

Original Article

Gemfibrozil protect PC12 cells through modulation of Estradiol receptors against oxidative stress

Ghorbangol Ashabi¹, Leila Khalaj²*

- 1. Physiology Research Center and Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- 2. Medical School, Alborz University of Medical Sciences, Alborz, Iran

Abstract

Introduction: Neurodegenerative diseases are progressive disorders that could impair neuronal functions and structures. Oxidative stress and mitochondrial dysfunction are involved in the etiology of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and etc. Gemfibrozil is used as a therapeutic drug for hyperlipidemia. It has been shown that gemfibrozil is neuroprotective via modulation of mitochondrial biogenesis pathway under oxidative stress condition and in a sex-dependent manner.

Materials and Methods: In this study, neuronal-like PC12 cells with were pretreated with different concentrations of gemfibrozil and H₂O₂, concomitantly.

Results: In gemfibrozil pretreated groups, reduced level of caspase-3 and raised mitochondrial transcription factor A (TFAM) levels were detected. In contrast, adding fulvestrant, an Estradiol receptor antagonist, prevents the impact of gemfibrozil on oxidative stress condition, reducing its efficacy to protect the neurons against stress.

Conclusion: Our results indicated the involvement of estradiol receptors in gemfibrozil neuroprotective mechanism, in diminishing oxidative stress-induced damage via reducing caspase-3 and inducing the level of TFAM that plays a crucial role in the mitochondrial biogenesis.

Keywords:

Gemfibrozil; Mitochondrial transcription factor A; Fulvestrant; Caspase-3; H₂O₂

Received:

7 Sep 2015 Accepted: 28 Nov 2015

***Correspondence to:** L. Khalaj

Cell Phone: +98 9123143652 Fax: +98 263 4317711

Email: lkhalaj@yahoo.com

Introduction

In many cases, the etiology of neurodegenerative diseases such as Alzheimer's, Huntington, Parkinson's disease and etc. (Rubinsztein, 2006), as well as aging (Lin and Beal, 2006) are directly related to oxidative stress and mitochondrial dysfunction. Oxidative stress is involved not only in pathogenesis and neuronal damage in the context of neurodegenerative diseases(Emerit et al., 2004), but also in a variety of disorders such as Diabetes(Maritim et al., 2003), Vascular disorders (Madamanchi et al., 2005), Myocardial infarction (Ramond et al., 2013) and Sickle cell anemia (Amer et al., 2006).

Mitochondrial biogenesis utilized as a protective mechanism in different conditions including hypoxia (Carre et al., 2010), oxidative injury (Rasbach and Schnellmann, 2007), focal and global cerebral ischemia (Chen et al., 2001; Chen et al., 2010)and oxidative stress (Wei et al., 2001; Onyango et al., 2010), as well as metabolic disease (Knutti and Kralli, 2001; Finck and Kelly, 2006), brain stroke (Dong et al., 2007) and mitochondrial diseases (Wenz, 2009). Mitochondrial biogenesis is regulated bv mitochondrial and nuclear genomes causing e mitochondrial proliferation and differentiation, which is altered during oxidative stress (Ostronoff et al., 1996; Fernandez-Silva et al., 2003). Mitochondrial transcription factor A (TFAM) is considered as a key player in initiating mitochondrial biogenesis (Miranda et al., 1999). According to some studies, induction of H₂O₂ produces reactive oxygen species (ROS) and ROS subsequently triggers the procaspase-3 cleavage and consequent release of cytochrome c from mitochondria, leading to apoptosis (Tang et al., 2005).

Gemfibrozil is a lipid lowering agent that belongs to a group of drugs known as fibrates(Xu et al., 2001a). It has been demonstrated that fibrates as peroxisome proliferator-activated receptor (PPAR)-a agonists, that protect against oxidative stress via anti-oxidant and anti-inflammatory mechanisms (Deplanque et al., 2003: Bordet et al., 2006: Xu et al., 2007), Also, it has been claimed that benzafibrate and fenofibrate also in the fibrate category could induce mitochondrial biogenesis in the skeletal muscle and liver (Nagai et al., 2002). Moreover, researches have proved that fibrates affect metabolism of steroid hormones and have direct estrogenic activity through binding to estrogen receptors as well (Xu et al., 2001a; Fan et al., 2004; Isidori et al., 2009). Estrogen receptor (ER) antagonist such as fulvestrant is mainly considered for treatment of hormone sensitive metastatic breast cancer(Osborne et al., 2004). Gemfibrozil has been able to significantly attenuate superoxide production resulting in inhibition of apoptosis (Calkin et al., 2006). Our recent studies have showed that gemfibrozil pretreatment resulted in a sexually-dimorphic Outcome (Mohagheghi et al., 2013a; Mohagheghi et al., 2013b). Gemfibrozil activated Nuclear respiratory factor 1 (NRF-1) and Mitochondrial transcription factor A (TFAM) in mitochondrial biogenesis signaling pathway and subsequently inhibited the caspase-dependent apoptosis, resulting in protection of female rats; while in male rats, provoked both caspase-dependent and caspase-independent apoptotic pathways and resulted in suppression of mitochondrial biogenesis

Ashabi et al.

signaling factors, meaning gemfibrozil acted reversibly and led to neurodegeneration (Mohagheghi et al., 2013a; Mohagheghi et al., 2013b).

On the basis of above results, we aimed to test the effect of three different dosages of (5, 10 and 20 μ M) of gemfibrozil on TFAM and apoptotic factor (caspase-3) neuronal level in the differentiated rat pheochromocytoma cells being exposed to oxidative stress in two different time points (4 hours and 9 hours after induction), and then examined the extent of involvement of estrogen receptors when administrating fulvestrant (an antagonist of ER).

Materials and methods

Antibodies directed against caspase-3, TFAM and βactin were obtained from Cell Signaling Technology (Beverly, MA, USA). Electrochemiluminescence (ECL) kit was purchased from Amersham Bioscience (Piscataway, NJ, USA). Fetal Bovine Serum (FBS) was provided from Gibco (Big Cabin, Oklahoma, USA), and polyvinylidene fluoride membrane was obtained from Chemicon Millipor (Temecula, CA, USA). All the other reagents were from Sigma Aldrich (St. Louis, MO, USA).

Cell Culture and treatment conditions

Rat pheochromocytoma (PC12) cells were obtained from Pasteur Institute (Tehran, Iran) which were grown in Dulbecco's modified Eagle's medium (DMEM), enriched with 5% fetal bovine serum, 10% serum. horse and 1% antibiotic (penicillinstreptomycin), Cultures were maintained according to standard protocols at 37 °C in a 95% humidified incubator with 5% CO2 (Greene and Tischler, 1976). Growth medium was changed three times a week. The cells were differentiated by incubating with nerve growth factor (NGF; 50 ng/mL) for 6 days (Figure.1). PC12 cells were treated with different concentrations

(5, 10 and 20 μ M) of gemfibrozil and 500 nM of fulvestrant. To induce oxidative stress 150 μ MH₂O₂ was added to culture plates.

MTT cell viability assay

Cell viability was determined using a 3(4,5dimethylthiazol-2yl) 2,5-diphenyl-2H-tetrazolium bromide (MTT) conversion assay(Mosmann, 1983) s.

Fig.1. A schematic representation of experimental procedure. Neuronal like PC12 cells were pretreated with gemfibrozil (5, 10 and 20 μ M of gemfibrozil) and H₂O₂. In 4 hours and 9 hours after induction of H₂O₂ and three doses of gemfibrozil in separate groups, the MTT assay was done and neurons were collected to measure caspase-3 and TFAM.

Fig.2. Effect of gemfibrozil and fulvestrant on cell viability against oxidative stress. The cell viability was determined by the MTT reduction assay and the surviving cell values were expressed as the percentage of control cells. Experiments were replicated 3 times independently. ^{&&&} p<0.001 versus control. ^{###} p<0.001 versus H₂O₂ (9 hours), ^{*} p<0.05 versus Gemfibrozil 10 μ M + H₂O₂ (9 hours).

The dark blue formazan crystals formed in intact cells were solubilized in dimethyl sulfoxide, and the optical density (O.D.) of each well was measured with a spectrophotometer equipped with a 550 nm filter. Results were expressed as percentage of cell viability = (O.D. treated/O.D. control) \times 100.

Western blot technique

For Western blot analysis, total proteins were electrophoresed in 12% SDS-PAGE gels and transferred to polyvinylidene fluoride (PVDF) membranes. Then the membrane was incubated with specific antibodies. Immuno-reactivity was detected

Fig.3. Effect of gemfibrozil and fulvestrant on pro- and cleaved capsase-3 level against oxidative stress. A) Cell lysate were prepared and subjected to western blotting with caspase-3. For normalization, membranes were stripped and reprobed with β-actin antibody. (One representative Western blot was shown) B) Quantitative detection of procaspase-3 and cleaved capsase-3 level in PC12 cells compared to β-actin. Each comparison was made with the same pro- or cleaved caspase-3. ^{&&&} p<0.001 versus control in pro- and/or cleaved caspase-3, ^{£££} p<0.001 versus H₂O₂ (4 hours) in pro- and/or cleaved caspase-3, ^{###} p<0.001 versus Gemfibrozil 10 μ M + H₂O₂ (9 hours) in pro- and/or cleaved caspase-3.

by enhanced Electro Chemi Luminescence (ECL) reagent, followed by autoradiography. Band density was analyzed using Image.J. Concentration of protein was determined by Bradford protocol (Bradford, 1976).

Data analysis

All data are represented as the mean \pm S.E.M (Standard Error Mean). Comparison between groups in cell viability and Western blot data was made using one-way analysis of variance (ANOVAs), and statistical significances were achieved with *P* < 0.05.

Results

Cell viability

MTT assay was used to measure the cell viability. In order to further examine protective potential of gemfibrozil against H_2O_2 , cells treated with different concentrations of gemfibrozil (5µM, 10 µM and 20 µM) in different time (4 hours and 9 hours) periods. In addition, fulvestrant (ER antagonist) was added to gemfibrozil treated group (10 µM) after 9 hours, to evaluate probable role of ER receptors in gemfibrozil-induced protection.

As shown in the Fig. 2 gemfibrozil was more protective when added in a dose of 10 μ M in comparison with two other doses (p value <0.001; versus "H₂O₂ (9 hours)"), and presence of fulvestrant reduced gemfibrozil-induced protection (p value <0.05; versus "Gemfibrozil (10 μ M)+ H₂O₂ (9 hours)").

Expressions of Caspase-3 and TFAM detected by Western blotting Pro-caspase-3 and cleaved caspase-3

In order to evaluate the effect of gemfibrozil and fulvestrant on apoptotic pathway, cells were treated with different concentration of gemfibrozil (5 μ M, 10 μ M and 20 μ M) in different times (4 hours and 9 hours) and the level of pro-caspase-3 and cleaved caspase-3 were detected by Western blotting technique. Then fulvestrant was added to the group receiving gemfibrozil (10 μ M) in 9 hours.

As depicted in Fig. 3, gemfibrozil (10 $\mu M)$ in 4 hours showed the most protective effect on PC12 cells

against oxidative stress in cleaved caspase-3 and pro-caspase-3 (p value <0.001; versus " H_2O_2 (4 hours)" in both cleaved caspase-3 and pro-caspase-3). Gemfibrozil (10 μ M) showed protective effect in 9 hours as well (p value <0.001; versus " H_2O_2 (9 hours)" in both cleaved caspase-3 and pro-caspase-3).

Fulvestrant inhibited the protection offered by gemfibrozil to the apoptotic pathway; as the expression of cleaved caspase-3 in the group of PC12 cells pretreated with "gemfibrozil (10μ M) + fulvestrant in 9 hours" increased significantly;(p value<0.001; versus "gemfibrozil (10μ M)+H₂O₂ (9 hours)" in both cleaved caspase-3 and procaspase-3).

TFAM

We also examined the effect of gemfibrozil and fulvestrant on TFAM, as a very important protein in mitochondrial biogenesis. PC12 cells were treated with different concentrations of gemfibrozil (5 μ M, 10 μ M and 20 μ M) in different times (4 hours and 9 hours) and the level of TFAM was detected. As represented in Fig. 4, gemfibrozil (10 μ M) reduced the damaging effect of oxidative stress on mitochondrial biogenesis (p value <0.001; versus "H₂O₂ (9 hours)") and this protective effect was seen 4 hs time span as well (p value <0.001; versus "H₂O₂ (4 hours)"). Fulvestrant (500nM) reduced gemfibrozil (10 μ M) protection in 9 hours (p value <0.001; versus "gemfibrozil (10 μ M) + H₂O₂ (9 hours)").

Discussion

In the current study, we examined the protective role of gemfibrozil in three doses (5, 10 and 20 µM) against oxidative stress. Cells were collected in two different time intervals (4 and 9hour) after exposure to H_2O_2 . Our results revealed that the dose of 10 μ M gemfibrozil was the most protective dose relevant to the three measured factors (MTT assay, Caspase-3 and TFAM) in PC12 cells. Fulvestrant, as an estradiol receptor antagonist inhibited the protective role of gemfibrozil (10 µM) affecting all parameters. During oxidative stress, the raised intracellular level of ROS leads to apoptosis and necrosis (Lennon et al., 1991). Moreover, necrosis commonly occurs in the last stage of apoptosis (Canu et al.,

Fig.4. Effect of gemfibrozil and fulvestrant on TFAM (Mitochondrial transcription factor A) level against oxidative stress. A) Cell lysate were prepared and subjected to western blotting with TFAM. For normalization, membranes were stripped and reprobed with β -actin antibody. (One representative Western blot was shown) B) Quantitative detection of TFAM level in PC12 cells compared to β -actin. ^{&&&} p<0.001 versus control, ^{£££}p<0.001 versus H₂O₂ (4 hours), ^{###} p<0.001 versus H₂O₂ (9 hours), ^{¥¥¥} p<0.001versus Gemfibrozil 10 µM + H₂O₂ (9 hours).

2014). Our Hoechst staining data revealed that apoptosis is more prevailing cell death mechanism among others (data not shown), therefore it can be assumed that gemfibrozil might reduce apoptosis and consequently increase cell viability. It is believed that oxidative stress is involved in the progression of many disorders such as neurodegenerative diseases,

cancer and ischemia. During oxidative stress, leakage rate of ROS across mitochondrial membrane is elevated which triggers activation of some other harmful cellular signaling pathways (Seaver and Imlay, 2004). Many investigations have focused on eliminating cellular oxidative stress by detoxifying using pharmaceutical agents and natural compounds. Reports have shown that a group of drugs called fibrates can ameliorate oxidative stress-induced toxicity in neurons (Mutez et al., 2009; Nakajima et al., 2010; Mohagheghi et al., 2013a). Gemfibrozil is one of these which helps in reducing hyperlipidemia (Hodges, 1976). Some recent studies have pointed to the neuroprotective potential of gemfibrozil (Corbett et al., 2012; Ghosh and Pahan, 2012; Khalaj et al., 2013). Furthermore, gemfibrozil attenuated the inflammatory response and oxidative stress by induction of antioxidant enzymes (Camara-Lemarroy et al., 2015). At some point in the past, there existed some controversial reports regarding the role of Gemfibrozil against ROS production.(Gust et al., 2013). Also, Scantena and colleagues showed that gemfibrozil increased ROS production in the phagocytic leucocytes (Scatena et al., 1997).

Estrogen receptors (ERs) are intracellular receptors which are activated by 17-β-Estradiol hormone. ER can regulate some cellular signaling pathways such as MAPK. PI3K/Akt, as well as G protein-coupled receptor (GPR30) (Prossnitz et al., 2007). PPARa and ERs are members of steroid hormone receptor superfamily (Boitier et al., 2003; Bain et al., 2007), and structurally have six functional domains (Wei et al., 2001). So, it is not far-fetched to assume that these receptors may have same ligands. Studies showed that there is a link between induction of fibrate drugs and estradiol releases (Gonzalez, 2002). It is reported that gemfibrozil has increased the metabolism of estrogen (Corton et al., 1997). Moreover, gemfibrozil has enhanced the release of estradiol in rat liver cells (Xu et al., 2001b).

Previous studies reported increased cell viability against stressful situations in various in vitro and in vivo experimental models (Jana and Pahan, 2012; Khalaj et al., 2013). Our study indicated that gemfibrozil has dose-dependent effects; as 10µM concentration of gemfibrozil increased cell viability in 9h after exposure to H_2O_2 , while doses of 5 and 20µM of gemfibrozil were less protective against oxidative stress. So, we have U-shaped curves These curves show asymptotic response in high doses of drugs because of tachyphylaxis or receptor fatigue (Paterson and Day, 1979). Therefore, the dose of 10µM of gemfibrozil was considered as the most protective dose in this study. Besides, inhibition of ERs by fulvestrant decreased cell viability which shows gemfibrozil functions through ERs.

Our results revealed that gemfibrozil decreased cleaved caspase-3 levelin PC12 cells. In 4 and 9 time intervals after oxidative stress respectively, the level of capsase-3 was attenuated by gemfibrozil, while addition of fulvestrant reversed this protective effect. These data confirmed that gemfibrozil protective effect is modulated through ERs.

In our previous studies, we found a sex-dependent outcome of gemfibrozil pretreatment in rat cerebral global ischemic injury (Boitier et al., 2003; Bain et al., 2007). Therefore, herein we decided to further examine the role of ERs in the neurons receiving gemfibrozil against oxidative stress. Interestingly, gemfibrozil neuroprotective effects were reversed by fulvestrant, confirming involvement of ERs. This undetscores another crucial role of gemfibrozil in enhancing estradiol release (Xu et al., 2001b; Xu et al., 2001c; Isidori et al., 2009). Moreover, there are some clinical and experimental reports which have demonstrated a proven close correlation between ERs and gemfibrozil in other contexts (Goldenberg et al., 2003; Zenobio et al., 2014).

In the current study, we also evaluated the role of gemfibrozil on TFAM in the presence and absence of fulvestrant. Some of the main proteins in mitochondrial biogenesis are NRFs, PGC-1a and TFAM. Gemfibrozil has been shown to modulate the levels of mitochondrial biogenesis related factors (Miglio et al., 2012; Khalaj et al., 2013). Additionally, it is proven that ERs can be regulated by mitochondrial biogenesis factors (Villena et al., 2007). Our results showed that gemfibrozil enhanced TFAM level in a dose-dependent manner, and fulvestrant application attenuated the level of TFAM under oxidative stress condition. It has been proposed that gemfibrozil and other fibrates increased mitochondrial biogenesis factors by induction of PPARa (Sanoudou et al., 2010). Our time-course study indicated that the level of TFAM increased in 4h after oxidative stress and then decreased in 9h. While the cleaved capsase-3 level decreased in 4h and 9h after induction of H₂O₂. These data shows that gemfibrozil might have activated some protective pathways such as mitochondrial biogenesis, and consequently ameliorated activation of the caspase cascade. There are several reports indicating that activation of mitochondrial biogenesis triggered PPARa, and which subsequently induced protective pathways within the cells (Finck and Kelly, 2006; Finck and

Kelly, 2007). Also, induction of TFAM by gemfibrozil was inhibited by fulvestrant, which further confirmed that gemfibrozil acts via ERs. However, the precise mechanisms of gemfibrozil in activating mitochondrial biogenesis in the neurons await more researches.

Conclusion

The data obtained in our experiment demonstrated that gemfibrozil increased cell viability by inhibition of caspase-3 and induction of TFAM in the context of oxidative stress-induced neuronal damage. Dose-dependent study revealed that 10µM gemfibrozil was the most protective dose against oxidative stress. Administration of fulvestrant, an ERs antagonist, to the gemfibrozil pretreated cells enhanced caspase-3 and reduced TFAM level, and the data we presented here confirmed he ERs modulatory role against gemfibrozil protective effect in neuronal contexts.

Acknowledgment

We thank the research council of Alborz Medical University for the funding of this project. We are also grateful to Neuroscience Research Center of Shahid Beheshti University of Medical Sciences for providing facilities of current study.

Conflict of Interest

The authors report no declarations of interest.

References

- Amer J, Ghoti H, Rachmilewitz E, Koren A, Levin C, Fibach E. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 2006; 132: 108-13.
- Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: Implications for function. Annu Rev Physiol 2007; 69: 201-20.
- Boitier E, Gautier JC, Roberts R. Advances in understanding the regulation of apoptosis and mitosis by peroxisome-proliferator activated receptors in preclinical models: Relevance for human health and disease. Comp Hepatol 2003; 2: 3.
- Bordet R, Ouk T, Petrault O, Gele P, Gautier S, Laprais M, et al. Ppar: A new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 2006; 34: 1341-6.
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;

72: 248-54.

- Calkin AC, Cooper ME, Jandeleit-Dahm KA, Allen TJ. Gemfibrozil decreases atherosclerosis in experimental diabetes in association with a reduction in oxidative stress and inflammation. Diabetologia 2006; 49: 766-74.
- Camara-Lemarroy CR, Guzman DELAGFJ, Cordero-Perez P, Ibarra-Hernandez JM, Munoz-Espinosa LE, Fernandez-Garza NE. Gemfibrozil attenuates the inflammatory response and protects rats from abdominal sepsis. Exp Ther Med 2015; 9: 1018-22.
- Canu N, Ciotti MT, Pollegioni L. Serine racemase: A key player in apoptosis and necrosis. Front Synaptic Neurosci 2014; 6: 9.
- Carre JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med 2010; 182: 745-51.
- Chen H, Hu CJ, He YY, Yang DI, Xu J, Hsu CY. Reduction and restoration of mitochondrial dna content after focal cerebral ischemia/reperfusion. Stroke 2001; 32: 2382-7.
- Chen SD, Lin TK, Lin JW, Yang DI, Lee SY, Shaw FZ, et al. Activation of calcium/calmodulin-dependent protein kinase iv and peroxisome proliferator-activated receptor gamma coactivator-1alpha signaling pathway protects against neuronal injury and promotes mitochondrial biogenesis in the hippocampal ca1 subfield after transient global ischemia. J Neurosci Res 2010; 88: 3144-54.
- Corbett GT, Roy A, Pahan K. Gemfibrozil, a lipid-lowering drug, upregulates il-1 receptor antagonist in mouse cortical neurons: Implications for neuronal self-defense. J Immunol 2012; 189: 1002-13.
- Corton JC, Bocos C, Moreno ES, Merritt A, Cattley RC, Gustafsson JA. Peroxisome proliferators alter the expression of estrogen-metabolizing enzymes. Biochimie 1997; 79: 151-62.
- Deplanque D, Gele P, Petrault O, Six I, Furman C, Bouly M, et al. Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J Neurosci 2003; 23: 6264-71.
- Dong W, Gao D, Zhang X. Mitochondria biogenesis induced by resveratrol against brain ischemic stroke. Med Hypotheses 2007; 69: 700-1.
- Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 2004; 58: 39-46.
- Fan LQ, You L, Brown-Borg H, Brown S, Edwards RJ, Corton JC. Regulation of phase i and phase ii steroid metabolism enzymes by ppar alpha activators. Toxicology 2004; 204: 109-21.
- Fernandez-Silva P, Enriquez JA, Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol 2003; 88: 41-56.
- Finck BN, Kelly DP. Pgc-1 coactivators: Inducible regulators of energy metabolism in health and disease. J Clin Invest 2006; 116: 615-22.
- Finck BN, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 (pgc-1) regulatory

cascade in cardiac physiology and disease. Circulation 2007; 115: 2540-8.

- Ghosh A, Pahan K. Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: Implications for neurodegenerative disorders. J Biol Chem 2012; 287: 27189-203.
- Goldenberg NM, Wang P, Glueck CJ. An observational study of severe hypertriglyceridemia, hypertriglyceridemic acute pancreatitis, and failure of triglyceride-lowering therapy when estrogens are given to women with and without familial hypertriglyceridemia. Clin Chim Acta 2003; 332: 11-9.
- Gonzalez FJ. The peroxisome proliferator-activated receptor alpha (pparalpha): Role in hepatocarcinogenesis. Mol Cell Endocrinol 2002; 193: 71-9.
- Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 1976; 73: 2424-8.
- Gust M, Fortier M, Garric J, Fournier M, Gagne F. Effects of short-term exposure to environmentally relevant concentrations of different pharmaceutical mixtures on the immune response of the pond snail lymnaea stagnalis. Sci Total Environ 2013; 445-446: 210-8.
- Hodges RM. Gemfibrozil--a new lipid lowering agent. Proc R Soc Med 69 Suppl 1976; 2: 1-2.
- Isidori M, Bellotta M, Cangiano M, Parrella A. Estrogenic activity of pharmaceuticals in the aquatic environment. Environ Int 2009; 35: 826-9.
- James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 2004; 80: 1611-7.
- Jana M, Pahan K. Gemfibrozil, a lipid lowering drug, inhibits the activation of primary human microglia via peroxisome proliferator-activated receptor beta. Neurochem Res 2012; 37: 1718-29.
- Khalaj L, Nejad SC, Mohammadi M, Zadeh SS, Pour MH, Ahmadiani A, et al. Gemfibrozil pretreatment proved protection against acute restraint stress-induced changes in the male rats' hippocampus. Brain Res 2013; 1527: 117-30.
- Knutti D, Kralli A. Pgc-1, a versatile coactivator. Trends Endocrinol Metab 2001; 12: 360-5.
- Lennon SV, Martin SJ, Cotter TG. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 1991; 24: 203-14.
- Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443: 787-95.
- Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25: 29-38.
- Maritim AC, Sanders RA, Watkins JB, 3rd. Diabetes, oxidative stress, and antioxidants: A review. J Biochem Mol Toxicol 2003; 17: 24-38.
- Miglio G, Rosa AC, Rattazzi L, Grange C, Camussi G, Fantozzi R. Protective effects of peroxisome

proliferator-activated receptor agonists on human podocytes: Proposed mechanisms of action. Br J Pharmacol 2012; 167: 641-53.

- Miranda S, Foncea R, Guerrero J, Leighton F. Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted hela cells. Biochem Biophys Res Commun 1999; 258: 44-9.
- Mohagheghi F, Ahmadiani A, Rahmani B, Moradi F, Romond N, Khalaj L. Gemfibrozil pretreatment resulted in a sexually dimorphic outcome in the rat models of global cerebral ischemia-reperfusion via modulation of mitochondrial pro-survival and apoptotic cell death factors as well as mapks. J Mol Neurosci 2013a; 50: 379-93.
- Mohagheghi F, Khalaj L, Ahmadiani A, Rahmani B. Gemfibrozil pretreatment affecting antioxidant defense system and inflammatory, but not nrf-2 signaling pathways resulted in female neuroprotection and male neurotoxicity in the rat models of global cerebral ischemia-reperfusion. Neurotox Res 2013b; 23: 225-37.
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63.
- Mutez E, Duhamel A, Defebvre L, Bordet R, Destee A, Kreisler A. Lipid-lowering drugs are associated with delayed onset and slower course of parkinson's disease. Pharmacol Res 2009; 60: 41-5.
- Nagai Y, Nishio Y, Nakamura T, Maegawa H, Kikkawa R, Kashiwagi A. Amelioration of high fructose-induced metabolic derangements by activation of pparalpha. Am J Physiol Endocrinol Metab 2002; 282: 1180-90.
- Nakajima T, Tanaka N, Li G, Hu R, Kamijo Y, Hara A, et al. Effect of bezafibrate on hepatic oxidative stress: Comparison between conventional experimental doses and clinically-relevant doses in mice. Redox Rep 2010; 15: 123-30.
- Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta 2010; 1802: 228-34.
- Osborne CK, Wakeling A, Nicholson RI. Fulvestrant: An oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer Suppl 2004; 1: 2-6.
- Ostronoff LK, Izquierdo JM, Enriquez JA, Montoya J, Cuezva JM. Transient activation of mitochondrial translation regulates the expression of the mitochondrial genome during mammalian mitochondrial differentiation. Biochem J1996; 316: 183-91.
- Paterson PY, Day ED. Neuroimmunologic disease: Experimental and clinical aspects. Hosp Pract 1979; 14: 49-58.
- Prossnitz ER, Arterburn JB, Sklar LA. Gpr30: A g proteincoupled receptor for estrogen. Mol Cell Endocrinol 2007; 265-266: 138-42.
- Ramond A, Godin-Ribuot D, Ribuot C, Totoson P, Koritchneva I, Cachot S, et al. Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam Clin Pharmacol 2013; 27: 252-61.

- Rasbach KA, Schnellmann RG. Signaling of mitochondrial biogenesis following oxidant injury. J Biol Chem 2007; 282: 2355-62.
- Rubinsztein DC. The roles of intracellular proteindegradation pathways in neurodegeneration. Nature 2006; 443: 780-6.
- Sanoudou D, Duka A, Drosatos K, Hayes KC, Zannis VI. Role of esrrg in the fibrate-mediated regulation of lipid metabolism genes in human apoa-i transgenic mice. Pharmacogenomics J 2010; 10: 165-79.
- Scatena R, Nocca G, De Sole P, Fresu R, Zuppi C, Giardina B. The priming effect of gemfibrozil on reactive oxygen metabolism of phagocytic leucocytes. An intriguing side effect. Clin Chim Acta 1997; 266: 173-83.
- Seaver LC, Imlay JA. Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? J Biol Chem 2004; 279: 48742-50.
- Tang XQ, Feng JQ, Chen J, Chen PX, Zhi JL, Cui Y, et al. Protection of oxidative preconditioning against apoptosis induced by h2o2 in pc12 cells: Mechanisms via mmp, ros, and bcl-2. Brain Res 2005; 1057: 57-64.
- Villena JA, Hock MB, Chang WY, Barcas JE, Giguere V, Kralli A. Orphan nuclear receptor estrogen-related receptor alpha is essential for adaptive thermogenesis. Proc Natl Acad Sci U S A 2007; 104: 1418-23.
- Wei YH, Lee CF, Lee HC, Ma YS, Wang CW, Lu CY, et al. Increases of mitochondrial mass and mitochondrial

genome in association with enhanced oxidative stress in human cells harboring 4,977 bp-deleted mitochondrial DNA. Ann N Y Acad Sci 2001; 928: 97-112.

- Wenz T. Pgc-1alpha activation as a therapeutic approach in mitochondrial disease. IUBMB Life 2009; 61: 1051-62.
- Xu J, Racke MK, Drew PD. Peroxisome proliferatoractivated receptor-alpha agonist fenofibrate regulates il-12 family cytokine expression in the cns: Relevance to multiple sclerosis. J Neurochem 2007; 103: 1801-10.
- Xu S, Zhu BT, Cai MX, Conney AH. Stimulatory effect of clofibrate on the action of estradiol in the mammary gland but not in the uterus of rats. J Pharmacol Exp Ther 2001a; 297: 50-6.
- Xu S, Zhu BT, Conney AH. Stimulatory effect of clofibrate and gemfibrozil administration on the formation of fatty acid esters of estradiol by rat liver microsomes. J Pharmacol Exp Ther 2001b; 296: 188-97.
- Xu S, Zhu BT, Turan V, Rusyn I, Thurman R, Peters JM, et al. Pparalpha-dependent induction of liver microsomal esterification of estradiol and testosterone by a prototypical peroxisome proliferator. Endocrinology 2001c; 142: 3554-7.
- Zenobio JE, Sanchez BC, Archuleta LC, Sepulveda MS. Effects of triclocarban, n,n-diethyl-meta-toluamide, and a mixture of pharmaceuticals and personal care products on fathead minnows (pimephales promelas). Environ Toxicol Chem 2014; 33: 910-9.