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Introduction: Methamphetamine (MA) induces cell death through several mechanisms. 
Insulin has an important role in cell proliferation and apoptosis via GSK3β inactivation. Here, 
we evaluated the effect of insulin and SB-216763, a selective GSK3β inhibitor, on MA-induced 
cell death in neuroblastoma SH-SY5Y, and rat primary midbrain cells.
Methods: Human SH-SY5Y and rat primary midbrain cells extracted from E14.5 rat embryo 
were treated with insulin (0.005-0.15U) or SB-216763 (0.5-9µM) with or without MA (5mM). 
The cell viabil-ity was assessed after 24, 48, and 72 h. TNFα, Bax, Bim, and Bcl2 genes 
expression were exam-ined in primary midbrain cells after 72 h of treatment with 5mM MA, 
insulin (0.05U), and SB-216763 (3µM).
Results: MA significantly decreased the viability of human SH-SY5Y and rat primary midbrain 
cells, and insulin and SB-216763 could increase it. In addition, elevated expression of TNFα 
and Bax fol-lowing MA was attenuated by insulin and SB-216763 in primary midbrain cells.
Conclusion: These findings demonstrated that MA decreases the cell viability of rat primary 
midbrain cells, at least in part, by upregulation of inflammatory and apoptotic factors, and 
treatment with insulin and SB-216763 could attenuate MA toxicity.
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Methamphetamine (MA) can induce long-term defi-
cits in monoaminergic, especially dopaminergic, sys-
tems. Reduction in dopaminergic neuron markers and 
degeneration of neuronal and glial cells in various brain 
regions have been shown in animal models and humans 

following MA administration (Ares-Santos et al., 2014; 
Ferrucci et al., 2022; Kousik et al., 2014). MA-induced 
neurotoxic effects are mediated through several neuro-
toxic mechanisms like, neuroinflammation, excitotox-
icity, mitochondrial dysfunction, and oxidative stress 
(Marshall and O’Dell 2012). Several in-vitro studies 

Introduction

iD

http://dx.doi.org/10.61882/phypha.29.3.323
https://crossmark.crossref.org/dialog/?doi=10.61882/phypha.29.3.323
https://orcid.org/0000-0002-6668-2302
https://orcid.org/0000-0002-6668-2302


also reported MA-induced cell death in M213 (Deng et 
al., 2002), N27 (Kanthasamy et al., 2006; Kanthasamy 
et al., 2011; Lin et al., 2012) and PC12 cells (Abbasi 
et al., 2022; Iravanpour et al., 2021; Mirakabad et al., 
2021; Wu et al., 2015) cell lines, and also using primary 
striatal (Liao et al., 2021) and midbrain dopaminergic 
neurons (Valian et al., 2019). MA could induce neuronal 
cell death through several mechanisms such as the JNK 
pathway, caspase-3 activation, apoptosis, autophagy 
inhibition, neuroinflammation, mitochondrial dysfunc-
tion, and oxidative stress (Iravanpour et al., 2021; Pitak-
salee et al., 2015; Wang et al., 2008). Insulin, for many 
years, has been considered a hormone that cannot cross 
blood blood-brain barrier. Nowadays, there is evidence 
that insulin is synthesized in the neurons and plays crit-
ical roles in brain functions, including regulation of cell 
proliferation, apoptosis, and neurodegeneration (Chen 
et al., 2022; Duarte et al., 2012). Insulin receptors ex-
ist in the cortex, hippocampus, hypothalamus, olfactory 
bulb, cerebellum, midbrain, and striatum (Figlewicz et 
al., 2003; Pomytkin and Pinelis 2021). Insulin binding 
to its tyrosine kinase receptor recruits the insulin recep-
tor substrates (IRSs), activates the PI3K/Akt pathway, 
and inactivates glycogen synthase kinase 3β (GSK3β), 
finally resulting in apoptotic suppression and neuronal 
survival (Ghasemi et al., 2013). The anatomical over-
lapping of insulin and dopamine receptors reflects the 
importance of insulin signaling in the survival and func-
tions of dopaminergic neurons (Figlewicz et al., 2003). 
Insulin protection has also been reported in an animal 
model of Parkinson’s disease (PD) against motor im-
pairments and dopaminergic neuron loss induced by 
6-hydroxy dopamine (6-OHDA) (Chen et al., 2022; Ira-
vanpour et al., 2021; Pang et al., 2016). Insulin signaling 
disruption causes neuronal dysfunction, especially in 
dopaminergic neurons in the CNS (Duarte et al., 2012).

GSK3β, a serine/threonine kinase, has critical roles 
in the regulation of metabolism, protein degradation, 
neuronal polarity, function, plasticity, migration, pro-
liferation, survival, and cell death (Beurel et al., 2015; 
Salcedo-Tello et al., 2011). GSK3β activity is inhibited 
in response to pro-survival signaling pathways like insu-
lin and Wnt signaling pathways (Pomytkin et al., 2018). 
It has been indicated that GSK3β inactivation by basic 
fibroblast growth factor (bFGF) treatment prevented 
6-OHDA-induced motor impairments, dopaminergic 
neuron loss, and tau phosphorylation in a rat model of 

PD (Yang et al., 2016). It has been shown that GSK3β 
inhibitors protect the PC12 cells against rotenone toxic-
ity in vitro. Rotenone significantly decreased PC12 cell 
viability, which was restored by lithium and SB-216763, 
selective small molecule inhibitor of GSK3β, through 
stimulation of Wnt signaling pathway, GSK3β inacti-
vation, and increase in Nurr1 expression (Zhang et al., 
2016).

These evidences propose that GSK3β inactivation, by 
insulin or GSK3β inhibitors, can be considered a prom-
ising approach to attenuate toxicity and cell death in the 
context of various damages. So, the present study eval-
uated the effect of insulin and SB-216763 on MA-in-
duced toxicity in human SH-SY5Y neuroblastoma cells 
and primary midbrain neurons of rats. Furthermore, the 
expression of some inflammatory and apoptotic factors 
was examined in primary midbrain cells.

Materials and Methods
SH-SY5Y cells culturing
Human neuroblastoma cells (SH-SY5Y) (Iranian Bi-

ological Resource Center, Tehran, Iran) were seeded 
in 96-well plates (15×103 cells/well) in DMEM/Ham’s 
F12 medium (Gibco, USA) containing 10% FBS and 
1% penicillin/streptomycin (Gibco, USA), in a humid-
ified incubator at 37°C with 5% CO2 (An et al., 2019). 
On day in-vitro 4 (DIV4), the confluent SH-SY5Y cells 
were treated with pharmacological agents.

Animals
Adult Wistar rats (male and female) from the Neu-

roscience Research Center breeding colony were kept 
under a 12/12 h light/dark cycle, 50-60% humidity at 
24-25°C, and had free access to standard laboratory 
chow and water. The experiments were approved by the 
ethics committee for animal research of Shahid Behesh-
ti University of Medical Sciences (IR.SBMU.PHNS.
REC.1400.126).

Primary midbrain cell preparation
Male and female rats were mated for 12 h, and then 

the male rat was removed from the cage. Fourteen days 
later, the pregnant rats were used for the primary mid-
brain cell extraction from the rat embryo, as previously 
described (Choi et al., 2013). In brief, after anesthetiza-
tion with CO2, the embryos were extracted from the uter-
us and washed in phosphate-buffered saline (PBS). The 
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isolated ventral midbrain tissues were washed in Ca2+ 
and Mg2+-free Hank’s Balanced Salt solution (HBSS; 
Sigma Aldrich, USA). They then incubated with 0.05% 
trypsin solution for 20 min at 37°C. Trypsin action was 
inactivated by HBSS containing 10% fetal bovine serum 
(FBS; Gibco, USA). The tissues were dissociated into 
single cells using fire-polished Pasteur pipettes. The dis-
sociated cells were seeded in 0.01% Poly-L-lysine-coat-
ed plates at the density of 6×103 cells/well in 96-well 
(for MTT assay) and 1.2×106 cells in T25 flasks (for 
RNA extraction) in DMEM/Ham’s F12 medium (Gib-
co, USA) with 1% glutamine (Gibco, USA), 10% FBS, 
and 1% penicillin/streptomycin (Gibco, USA). The half 
of medium was changed on day 3 and was replaced by 
serum-free DMEM containing 2% B27 on day 5 (Gib-
co, USA). The cells were treated with pharmacological 
agents on day 7.

Treatments
Methamphetamine hydrochloride (School of Pharma-

cy, Tehran University of Medical Sciences, Iran) was 
dissolved in 0.9% normal saline. SH-SY5Y cells were 
treated with MA (0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, and 5mM) 
for 24 h, or normal saline, and the cell morphology was 
observed under a light microscope. MA at 5mM con-
centration reduced the viability of SH-SY5Y cells, so 
this concentration was selected for co-treatment with 
insulin or GSK3β inhibitor (SB-216763). Regarding the 
rat primary midbrain cells, we have previously reported 
5mM MA as the toxic concentration to reduce the cells’ 
viability (Valian et al., 2019), so this concentration was 
also selected for evaluating the effect of insulin and SB-
216763 on MA toxicity in rat primary midbrain cells. 
SH-SY5Y and midbrain cells were treated with insulin 
(0.005, 0.01, 0.015, 0.02, 0.025, 0.05, 0.1 and 0.15U) 
(Human recombinant insulin; Exir pharmaceutical com-
pany, Iran) or SB-216763 (0.5, 1, 2, 3, 4, 5, 7 and 9µM 

in dimethyl sulfoxide (DMSO)) (Sigma, USA) without 
or with 5mM MA. Normal saline and DMSO were used 
as the corresponding controls. Treatments were repeat-
ed 2-4 times with 3 wells/repeat. To evaluate the gene 
expression, the rat primary midbrain cells were treated 
with 0.05U insulin or 3µM SB-216763 without or with 
5mM MA for 72 h.

MTT assay
The viability of the cells was measured using MTT, 

after 24, 48, and 72 h (Collins et al., 2016). MTT as-
say is a test for measuring the dehydrogenase enzyme 
activity that reduces 3- [4, 5-dimethylthiazol-2-yl]-2, 
5-diphenyl tetrazolium bromide to insoluble formazan 
crystals, giving a purple color. After removing the medi-
um, MTT reagent (5mg/ml in DMEM) was added, and 
then incubated at 37°C for 4 h. Insoluble crystals were 
dissolved in DMSO (100µl/well) for 30 min on a shaker 
at 37°C. Spectrophotometric absorbance was evaluated 
by a microtiter plate reader at 570nm wavelength.

 
RNA extraction and qPCR
RNA was isolated using YTzol RNA kit (Yekta tajhiz 

azma, Tehran, Iran) from the primary midbrain cells. 
After determination of the RNA concentration using 
Nanodrop (Thermo Fisher Scientific, USA), cDNA was 
synthesized from 1μg total RNA (cDNA) by PrimeS-
cript First-Strand cDNA Synthesis Kit (Takara, Japan). 
Briefly, RNA, random hexamer and oligo dT primers, 
RT Enzyme Mix, PrimeScript Buffer, and DEPC-treated 
water were incubated at 37°C for 15 min followed by 
85°C for 5 sec. The gene expression was quantitative-
ly assessed by ABI System (USA) using SYBR Green 
Real-Time PCR Master Mix (Ampliqon, Denmark) 
reagents. Relative expression of TNFα, Bax, Bim, and 
Bcl2 was quantitatively calculated by the 2-ΔΔCt meth-
od, and β-actin gene expression was considered as an 
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TABLE 1: Primer Sequences for qPCR

Gene Forward primer (5’ 3’) Reverse primer (5’ 3’)

TNFα ACTGAACTTCGGGGTGATCG CGCTTGGTGGTTTGCTACG

Bax AAGTCCAGTGTCCAGCCC TGGTTGCCCTCTTCTACTTTGC

Bim AGATAATGGTTGAAGGCCTGG ACAGAATCGCAAGACAGGAG

Bcl2 AGATAATGGTTGAAGGCCTGG ACAGAATCGCAAGACAGGAG

β-actin AACGCAGCTCAGTAACACTCC TCTATCCTGGCCTCACTGTC



internal control. RNA was extracted from 1.2×106 cells 
of the control, insulin, and SB-216763 groups. For the 
other groups, because of cell number reduction follow-
ing MA, 2.4×106 cells were used for RNA extraction. 
The sequences of primers used for qPCR are shown in 
Table 1.

Statistical analysis
Data are presented as means ± standard error of the 

mean (SEM). Statistical analyses were performed in 
SPSS (version 16.0), with the p<0.05 level as the statis-
tical significance level. One-way ANOVA analysis with 
Dunnett’s and Tukey’s post hoc tests was used to deter-
mine the differences between groups.

Results
MA-induced changes in the morphology and the via-

bility of SH-SY5Y cells
The morphology of human neuroblastoma cells was 

observed by light microscopy following MA treatment. 
Low to moderate MA concentrations did not affect the 
cell’s morphology; however, the higher concentrations 
(2-5mM) changed the morphology to a spherical form 
with obvious cell death after 4 and 5mM MA (Figure 
1). Statistical analysis indicated that MA significant-
ly changed the viability of the cells [F (9, 110) = 17.101, 
p<0.001]. Although the low to moderate concentrations 
(0.2-3mM) did not affect the cells’ viability (p>0.05), 
the higher concentrations (4 and 5mM) significantly de-
creased it compared to the control (p<0.05 and p<0.001, 
respectively) (Figure 1).

The effect of insulin and SB-216763 on SH-SY5Y cell 
viability following MA

The viability of SH-SY5Y cells was evaluated after 
24 h of treatment with insulin and SB-216763 without 
or with 5mM MA (Figure 2). ANOVA analysis demon-
strated that none of the insulin concentrations changed 
the viability [F (8, 45) = 1.193, p=0.324] (Figure 2A). As 
shown in Figure 2B, MA decreased the cell survival 
compared to control [F (9, 50) = 4.312, p<0.001], and insu-
lin (0.05 and 0.1U) significantly increased it in compari-
son to MA (p<0.01). No significant change was also ob-
served after treatment with SB-216763 [F (9, 50) = 1.277, 
p= 0.273] (Figure 2C). Statistical analysis indicated that 
the viability of the cells was significantly decreased 
following MA treatment in comparison to control and 

DMSO [F (10, 55) = 7.388, p<0.001], and treatment with 
SB-216763 (4 and 5µM) elevated it (p<0.05) (Figure 
2D).

The effect of insulin on MA-induced cell death in pri-
mary midbrain cells

The survival of primary midbrain cells was evaluated 
after treatment with normal saline and different concen-
trations of insulin for 48 and 72 h without or with 5mM 
MA (Figure 3). Statistical analysis indicated that none 
of the insulin concentrations changed the viability of the 
cells after 48 h [F (8, 45) = 0.934, p=0.498], and 72 h [F 

(8, 72) = 1.042, p=0.413] (Figure 3A-B). ANOVA analy-
sis indicated that 5mM MA significantly decreased cell 
viability after 48 h [F (9, 110) = 2.277, p<0.05], and insu-
lin could not elevate it (Figure 3C). However, insulin 
(0.025, 0.05, and 0.1U) significantly enhanced cell sur-
vival after 72 h [F (9, 110) = 11.448, p<0.001] in compar-
ison to MA (p<0.01, p<0.01, and p<0.05, respectively) 
(Figure 3D).

The effect of SB-216763 on MA-induced toxicity in 
primary midbrain cells

The viability of primary midbrain cells was mea-
sured 48 and 72 h after treatment with normal saline, 
DMSO (vehicle), and SB-216763 without or with 5mM 
MA (Figure 4). SB-216763 changed the cells’ surviv-
al after 48 h [F (9, 110) = 3.797, p<0.001] and 72 h [F (9, 

110) = 3.829, p<0.001]. In both time points, 7 and 9µM 
concentrations significantly decreased the cell viability 
compared to control (48 h; p<0.01 and p<0.001, respec-
tively, 72 h; p<0.001 and p<0.01, respectively) (Figure 
4A-B). Therefore, these concentrations were excluded 
to treat the cells in the presence of MA. ANOVA anal-
ysis demonstrated that MA induced cell death after 48 
[F (8, 99) = 8.602, p<0.001] and 72 h [F (8, 99) = 12.049, 
p<0.001]. None of the SB-216763 concentrations affect-
ed MA-induced toxicity after 48 h (p>0.05 compared to 
MA); however, SB-216763 at 3µM concentration could 
significantly (p<0.05 in comparison to MA), and at 4µM 
partially (p>0.05 compared to control) attenuate the MA 
effect on the cell viability (Figure 4C-D). 

The effects of insulin and SB-216763 on gene expres-
sion following MA

The gene expression of inflammatory and apoptotic 
factors was evaluated in primary midbrain cells, 72 h 
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FIGURE 1.FIGURE 1. Morphology of the neuroblastoma cells following MA treatment. The neuroblastoma cells were treated with normal saline and 
MA (0.2-5mM) for 24 h. Low to moderate MA doses did not change cell morphology. In contrast, the morphology was changed following 
higher doses (2-5mM) with obvious cell death after 4 and 5mM MA. Treatments were repeated 4 times and there were 3 wells in each repeat. 
*p<0.05, ***p<0.001 vs. Control



after treatment with 0.05U insulin or 3µM SB-216763 
without or with 5mM MA (Figure 5). MA increased 
the expression of TNFα [F (5, 12) = 14.303, p<0.001] and 
Bax [F (5, 12) = 6.491, p<0.01] in comparison to control. 
Treatment with insulin and SB-216763 could signifi-
cantly decrease them (TNFα: p<0.001; Bax: p<0.01 
and p<0.05, respectively) (Figure 5A-B). However, no 
significant change was observed in the mRNA levels of 
Bim [F (5, 12) = 1.384, p=0.298] and Bcl2 between groups 
[F (5, 12) = 3.028, p=0.054] (Figure 5C-D).

Discussion
Our findings revealed that insulin and SB-216763 

could restore MA-induced reduction in the viability of 
human SH-SY5Y and rat primary midbrain cells after 
24 and 72 h of treatment, respectively. Moreover, MA 
elevated the expression of TNFα and Bax, which was 
attenuated by insulin and SB-216763.

In the present study, we aimed to evaluate and com-
pare the effect of insulin and SB-216763 on MA-in-
duced toxicity on both the SH-SY5Y cell line and 
primary neurons extracted from the rat embryos. SH-
SY5Y cells are immortalized and proliferative cells 
that express markers of immature neurons. They can be 
differentiated into several types of adult neuronal cells, 
including cholinergic, adrenergic, and dopaminergic 
neurons (Lu et al., 2017). It has been shown that un-
differentiated SH-SY5Y cells are more susceptible to 
6-OHDA and MPTP toxicity than differentiated cells 
(Carter et al., 2014; Wei et al., 2017). Pro-survival PI3k/
Akt signaling pathways are upregulated in retinoic ac-
id-induced differentiated cells (Wei et al., 2017), which 
is responsible, at least in part, for less susceptibility to 
toxins in differentiated cells. It has been previously re-
ported that upregulation of elements involved in PI3K/
Akt and ERK1/2 pathways can protect neurons against 
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FIGURE 2.FIGURE 2. The effect of insulin and SB-216763 on MA-induced cell death in SH-SY5Y cells. The neuroblastoma cells were treated with 
insulin (0.005-0.15U) without (A) or with (B) 5mM MA for 24 h. None of the insulin concentrations changed the cell viability (A). MA 
decreased the cell viability, and 0.05 and 0.1U insulin restored it to the control level (B). The cells were treated with SB-216763 (0.5-9µM) 
without (C) and with (D) 5mM MA for 24 h. No significant change was observed after SB-216763 treatment compared to control and DMSO 
(C). SB-216763 (4 and 5µM) significantly protected the cells against MA-induced reduction in cell viability (D). Data are shown as means ± 
SEM. Treatments were repeated 2 times with 3 wells/repeat. *p<0.05, **p<0.01, ***p<0.001 vs. Control
#p<0.05, ##p<0.01 vs. MA
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various neurotoxins used for inducing the cellular mod-
els of PD (Kunnimalaiyaan et al., 2018; Mathuram et 
al., 2016; Rani and Goyal 2019). In parallel with these 
findings, we found that the viability of SH-SY5Y cells 
was decreased after 24 h of treatment with MA, while 
the reduction of primary dopaminergic neuron viability 
was observed following 48 and 72 h (not 24 h, as we 
previously reported (Valian et al., 2019)). It suggested 
that SH-SY5Y cells are more sensitive to MA toxicity 
than primary dopaminergic neurons as fully differentiat-
ed cells. However, insulin and SB-216763 could attenu-
ate MA toxicity in both types of cells.

The protective effect of insulin and GSK3β inhibitors 
has been previously reported in several studies. In-vi-
vo studies have demonstrated that insulin could protect 
dopaminergic neurons against 6-OH DA (Pang et al., 
2016), through the inactivation of GSK3β, downregula-
tion of apoptotic factors, and upregulation of anti-apop-
totic factors (Cheng et al., 2010; Duarte et al., 2012). 

Furthermore, insulin-like growth factor II (IGF-II) has 
also been shown to protect dopaminergic neurons against 
1-methyl-4-phenylpyridinium (MPP+) by reducing oxi-
dative damage and improving mitochondrial function 
(Claros et al., 2021). Regarding the role of insulin in the 
regulation of cell proliferation, it has been demonstrated 
to induce the proliferation of a breast cancer cell line 
(MCF-7) (Wei et al., 2017) and colorectal cancer cells 
(Lu et al., 2017) through IRS1 up-regulation and acti-
vation of Ras/Raf/ERK and MAPK pathways (Lu et al., 
2017; Wei et al., 2017).

GSK3β activation causes apoptotic cell death by 
down-regulation of Bcl2 family proteins involved in 
cell survival (Beurel et al., 2015; Maurer et al., 2014). 
Insulin and the other neuroprotective agents, like Wnt, 
are mainly involved in the maintenance of neuronal sur-
vival and negatively regulate GSK3β activity through 
phosphorylation on serine residue, resulting in GSK3β 
inactivation (Pomytkin et al., 2018). Oxygen-glucose 

  

  

 FIGURE 3.FIGURE 3. The effect of insulin on reduced viability of primary midbrain cells due to MA treatment. The cells were treated with normal saline 
or insulin (0.005-0.15U) without (A, B) or with 5mM MA (C, D) for 48 and 72 h. None of the insulin concentrations changed the cell viability 
at both time points (A, B). Although insulin could not prevent MA-induced cell death after 48 h (C), it significantly increased the viability of 
the cells compared to MA (D). Data are presented as means ± SEM. Treatments were repeated 2-4 times with 3 wells/repeat.
*p<0.05, **p<0.01, ***p<0.001 vs. Control
#p<0.05, ##p<0.01 vs. MA



deprivation/reoxygenation has been shown to de-
crease the viability of human SH-SY5Y cells through 
GSK3β activation and enhanced apoptotic factors such 
as cleaved caspase-3, cleaved caspase-9, p53, p21, and 
Bax, which were restored by GSK3β inhibition via treat-
ment with emodin (Kunnimalaiyaan et al., 2015). The 
role of GSK3β activation in cell death has also been 
shown in the cellular model of traumatic brain injury 
induced by mechanical stretch (Cheng et al., 2021), and 
cellular and animal models of PD induced by MPTP 
(Ahmadzadeh-Darinsoo et al., 2022; Cao et al., 2021; 
Hu et al., 2020), which was attenuated by GSK3β in-
activation. It has been demonstrated that GSK3β in-
hibitors could prevent mitochondrial dysfunction and 
restore the viability of SH-SY5Y cells following MPP+ 
(Kunnimalaiyaan et al., 2018), and decrease tau phos-
phorylation and Aβ aggregation through the β-catenin 
pathway (Lu et al., 2017). Administration of valproate 
and lithium, which have an inhibitory effect on GSK3β 

activity, and SB-216763 has been indicated to decrease 
PC12 cells death following MA (Wu et al., 2015), and 
prevent MA-induced locomotor sensitization and hyper-
activity through GSK3β inactivation in the rodent nucle-
us accumbens (Enman and Unterwald 2012; Xing et al., 
2015; Xu et al., 2011). GSK3β inactivation using cur-
cumin (Moosavi et al., 2018) and rifampicin (Carter et 
al., 2014) could protect the SH-SY5Y cells against rote-
none and 6-OHDA toxicity (Carter et al., 2014; Moosavi 
et al., 2018). In parallel with these findings, we indicat-
ed that insulin and SB-216763 attenuated MA-induced 
toxicity after 72 h of treatment, but not 48 h, suggesting 
that they significantly increased the viability of the liv-
ing cells over time. Furthermore, insulin and SB-216763 
attenuated the toxic effect of MA by downregulation of 
apoptotic (Bax) and inflammatory factors (TNFα) in pri-
mary midbrain cells.

Regarding the physiological functions of GSK3β, 
including the regulatory effects on cell growth, prolif-
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FIGURE 4.FIGURE 4. The effect of SB-216763 on MA-induced decrease in the viability of primary midbrain cells. The cells were treated with normal 
saline, DMSO (vehicle), or SB-216763 (0.5-9µM) without (A, B) or with 5mM MA (C, D) for 48 and 72 h. High concentrations of SB-216763 
(7 and 9 µM) reduced the viability after 48 and 72 h (A, B). Although none of the SB-216763 concentrations affected MA-induced cell death 
after 48 h (C), some concentrations (3 and 4µM) increased the viability after 72 h (D). Data are shown as means ± SEM. Treatments were 
repeated 4 times with 3 wells/repeat.*p<0.05, **p<0.01,***p<0.001 vs. Control
#p<0.05 vs. MA



eration, and different aspects of mitochondrial function 
like permeability, biogenesis, motility, and mitochon-
drial-dependent apoptosis (Yang et al., 2017), a proper 
balance between GSK3β activation and inactivation is 
crucial (Salcedo-Tello et al., 2011). Interestingly, the 
excessive inactivation of GSK3β activity, similar to its 
overactivation, could also reduce the viability of the 
cells depending on the cell type and its cellular localiza-
tion (Salcedo-Tello et al., 2011). It has been shown that 
GSK3 inhibitors could induce apoptotic cell death in hu-
man neuroblastoma (NGP, SK-N-AS, SH-SY5Y) (Car-
ter et al., 2014; Kunnimalaiyaan et al., 2018; Mathuram 
et al., 2016; Mathuram et al., 2020) and several cancer 
cell lines, such as pancreatic (MiaPaCa2, PANC-1, and 
BxPC-3) (Kunnimalaiyaan et al., 2015), lung (Mathur-
am et al., 2020), and bladder (Kuroki et al., 2019) cancer 
cell lines. Enhancement of pro-apoptotic and reduction 
of anti-apoptotic factors, reactive oxygen species gener-
ation, and mitochondrial dysfunction are the underlying 

mechanisms of apoptotic cell death following GSK3β 
inhibitors, which are important in treating cancers (Rani 
and Goyal 2019). Consistent with these reports, we ob-
served a significant reduction in the viability of primary 
midbrain cells when treated with high concentrations of 
SB-216763 (7 and 9µM) for 48 and 72 h.

The present study was a preliminary in vitro study 
evaluating the toxic effects of MA on the primary do-
paminergic neurons. We assessed the morphology of the 
cells under light microscopy, and molecular assessments 
were only based on gene expression. Immunocytochem-
istry and protein level measurements can help to achieve 
a better conclusion. Therefore, more in-depth studies are 
needed to assess the underlying mechanisms of MA-in-
duced neurotoxicity at both gene expression and protein 
levels. However, in general, these findings demonstrate 
that insulin and SB-216763, a selective GSK3β inhibitor, 
increase the viability of human SH-SY5Y and rat pri-
mary midbrain cells following high MA concentrations 
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FIGURE 5.FIGURE 5. The effect of insulin and SB-216763 on gene expression in MA-treated primary midbrain cells. Primary midbrain cells were treat-
ed with 0.05U insulin or 3µM SB-216763 with or without 5mM MA for 72 h. The expression of TNFα (A) and Bax (B) was increased following 
MA, and treatment with insulin and SB-216763 significantly decreased them. No significant change was observed in Bim (C) and Bcl2 mRNA 
levels (D). Data are presented as means ± SEM (n=3). **p<0.01 vs. Control
#p<0.05, ##p<0.01, ###p<0.001 vs. MA



exposure, mediated by downregulation of pro-apoptotic 
and inflammatory factors.
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