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Introduction: Alzheimer’s disease (AD) is a neurocognitive disorder characterized by 
neuropsychiatric symptoms (NPS), particularly anxiety. The underlying mechanisms involve 
disruptions in the hypothalamic-pituitary-adrenal (HPA) axis, and altered serotonergic signaling 
due to amyloid-beta (Aβ) accumu-lation. This study investigates the effects of Bufexamac, a 
Cyclooxygenase-2 (COX-2), and HDAC Class IIb inhibitor, on anxiety-like behaviors and 
neurochemical changes in a rat model of AD induced by Aβ.
Methods: 18 adult Wistar rats were divided into three groups: Saline, Aβ, and Aβ + Bufexamac. 
Aβ25-35 was administered via intracerebroventricular injection, followed by daily Bufexamac 
treatment for eight days. Anxiety-like behaviors were assessed using the open-field test, while 
Western blotting and ELISA measured levels of glucocorticoid receptors (GR), corticotropin-
releasing factor (CRF), and serotonin in the amygdala.
Results: Bufexamac significantly mitigated Aβ-induced anxiety-like behaviors, as evidenced 
by increased line crossings and time spent in the center of the arena (P<0.05). Western blot 
analysis revealed that Bufexamac reduced elevated GR levels in the Aβ group (P<0.05). 
Additionally, Bufexamac treat-ment significantly regulated serotonin (P<0.01) and CRF levels 
(P<0.05) in the amygdala compared to the Aβ group.
Conclusion: Bufexamac effectively alleviates anxiety-like behaviors and restores 
neurochemical alterations in a rat model of AD, suggesting its potential as a possible therapeutic 
agent targeting neuropsychiatric symptoms associated with AD. Further research is warranted 
to explore its clinical applicability.
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Alzheimer’s disease (AD) is an irreversible and pro-
gressive neurocognitive disorder (Lucey 2020; Mendez 
2021). However, it also manifests a range of psychiatric 
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symptoms known as neuropsychiatric symptoms (NPS), 
which include apathy, depression, anxiety, restless-
ness, aggression, and psychosis (Lyketsos et al., 2011; 
Woolley et al., 2011). Among these, anxiety disorders 
are notably the most common NPS associated with AD 
(Mendez 2021). Research indicates that anxiety in Alz-
heimer’s is associated with damage in key subcortical 
brain regions, including the amygdala, locus coeruleus, 
hypothalamus, and anterior mid-cingulate cortex(Chen 
et al., 2021).

From a pathological standpoint, the accumulation of 
amyloid-beta (Aβ) protein deposits disrupts the hypo-
thalamic-pituitary-adrenal (HPA) axis, which plays a 
crucial role in regulating anxiety (Aminyavari et al., 
2019). This disruption links anxiety to memory impair-
ment during the natural aging process, positioning it as 
a potential risk factor (Gulpers et al., 2019). The HPA 
axis is essential for the body’s response to stress; upon 
recognizing a stressor, it activates a cascade that leads 
to the increased release of corticotropin-releasing fac-
tor (CRF) and, subsequently, cortisol—a glucocorticoid. 
This cascade also stimulates the release of adrenocorti-
cotropic hormone, which prompts the secretion of cor-
tisol or corticosterone in humans and rodents (Vale et 
al., 1981).

Cortisol exerts its effects by attaching to glucocorti-
coid receptors (GR) (Saklatvala 2002). In response to 
stress, glucocorticoids, such as cortisol, pass through 
the cell membrane to bind with GR in the cytoplasm. 
Once bound, the GR translocates to the nucleus, where it 
regulates gene expression by attaching to glucocorticoid 
response elements (GREs) in the regulatory regions of 
specific target genes. This signaling pathway is vital in 
determining how individuals physiologically respond to 
stress (Hinds and Sanchez 2022). 

Additionally, CRF and the CRF family of peptides 
play crucial roles in regulating the stress response by in-
tegrating physiological reactions to stressors and func-
tioning as both hormones and neuromodulators.

Also, CRF and the CRF family of peptides play cru-
cial roles in regulating the stress response by integrat-
ing physiological reactions to stressors and functioning 
as both hormones and neuromodulators (Vandael and 
Gounko 2019).

According to studies, high levels of glucocorticoids 
in plasma and cerebrospinal fluid have been record-
ed in the early stages of AD pathology. (Swaab et al., 

1994). A study has shown that central administration of 
Aβ disrupts the HPA axis and induces anxiety-like be-
haviors in animal models(Grazia Morgese et al., 2014). 
In rodent models of AD increased corticosterone levels 
correlate with heightened expression of GR and CRF 
in critical areas such as the hippocampus and cerebral 
cortex (Reyna et al., 2023). Additionally, chronic stress 
and stress-related conditions are associated with hyper-
activation of the HPA axis, directly linking dysfunction 
of the CRF system to Alzheimer’s pathology (Vandael 
and Gounko 2019).

The monoaminergic system, particularly the seroto-
nergic system, has also been implicated in the activation 
of the HPA axis, the pathogenesis of AD, and cognitive 
function. The serotonergic system is crucial for the man-
ifestation of anxiety and depression symptoms in both 
animal and human models. In rodent models of AD, 
studies suggest that the raphe nucleus, an area signifi-
cantly impacted by Aβ and tau pathology, may disrupt 
serotonin (5-HT) signaling and receptor density. Nota-
bly, the density of 5-HT1A receptors is reduced in AD, 
potentially contributing to the anxiety and depression 
symptoms observed in affected individuals (Reyna et 
al., 2023).

Cyclooxygenase-2 (COX-2) is an enzyme essential 
for the inflammatory response and is associated with 
neuropsychiatric disorders like depression and anxiety. 
Elevated levels of pro-inflammatory cytokines, which 
are often associated with COX-2 activity, can impair 
serotonin transporter function, leading to decreased se-
rotonin levels and contributing to mood disorders (He 
et al., 2022). On the other hand, Histone deacetylases, 
especially HDAC6, are enzymes that remove acetyl 
groups from histones, leading to chromatin condensa-
tion and reduced gene expression. HDAC6 has been 
implicated in the regulation of stress resilience and 
emotional responses. Studies show that inhibition of 
HDAC6 can enhance the acetylation of heat shock pro-
tein 90 (Hsp90), which is involved in the chaperoning 
of GR. This process is critical for modulating the body’s 
response to stress and has been linked to improved re-
silience against stressors. Furthermore, HDAC6 is en-
riched in serotonin neurons, and its downregulation 
following stress exposure correlates with resilience and 
antidepressant responses. This suggests that targeting 
HDAC6 may offer therapeutic potential for stress-re-
lated disorders by influencing serotonin signaling and 
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HPA axis dynamics (Jochems et al., 2015; Park et al., 
2021). On the other hand, the activation of the HPA axis 
during severe acute stress is linked to a notable rise in 
glucocorticoid receptor (GR) levels, The results indicate 
that HDAC6 plays a vital role in mediating the impact 
of acute stress on synaptic function, and its inhibition 
results in a relative decrease in phosphorylated GR lev-
els.(Liu et al., 2023).Also, a study indicates that valproic 
acid, an HDAC inhibitor, may partly exert its mood-sta-
bilizing effects through modifications in CRF neuronal 
activity (Stout et al., 2001). 

The inhibition of COX2 and HDAC6 appears to have 
beneficial effects on alleviating anxiety associated with 
AD. Bufexamac (as a NSAID), is proposed as a COX-2 
inhibitor. Bufexamac has also been identified as a spe-
cific inhibitor of class IIb histone deacetylases, namely 
HDAC6 and HDAC10 (Bantscheff et al., 2011). In this 
context, we investigated the impact of Bufexamac ad-
ministration on the expression levels of GR, CRF, and 
serotonin—key regulators of the HPA axis involved in 
maintaining homeostasis— following intraventricular 
injection of Aβ25-35 in the amygdala of rats.

Materials and Methods
 Animals
This study was done with 18 adult male Wistar rats 

(weighing 250-300 g). The rats were maintained un-
der controlled conditions with a 12h light-dark cycle. 
All animal experiments in this study were approved by 
the animal care committee and carried out at Shahid 
Beheshti University of Medical Sciences. (IR.SBMU.
PHNS.REC.1399. 001). 

Surgery 
Initially, animals were anesthetized with an intraperi-

toneal injection of ketamine (100 mg/kg) and xylazine 
(10 mg/kg). Their heads were then stabilized using a 
stereotaxic device, and injection coordinates were set at 
-0.8 mm posterior to the bregma, ±1.5 mm lateral to the 
midline, and -4.0 mm deep. A small skull incision was 
made for the insertion of pre-prepared injection cannu-
las, which were secured with dental cement.

The rats were randomly divided into three groups: Sa-
line, Aβ, and Aβ + Bufexamac. The Aβ and Aβ + Bufex-
amac groups received a bilateral intracerebroventricu-
lar (ICV) injection of Aβ25-35 (15 nmol/rat) on the day 
of surgery. One week later, either Saline or Bufexamac 

(20 μg/rat) (Jia et al., 2015; Mansouri et al., 2025) was 
administered ICV daily for eight days (days 7 to 14).

Open field test
The anxiety-like behaviors of rats were assessed us-

ing the open-field test. The rats were placed individu-
ally in a black wooden arena (50 × 50 × 40 cm). Total 
distance moved and behaviors such as grooming, rear-
ing, crossing, and time spent in the center were recorded 
using a camera for a 5-minute duration. Total distance 
and time spent in the center of the box were quantified 
using EthoVision software (Zhang et al., 2023). Addi-
tionally, grooming, crossing, and rearing behaviors were 
assessed by an observer who was unaware of the groups 
(Seemiller et al., 2021).

Western blot
The amygdala tissues were homogenized and centri-

fuged in a lysis buffer. Then, the supernatants were as-
sayed for total protein concentration using the Bradford 
protein assay (Kruger 2009). The proteins were separat-
ed by 12.5% SDS- polyacrylamide gel electrophoresis 
(PAGE) and subsequently transferred to a PVDF mem-
brane. To block non-specific binding, the membranes 
were treated with 2% non-fat dried milk for 2 hours. 
To continue they incubated with primary antibodies an-
ti-GR (1/1000) and anti-β-actin (1/2500) and secondary 
antibody (1:5000), respectively. The protein bands were 
detected using a chemiluminescence kit and recorded on 
X-ray films. Finally, the band densities were analyzed 
and quantified with ImageJ software.

Neurochemical biomarkers assay
The animal’s amygdala area was isolated to measure 

serotonin and CRF levels. Amygdala samples were ho-
mogenized in phosphate-buffered saline (PBS, pH 7.4; 
100 mg/ml) and then centrifuged at 300 g and 4°C for 
5 minutes. The resulting supernatants were collected 
and quickly used for analysis. Levels of CRF (CSB-
E08038r) and serotonin (CSB-E08364r) in the amyg-
dala were determined using the protocol of commercial 
rat ELISA kits from Cusabio (USA). The optical density 
was read at 450 nm with a microplate photometer (Abd 
Elkader et al., 2024).

Statistical analysis 
Statistical analyses were conducted using GraphPad 
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Prism software version 8.0. The Shapiro-Wilk test was 
used to evaluate data normality. One-way ANOVA, ac-
companied by Tukey’s post-hoc test, was applied for 
comparisons. Results are presented as mean ± SEM, 
with significance set at p<0.05.

Results
Bufexamac mitigated anxiety-like behaviors induced 

by Aβ
The analysis showed no significant differences in the 

total distance traveled among the different groups, and 
they had normal functions. Consequently, we can con-
clude that the surgical procedure and the administered 
treatments did not have a meaningful impact on the ani-
mals’ movement (Figure 1a).

There were significant differences in the number of 
line crossings and time spent in the center among the 
groups (Figure 1b, c). The Aβ group exhibited fewer 
line crossings (P<0.05) and spent less time in the cen-
ter (P<0.001) compared to the Saline group; however, 
Bufexamac treatment enhanced this behavioral param-
eter (P<0.05). Similarly, notable disparities were ob-
served in grooming and rearing behaviors (Figure 1d, 
e), with the Aβ group exhibiting higher frequencies of 
both compared to the Saline group (P<0.05). Bufexam-
ac treatment also reduced these behavioral parameters 
(P<0.05).

Bufexamac reversed Aβ‑induced amygdala GR im-
pairment

To investigate Bufexamac’s potential to modulate GR 
impairment, we performed a Western blot analysis. As 
shown in Figure 2, GR expression levels were higher 
in the Aβ group compared to the Saline group (P<0.01). 
However, treatment with Bufexamac for 8 days signifi-
cantly decreased this elevated expression (P<0.05).

Bufexamac changed CRF and serotonin levels affect-
ed by Aβ

To examine the effects of Bufexamac on the activity 
of the HPA axis in an AD rat model, we measured the 
levels of serotonin and CRF in the amygdala using ELI-
SA (Figure 3 a, b). Our results indicated that the expres-
sion levels of serotonin (P<0.001) and CRF (P<0.01) in 
the Aβ group were significantly lower compared to the 
control group. Conversely, administration of Bufexam-
ac resulted in a marked increase in the levels of both 

CRF (P<0.05) and serotonin (P<0.01).

Discussion
Acknowledging the critical role of anxiety as a com-

mon psychological disorder in AD and the strong link 
between stress systems and AD progression, we induced 
cognitive impairment through bilateral intraventricular 
injection of Aβ25-35 and evaluated the possible anti-anx-
iety effect of Bufexamac in neurotoxicity caused. Our 
findings show that Bufexamac significantly improves 
the levels of key factors involved in stress regulation as-
sociated with Alzheimer’s pathogenesis in the Aβ25-35 rat 
model, while also reducing anxiety-related behaviors. 
AD is the most common type of dementia in the elderly, 
characterized by two main histopathological features: 
senile plaques made up of aggregated Aβ peptides and 
neurofibrillary tangles formed by hyperphosphorylated 
tau protein. In the human brain, the major soluble Aβ 
oligomers include Aβ1-40 and Aβ1-42, along with shorter 
peptides like Aβ25-35. Aβ25-35 is linked to key changes in 
AD, including cognitive deficits, abnormal processing 
of APP, tau dysfunction, neuroinflammation, oxidative 
stress, and dysregulation of the HPA axis. Additional-
ly, anxiety is a common symptom among AD patients, 
especially in the early stages of the disease. AD is the 
most common form of dementia among the elderly. AD 
is the most common type of dementia in the elderly y. 
Its two principal histopathological features are senile 
plaques, which consist of aggregated Aβ peptides, and 
neurofibrillary tangles formed by hyperphosphorylated 
tau protein. In the human brain, the major soluble Aβ 
oligomers include Aβ1-40 and Aβ1-42, along with shorter 
peptides like Aβ25-35. The biological activity of Aβ25-35 is 
associated with several critical structural and functional 
changes observed in AD, such as tau dysfunction, APP 
misprocessing, cognitive deficits, neuroinflammation, 
oxidative stress, and dysregulation of the HPA axis 
(Canet et al., 2023). Furthermore, anxiety is a prevalent 
symptom in AD patients, especially in the early stages of 
the disease (Ferretti et al., 2001). Previous studies have 
demonstrated that animals receiving Aβ25-35 oligomer in-
jections, either via ICV or intra-hippocampal methods, 
display anxious behaviors (Olariu et al., 2001). Also, 
the effects of intracerebroventricular injection of Aβ25-35 

in different brain regions, including the hippocampus, 
amygdala, and hypothalamus, have been examined 
(Zussy et al., 2011). Consequently, we employed bilat-



FIGURE 1.FIGURE 1. Effect of Bufexamac on some rat behavior parameters in the open field test. Total distance moved (a) crossing (b), time spent in 
the center (c), grooming (d), and rearing (e). Data are ex-pressed as means ± SEM (n = 6). Statistical comparisons were made using one-way 
analysis of variance with the Tukey post-hoc test. #P<0.05, ###P<0.001 vs Saline group, *P<0.05 vs Aβ group.
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eral intracerebroventricular administration of Aβ25-35 to 
establish a model of AD. 

The HPA axis plays a crucial role in how the body re-
acts to stress by promoting the release of glucocorticoids 
in both humans and animals. These steroid hormones 
can cross the blood-brain barrier and bind primarily to 
mineralocorticoid receptors (MR) and, to a lesser extent, 
to GRs (Reul and Kloet 1985). When a stressful stimu-
lus is detected, it is processed through sensory neural 
circuits and relayed to the hypothalamus for further re-
sponse (Shi and Davis 2001). Upon activation, the hypo-
thalamus engages with the HPA axis, which functions as 
a hormonal feedback system connecting the hypothala-
mus, the pituitary gland, and the adrenal gland. This axis 
not only regulates the body’s stress response but also 
plays a pivotal role in anxiety-related behaviors. The 
neurochemical dynamics of HPA and anxiety signaling 
commence when stressors prompt the hypothalamus to 

release CRF. This release stimulates the pituitary gland 
to secrete adrenocorticotropic hormone (ACTH) into 
the bloodstream. In turn, the adrenal cortex detects the 
elevated levels of ACTH and responds by releasing glu-
cocorticoids, including cortisol. This cascade creates a 
negative feedback loop, where glucocorticoids attach to 
receptors in the hypothalamus and pituitary gland, there-
by reducing the secretion of CRF and ACTH. Dysreg-
ulations in these neurochemical interactions within the 
HPA axis are associated with a range of stress-related 
disorders (Curran and Chalasani 2012). AD is marked 
by dysregulation of the HPA axis, which can contribute 
to the acceleration of disease progression and cognitive 
decline. In the early stages of AD pathology, the central 
HPA axis is activated prior to the onset of cognitive im-
pairments and behavioral symptoms. This dysregulation 
is thought to be significantly influenced by the early ac-
cumulation of pathological forms of Aβ in humans(Ah-

FIGURE 2.FIGURE 2. Effect of Bufexamac on GR in the amygdala of the Aβ-treated rats. Data are expressed as means ± SEM (n = 3). Statistical com-
parisons were made using one-way analysis of variance with the Tukey post-hoc test. ##P<0.01 vs Saline group, *P<0.05 vs Aβ group.
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mad et al., 2019). 
Pentkowski et al. reported that TgF344-AD mice 

display early signs of heightened anxiety-like behav-
ior even when AD-related neuropathology is minimal 
(Pentkowski et al., 2018). In another study, TgF344-
AD rats spent less time in the center of the OFT than 
WT rats (Reyna et al., 2023). Grooming is often seen in 
animal models of stress and anxiety and is considered 
an anxiogenic response. In one study, anti-anxiety med-
ication normalized the grooming pattern by reducing 
grooming-related indicators (Smolinsky et al., 2009). In 
the present study, Bufexamac demonstrated a significant 
reduction in anxiety-like behavior in Alzheimer’s rats 
compared to the Aβ25-35 group. This finding is consistent 
with earlier research indicating that MS-275, an inhibi-
tor of class I and III histone deacetylases, effectively al-
leviates anxiety in S1 mice. Furthermore, other histone 
deacetylase inhibitors such as TSA, which targets class 
I and II, and SAHA, which inhibits class I, II, and IV, 
have also been shown to mitigate anxiety behaviors in 
rats (Peedicayil 2020).

CRF is the key hormone in the HPA axis, initiating 
a series of stress responses that include the release of 

corticosteroids from the adrenal cortex. In addition to 
its regulatory role at the pituitary gland, CRF is found 
in various brain regions, acting as a neuromodulator or 
neurotransmitter that influences autonomic and behav-
ioral responses (Vandael and Gounko 2019). It works 
alongside corticosteroids to adjust stress responses in 
the short term. However, chronic or elevated stress lev-
els can lead to hyperactivation of the HPA axis and dis-
rupt CRF regulation in AD patients. Postmortem studies 
have shown a significant decrease in CRF immunoreac-
tivity (CRF-IR) in the cerebral cortex and cerebrospinal 
fluid of AD patients compared to controls (May et al., 
1987; Vandael and Gounko 2019). In the present study, 
we observed a notable decrease in CRF expression in 
the amygdala of Alzheimer’s rats in the Aβ25-35 group. 
This finding aligns with prior research indicating that 
low levels of CRF are prevalent in neurodegenerative 
diseases (Mouradian et al., 1986). Chronic stress results 
in overstimulation of the HPA axis, leading to elevated 
levels of CRF and GRs in the bloodstream, which can 
have detrimental effects on neuronal health and synaptic 
connectivity. Consequently, these adverse effects may 
further reduce CRF levels in the brain, impairing its neu-

FIGURE 3.FIGURE 3. Ef Effect of Bufexamac on neurochemical biomarkers in the amygdala of the Aβ-treated rats. serotonin (a) CRF (b). Data are 
expressed as means ± SEM (n = 3). Statistical comparisons were made using one-way analysis of variance with the Tukey post-hoc test. 
##P<0.01, ###P<0.001 vs Saline group, *P<0.05, **P<0.01 vs Aβ group.
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romodulatory functions that are crucial for memory and 
cognitive processes (Bisht et al., 2018). Numerous stud-
ies have revealed a significant reduction in CRF concen-
trations in the frontal and temporal cortex, as well as the 
caudate nucleus, accompanied by an increase in CRF 
receptor density (Nemeroff et al., 1989). In contrast, 
dysfunction of the HPA axis is evidenced by increased 
levels of cortisol in humans and corticosterone in animal 
models. In AD, glucocorticoids are unable to regulate 
the HPA axis through the negative feedback mechanisms 
involving GRs in the hypothalamus, hippocampus, and 
anterior pituitary. Both impaired corticosteroid negative 
feedback and elevated corticosteroid levels have been 
documented in AD patients and preclinical models (Ah-
mad et al., 2019).

GR is a critical factor in stress-related memory defi-
cits that arises under conditions of high cortisol (Lanté 
et al., 2015). Elevated cortisol levels have been shown 
to cause Aβ deposition, with recent studies confirming 
that GR antagonists can effectively prevent this GR-me-
diated Aβ accumulation (Baglietto-Vargas et al., 2013). 
In this line, Lanté et al. demonstrated that chronic treat-
ment with RU486, a GR antagonist, can significantly 
alleviate cognitive decline in the Tg2576 AD mouse 
model (Lanté et al., 2015). In the current study, Bufexa-
mac significantly decreased the expression of GR in the 
amygdala of rats with AD, compared to the Aβ25-35 group. 
This highlights the importance of GR in the disease. Ad-
ditionally, GR is known to interact with histone deacety-
lase HDAC6 in the brain. Previous findings conducted 
by Lee et al. demonstrated that acute stress, through GR 
activation, enhances glutamatergic signaling in the pre-
frontal cortex (PFC) of rats. Their findings indicated that 
inhibiting or knocking out HDAC6 effectively prevent-
ed the stress-induced increase in glutamatergic signaling 
(Lee et al., 2012). Moreover, another study found that 
bilateral injection of a histone deacetylase inhibitor into 
the central amygdala (CeA) reduced anxiety-like behav-
iors and alleviated somatic and visceral hypersensitivity 
associated with elevated corticosterone (CORT) levels 
(Tran et al., 2015). Studies have shown that injecting so-
dium butyrate into the medial prefrontal cortex (mPFC) 
to inhibit HDAC4 could disrupt the GR signaling path-
way. This disruption resulted in a decrease in mechan-
ical allodynia and a reduction in anxiety-like behaviors 
(Zhang et al., 2019). In a study by Athira et al., Vorinos-
tat, an HDAC inhibitor, was shown to improve corticos-

terone-induced depressive and anxiety-like behaviors. 
The treatment not only alleviated these behaviors but 
also reduced dysregulation of the HPA axis, as well as 
oxidative stress and inflammation (Athira et al., 2018). 
Administering a selective COX-2 inhibitor decreases 
anxiety-related behaviors in mice following chronic oral 
corticosterone treatment. These findings underscore the 
preclinical effectiveness of COX-2 inhibitors in estab-
lished animal models (Morgan et al., 2019).

Serotonin, a monoamine neurotransmitter, plays a 
crucial role in modulating neural circuits, particularly 
in fear and anxiety. The serotonergic system primarily 
originates from the brainstem’s dorsal and median raphe 
nuclei, projecting to various forebrain and limbic struc-
tures including the hypothalamus, amygdala, hippocam-
pus, thalamus, and frontal cortex. This extensive network 
forms what is often referred to as the serotonin circuit 
(Charnay and Léger 2010; Curran and Chalasani 2012). 
When exposed to fear and anxiety stimuli, serotonergic 
neurons in the dorsal raphe nucleus become selectively 
activated. These neurons then project to the amygdala 
and the hypothalamic region of the HPA axis. Dysreg-
ulation within this axis, along with abnormalities in the 
amygdala, can lead to inappropriate fear responses and 
anxiety disorders, such as panic attacks and post-trau-
matic stress disorder (PTSD) (Andrews et al., 2022; 
Charnay and Léger 2010). Recent discussions have also 
highlighted the potential of serotonin signaling in the 
context of neurodegenerative diseases, such as AD. En-
hancing serotonin signaling and developing molecules 
that elevate serotonin concentrations in the synaptic 
cleft are being explored as therapeutic strategies to slow 
AD progression (Charnay and Léger 2010; Curran and 
Chalasani 2012). The administration of SSRIs and sero-
tonin receptor agonists in AD by affecting key patholog-
ical features such as Aβ accumulation and neuroinflam-
mation, as well as improving mood and anxiety presents 
a multifaceted approach to treatment (Cassano et al., 
2002; Claeysen et al., 2015). In this study, Bufexamac 
notably enhanced serotonin expression in the amygdala 
of Alzheimer’s rats when compared to the Aβ25-35 group. 
This finding aligns with previous research indicating 
that treatment with the TSA (HDAC inhibitor) elevates 
5-HT synthesis. These results imply that HDAC inhib-
itors could improve the functionality of 5-HT neurons 
through an epigenetic mechanism (Asaoka et al., 2015). 
Espallergues et al. revealed that selective deletion of 
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HDAC6 in serotonergic neurons significantly reduced 
the anxiety-inducing effects of glucocorticoids. Specif-
ically, in mice subjected to chronic social defeat, the 
deletion of HDAC6 inhibited the emergence of social 
avoidance behaviors typically observed in these animals 
(Espallergues et al., 2012). MGCD0103 mitigated the 
loss of serotonergic neurons in mice treated with oligo-
meric Aβ25-35 and alleviated anxiety symptoms in the AD 
model mice (Huang et al., 2019).

Conclusion
In summary, Bufexamac significantly reduced neu-

ropsychiatric symptoms, including anxiety induced by 
bilateral ICV injections of Aβ25-35. The positive effects 
are attributed to several mechanisms, including the 
modulation of CRF, a decrease in GR expression, and 
an increase in 5-HT expression in the amygdala of Alz-
heimer’s rats.
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