obtained from the animal facility of Hamadan 

University of Medical Sciences (HUMS) and 

maintained under standard laboratory condition (12 

h/h light/dark cycle, 20±2
°
C and 50% relative 

humidity) with free access to food and water. All 

experiments approved by the Ethical committee of 

HUMS (No: IR.UMSHA.AC.REC.1396.99). The rats 

randomly classified into four groups (n=7 per each 

group): control, sham-operated, Aβ and Aβ+ exercise 

groups.  

 

Injection of Aβ 

To induce AD, we performed 

intracerebroventricular  (ICV) injection of Aβ (1-42, 

Sigma-Aldrich, St Louis, MO, USA) according to the 

previously described method (Komaki et al., 2019). 

Briefly, anesthetized rats were placed in a stereotaxic 

frame and the skull drilled over the lateral ventricle 

using the following coordinate: AP: -0.9mm from the 

bregma; ML: 1.6mm from the midline; DV: 2.0 mm 

from the skull surface (Paxinos and Watson, 2006) 

and Aβ (5µg/5µl) was injected slowly. The sham-

operated group went under surgery similarly to the Aβ 

group except for Aβ injection. 

Aβ peptides (1-42) represent very different 

conformational states so that the residues 31-34 and 

38-41form a β-hairpin, which causes a reduction in 

the flexibility of C-terminal and the greater propensity 

of Aβ42 to form amyloids (Chen et al., 2017). 

 

Treadmill exercise protocol 

The day after the injection of Aβ, we used a 

motorized rodent treadmill instrument (Tajhiz Gostare 

Omide Iranian, Iran) to exercise according to a 

previously published protocol (Gharebaghi et al., 

2017). The rats ran on the treadmill for one month 

(30min daily and five constitutive days/week). The 

exercise consisted of running at the speed of 

25m/min with a 0.3mA stimulus current electric shock 

when the rats entered the rear of the test chamber. 

 

Morris water maze (MWM) task 

spatial memory was assessed (Gharebaghi et al., 

2017) using water filled MWM (210×51cm), the day 

after the last day of ran on the last day of ran on the 

treadmill. There was a hidden platform located at a 

fixed position in the pool. Four consecutive training 

days consisting of two-block with four trials were 

conducted.  In each trial, the rats were allowed to 

swim in the pool for 60min at different points. There 

were 30s and 5min inter-trial and inter-block intervals, 

respectively. Escape latency and the distance to 

reach (traveled distance) the hidden platform were 

recorded as the parameter of acquisition memory 

Using a camera located above the center of the 

maze. On day 5, the platform was removed and the 

percentage of time spent in the target quadrant 

assessed as a parameter of the retention of memory. 

 

Inhibitory avoidance apparatus (Shuttle-box) 

The shuttle box apparatus consisted of two 

compartments (white and black) separated with a 

guillotine door. There was a stainless steel shock grid 

floor in the dark compartment. The day after the 

spatial memory assessment by MWM, the rats were 

placed in the white chamber and after 5s the 

guillotine door was opened and the rats entered the 

dark compartment. The door was closed and the rats 

received an electronic foot shock (50Hz and 1.5mA 

intensity) for 3s. After 24h, the time in the dark 

compartment (TDC) and step through latency (STL) 

were recorded to evaluate the avoidance learning 

memory. The latency was recorded a maximum of 

300s. 
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Enzyme-linked immunosorbent assay (ELISA) 

Three hippocampi from each group were mixed and 

sonicated in PBS. BDNF level was quantified using 

an ELISA kit (ZellBio, Ulm, Germany) according to 

the manufactures recommendation. Assays were 

carried out in duplicate trials. 

 

Statistical analysis 

Statistical analysis was performed using SPSS 16. 

The repeated measure, one- way analysis of variance 

(ANOVA) and Tukey’s multiple comparison tests 

were used to analyze the significance between the 

groups. P-value <0.05 was considered significant. 

 

Results 

MWM performance 

To assess acquisition memory, escape latency and 

traveled distance of four constitutive days were 

analyzed using two-way ANOVA test with treatment 

as one factor and training days as the second factor. 

The results of escape latency showed a significant 

effect for training days [F(3, 2049)= 81.85, P<0.001] 

and treatment [F(4, 44.03)= 15.52, P<0.001]. There 

was a significant interaction between training days 

and treatment [F(12,538)= 2.14, P<0.05]. Further 

analysis indicated that Aβ- treated rats took more 

time to reach the hidden platform than control and 

sham-operated groups (P<0.001, Fig. 1A). According 

to the results, treadmill exercise for one month 

caused a significant reduction in escape latency in 

comparison to the Aβ group (P<0.01). The results of 

traveled distance showed a significant effect for 

training days [F(3, 5890)= 53.68, P<0.001] and 

treatment [F(4, 3032)= 276.4, P<0.001]. There was a 

significant interaction between treatment and training 

days [F(12, 7844)= 7.15, P<0.001]. One-way ANOVA 

Fig.1. Protective effects of treadmill exercise in Aβ (1-42)–induced Alzheimer's model in the water-maze test. Each block 

signifies the mean of latencies (A) and traveled distance (B) to reach the hidden platform during four consecutive trial days 

in the MWM.  A: 
*
P<0.001 vs. control and sham groups; 

#
P<0.05 vs. control and sham groups; 

$
P<0.01 vs. Aβ group. B: 

*
P<0.001 vs. control and sham groups; 

#
P<0.001 vs. Aβ group. C: Represents the mean of the percentage of the entrance 

to the target quarter in the probe trial in the MWM, 
*
P<0.05 vs. control group. Each value is the mean±SEM. 



 

 

 
 253   |   Physiol Pharmacol 24 (2020) 250-256                                                        Abshenas  et al.

        

 

analysis of training days revealed that Aβ-treated 

group swam further to reach the platform, which was 

significant when compared to the control and sham-

operated  groups (P<0.001, Fig. 1B). Treadmill 

exercise decreased traveled distance compared with 

Aβ group (P<0.001).  

 In the probe trial session, we found a significant 

difference between Aβ-treated rats and the control 

group (P<0.05, Fig. 1C) and Aβ group spent less time 

in the target quadrant. Treadmill exercise caused an 

increase in the entrance to the target quadrant 

(27.85±2.37) compared with Aβ-treated rats 

(23.39±2.10) without any significant difference. 

 

Passive avoidance task 

Our results revealed a significant difference between 

control, sham and Aβ groups (P<0.001, Fig. 2A) in 

STL. Aβ-treated rats that exercised for one month 

showed a significant increase in STL concerning the 

Aβ group (P<0.01). Furthermore, control and sham-

operated groups spent less time in the dark 

compartment compared to the Aβ group (P<0.001, 

Fig. 2B). Treadmill exercise significantly attenuated 

TDC when compared to the Aβ group (P<0.01). 

 

ELISA for BDNF 

As shown in Figure 3, the ICV injection of Aβ led to a 

significant reduction in the BDNF level in the 

hippocampus compared with the control and sham 

group (P<0.001). We found a significant increase in 

BDNF level in rats undergoing exercise than Aβ-

treated rats (P<0.05). 

 

Discussion 

Learning and memory impairments are the important 

symptoms of AD and ICV injection of Aβ resulted in 

the structural and physiological alterations in the 

hippocampus, which contribute to cognitive deficit 

Fig.2. Protective effects of treadmill exercise in Aβ (1-42)–induced Alzheimer’s model in the Shuttle box apparatus. The 

mean of step-through latency (A) and time spent in the dark compartment (B) in the passive avoidance task. A: 
*
P<0.001 vs. 

control and sham groups; 
#
P<0.05 vs. control and sham groups; 

$
P<0.05 vs. Aβ group. B: 

*
P<0.001 vs. control and sham 

groups; 
#
P<0.05 vs. control and sham groups; 

$
P<0.05 vs. Aβ group. Each value is the mean± SEM. 

 

Fig.3. The effects of Aβ and treadmill exercise on the BDNF concentration of hippocampus homogenate samples. Mean 

value (±SEM) of BDNF level in the hippocampus. 
*
P<0.001 vs. control and sham groups; 

#
P<0.05 vs. Aβ group. 
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(Leuner et al., 2012; van der Zee et al., 2008). In this 

study, we found an attenuation of learning and 

memory impairment by treadmill exercise in Aβ-

induced AD model. Second, we showed that exercise 

could improve impaired memory through increased 

expression of BDNF in the hippocampus. 

Previous studies have found a robust relation 

between physical exercise and cognition. They 

reported that exercise increases life span and 

prevents the decline of behavioral performance in 

middle age (Navarro et al., 2004) and the elderly (Kim 

et al., 2010). Treadmill exercise increased latency of 

the step-down avoidance and also decreased the 

latency and distance in MWM in the Aβ-injected rats, 

indicating that exercise attenuates Aβ- induced 

memory impairment. Our results supported finding by 

Kim et al. (2010) who reported that treadmill exercise 

is a useful strategy for preventing failure of memory in 

the elderly. 

Physical exercise has also been shown to enhance 

cognitive function in a rat model of vascular dementia 

(Choi et al., 2016) and Alzheimer’s disease (Koo et 

al., 2017). They concluded that treadmill exercise 

improves cognition deficits, possibly by increasing 

disintegrin and metalloproteinase domain-containing 

protein 10. In another study, latency in the passive 

avoidance test increased in MPTP (1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine)/probenecid- 

induced Parkinson’s disease in the mice model 

undergoing exercise (Sung, 2015). They reported an 

increased BDNF expression in the ventral midbrain of 

exercised animals and suggested that exercise can 

overcome Parkinson- induced memory impairment 

through enhancement of BDNF expression and 

prevention of dopaminergic neuronal damage. 

BDNF as a member of the neurotrophic factors family 

plays an important role in cognition and memory 

function, neuronal survival and differentiation (Pang 

and Lu, 2004). It has been reported that exogenous 

application of BDNF improved hippocampal long-term 

potentiation impairment in BDNF knockout mice 

(Patterson et al., 1996). In the present study, the ICV 

injection of Aβ caused a reduction in the expression 

of BDNF in the hippocampus and a significant 

increase observed in BDNF expression in rats that 

underwent treadmill exercise. Consistent with our 

results, Molteni et al. (2002) suggested that exercise 

increased the expression of plasticity-related genes 

such as BDNF in the rat hippocampus. 

In another study, exercise induced the synaptic 

plasticity markers through a BDNF- mediated 

mechanism in the hippocampus (Vaynman et al., 

2003). Previously we found that treadmill exercise for 

one month alleviated cognitive deficit most likely by 

an increase in the BDNF expression (Sajadi et al., 

2017). BDNF regulates neurogenesis, axonal and 

dendritic branching, and remodeling, as well as 

functional maturation of excitatory and inhibitory 

synapse (Seil and Drake-Baumann, 2000; Vicario-

Abejón et al., 1998). Several studies have 

established a positive correlation between BDNF 

expression and the memory function (Slipczuk et al., 

2009). They showed over-expression of BDNF 

increased neurogenesis in the hippocampus and 

improved spatial memory (Rossi et al., 2006). We 

found a significant increase in BDNF expression 

following exercise that involved long-term plasticity 

and memory. Based on the combined findings of this 

study, it can be inferred that treadmill exercise 

protects against memory impairment in AD model 

through an increase in BDNF expression.  

 

Conclusion 

In this study, avoidance learning and spatial memory 

in the Aβ-injected rats that underwent exercise were 

much better than those in the AD model. Our study 

revealed that BDNF expression was enhanced 

following exercise in the hippocampus. Therefore, it 

was concluded that treadmill exercise could be an 

important clinical strategy for preventing failure of 

memory in those with neurodegenerative disease. 
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