

Original Article

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Abbas B. Q. Salihi*

Biology Department, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq

Abstract

Introduction: Hydrogen sulfide (H₂S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H₂S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K⁺) channels in the vasodilatory effects of exogenous H₂S in rat aortic rings.

Materials and Methods: Isolated thoracic aortic rings of adult male albino rats fed 8% NaCl diet for six weeks were used for isometric tension recording using PowerLab tissue bath system.

Results: The relaxation response to sodium disulfide (Na₂S, an H₂S donor) was reduced in a ortic rings of rats that were either fed high salt (HS) or incubated in a medium containing 1,3 or 5mM/L of extra NaCl compared with control rings. Na₂S-induced relaxation was lower in rings precontracted by high K⁺ than phenylephrine (PE, a selective α 1adrenergic receptor agonist). In addition, incubation of aortic rings of HS loaded rats with inward-rectifier K⁺ (K_{IR}) channels blocker individually or simultaneously with either ATP-dependent (K_{ATP}) or voltage-sensitive K⁺ (K_V) channels blockers inhibited Na₂S-induced relaxation in PE-precontracted rings; however it had no effects on rings pretreated with K_{ATP} channels blocker. In contrast, incubation of aortic rings of HS loaded rats with Ca⁺² activated K⁺ (K_{Ca}) channels blocker individually or in combination with K_{IR} channels blocker significantly enhanced Na₂S-induced relaxation.

Conclusion: These results revealed that HS partially impairs a relaxation caused by H_2S , and that the mechanism of relaxation is mainly mediated by the stimulation of K_{IR} channels and inhibition of K_{Ca} channels.

Keywords:

Hydrogen sulfide; K_{IR} channels; Relaxation; Aorta; High salt diet

Received: 1 Oct 2015 Accepted: 19 Jan 2016

*Correspondence to: A. B. Q. Salihi

Cel Phone: +964 750 4206970

Email: abbas.salihi@uni-sci.org

Introduction

Salt-induced hypertension is associated with endothelial dysfunction (Sofola *et al.*, 2003; Altaany *et al.*, 2014), structural changes in arterioles, reductions in microvessel density (Lombard *et al.*, 2003), enhanced vascular reactivity to vasoconstrictor stimuli (Adegunloye and Sofola, 1998; Giardina *et al.*, 2001; Sofola *et al.*, 2003), as well as impaired endothelium-dependent dilation (Lombard *et al.*, 2003; Zhu *et al.*, 2004) due to increased oxidative stress (Simon, 2003; Edwards and Farquhar, 2015) and reduced nitric oxide (NO) signaling (Callera *et al.*, 2004).

Gasotransmitters are endogenously generated gaseous signaling molecules (Li and Moore, 2007). Beside NO, carbon monoxide (CO) more recently interest has been directed towards the third naturally occurring group of gases, notably Hydrogen sulfide (H₂S) (Moore et al., 2003). H₂S is generated endogenously from L-cysteine by pyridoxal-5'phosphate-dependent enzymes, including cystathionine β-synthase (CBS) and/or cystathionine y-lyase (CSE) in mammalian cells. So far, only the expression of CSE has been detected in vascular smooth muscle cells (VSMCs) (Yang et al., 2004). H₂S plays key roles in the regulation of vessel diameter, protection of endothelium from redox stress, ischemia reperfusion injury and chronic inflammation (Pushpakumar et al., 2014). It dilates different blood vessels via activation of ATP-sensitive K^+ (K_{ATP}) channels in VSMCs (Zhao *et al.*, 2001; Tang et al., 2005), and Calcium (Ca⁺²)-activated K⁺ (K_{Ca}) channels in endothelium (Cheng et al., 2004).

VSMCs express at least four different functional types of K+ channels, including K_{ATP}, K_{Ca}, inward rectifier K⁺ (K_{IR}) , and voltage-dependent K^+ (K_V) channels (Jackson, 2000). Opening of K^+ channels and increase in $K^{\!\scriptscriptstyle +}$ efflux in VSMCs cause membrane potential hyperpolarization and decrease Ca⁺² entry via closing of voltage activated Ca⁺² channels (Nelson and Quayle, 1995). This leads to stimulation of electrogenic sodium (Na⁺)-K⁺ pump and/or activation of KIR channels and vasodilation (Haddy et al., 2006). Alteration in the function and expression of K⁺ channels has been observed in different models of hypertension (Callera et al., 2004). Expression and densities of K_V (Joseph et al., 2013), K_{IR} (Sobey, 2001) and KATP channels (Sobey, 2001; Blanco-Rivero et al., 2008) are impaired in several models of hypertension. Meanwhile, the density of membrane K_{Ca} is increased in VSMCs of arteries from genetic, renal and salt-induced hypertension (Rusch and Liu, 1997).

Several studies have suggested that acetylcholine (ACh)-induced relaxation has been impaired in both inherently hypertensive rats (Konishi and Su, 1983; Izzard and Heagerty, 1999; Kagota *et al.*, 2002) and salt-sensitive rats (Luscher *et al.*, 1987; Nishida *et al.*, 1998). The mechanism linking salt to relaxation impairment appears to be complex and involve either decrease in NO production (Vapaatalo *et al.*, 2000) or suppression of eNOS activity (Li *et al.*, 2009) via a

rise in plasma Na⁺ concentration (Li et al., 2009). Moreover, NO synergizes with H₂S, regulated gene expression and enzymatic activity of CSE (Dombkowski et al., 2004; Lowicka and Beltowski, 2007) and the vascular H₂S synthase/H₂S pathway was found to be dysfunctional in hypertensive rats (Zhong et al., 2003). Furthermore, CSE knockout mice displayed pronounced hypertension and highly reduced endothelium dependent relaxation (Yang et al., 2008; Zoccali et al., 2009). While the impairment of endothelium-dependent vasodilation is a known fact, the mechanism of salt impairing H₂S-induced vascular relaxation and the role of different types of K^{+} channels are not completely understood. Therefore, the aim of the current study is to investigate the contribution of different subtypes of K^+ channels to the mechanism of H₂S-induced vascular relaxation in HS- incubated rats, with focus on KIR channels.

Materials and methods

Experimental Animals

The animal experimental procedure compatible with the "Guide for the Care and Use of Laboratory Animals" of National Institutes of Health in the United States and was approved by the Animal Research Committee of Salahaddin University-Erbil. Adult male Wistar rats (*Rattus norvegicus*) weighing about 200– 300gm were fed a diet of normal chow with 0.4% sodium chloride (NaCl) or a HS with 8% NaCl (Cordaillat *et al.*, 2007). The HS was prepared by mixing 76g of NaCl with 924g of chow. The rats were supplemented with these diets for 6 weeks with water *ad libitum* before the study. The rats were kept in an air-conditioned room (22 \pm 2°C) under an artificial 12 hour light/dark cycle.

Tissue preparation

After anaesthetizing the rats with Ketamine (40 mg/Kg) and Xyalzine (10mg/Kg) intraperitonealy (Struck *et al.*, 2011), the chest cavity was opened. After removal of excess tissue and fat, thoracic aorta was isolated and transferred to beaker containing cold Krebs solution (composition in mM: NaCl-136.9, KCl-5.4, Glucose-5.5, NaHCO₃-23.8, MgCl₂-1, CaCl₂-1.5, and EDTA-0.003). It was brought to equiblirium with 95% O₂ and 5% CO₂.

K_{IR} channels responsible for H_2S -induced relaxation in HS rats

We followed the (Al-Habib and Salihi, 2013) protocol to study the vascular reactivity in the isolated aorta with some modifications. Two stainless steel wires were carefully inserted into lumen of the aortic rings. One wire was anchored to the hook at the base of a tissue bath (Model 166051, Radnoti, Monrovia Ca, USA) and other wire was connected to force transducer (MLT0201/RAD 5 mg - 25 mg, AD instruments, Sydney, Australia) which was then coupled to the transbridge amplifier (ML 224, Quad Bridge Amp, AD instruments). Data was acquired with a PowerLab Data Acquisition System (ML 870, Power Lab, AD instruments) using the chart software (Version 7) for measurement of isometric tension. The extent of contraction and relaxation were indicated by the level of tension development in the recording system and expressed in gram.

Aortic Relaxation Studies

Rings were allowed to equilibrate for 60 minutes at a resting tension of 2 grams with changes of buffer every 15 minutes. When the isometric tension had stabilized, after a number of preliminary tests, inhibitory concentration-response curve of the sodium disulfide (Na₂S; 1-6 mM) was constructed against contractions induced by phenylephrine (PE; 1μ M).

After stabilization period, the medium was replaced with 10mL of PBS in the presence of excess NaCl (1,3 and 5mM/L), then concentration-response curve of the Na₂S (1-6 mM) was constructed against contractions induced with PE (1µM). To examine whether the Na₂S-induced vasorelaxation were mediated by increased K^+ conductance or by activation of a1-adrenoceptor subtype, aortic rings were contracted with either potassium chloride (KCl; 60 mM) or PE (1µM) (Sun et al., 2013). Then, to test the role of different K^+ channels in the process of relaxation induced by Na₂S, the aortic rings were preincubated for 20 minutes with the following K^+ channel inhibitors, tetraethylammonium (TEA; 1mM), glibenclamide (GLIB; 10 µM), barium chloride (BaCl₂;1mM) and 4-aminopyridine (4-AP; 1mM), for inhibiting of $K_{Ca},\ K_{ATP},\ K_{IR}$ and K_V channels. The inhibitors were used individually or in combinations.

The concentration-response curves were fitted with a Hill equation, from which the half maximal inhibitory concentration (IC_{50}) values were obtained as geometric mean. Maximum contractile responses to Na₂S were calculated as a percentage of the

contraction produced by PE and were expressed as the means \pm standard error of the mean (SEM). The tension produced by PE was defined as 0% relaxation, and the baseline tension before addition of vasoconstrictors were defined as 100% relaxation.

Chemicals

Phenylephrine, TEA, GLIB and BaCl₂ were obtained from Fluka (Fluka Chemical, Germany). Na₂S was purchased from Nakarai Chemicals (Japan) and 4-AP from Himedia Laboratories (Mumbai, India).

All chemicals were diluted in physiological saline solution. GLIB was diluted in a solution of dimethylsulfoxide (DMSO) 10%. The final concentration of DMSO did not exceed 0.01% in the tissue bath.

Statistical Analysis

The statistical analysis was performed using two-way analysis of variance (ANOVA) supported by Sidak post *hoc* test when carrying out pair wise comparison between the same doses of different groups. P-value less than 0.05 (P<0.05) was considered as statistically significant. All the graph, calculation and statistical analyses were performed using GraphPad Prism software version 6.0 for Windows (GraphPad Software, San Diego, California, USA).

Results

The vasodilator effects of Na₂S in HS rats or Normal diet

Aortic rings from HS rats showed a significant (P<0.01) attenuated relaxation to PE when compared with those of normal rats. The maximum relaxation (E_{max}) developed by Na₂S to 1µM PE in aortic rings from rats fed normal diet were significantly (P<0.01) greater (50.27±4.11%) than rats on HS (33.24±2%). Meanwhile, the IC₅₀ of Na₂S was significantly (P<0.001) lower (1.23±0.29 mM) in HS rats than rats fed normal diet (2.28±0.12 mM), (Fig 1A). Also, typical traces of the dose-dependent vasodilator effects of Na₂S on isolated aortic rings from normal rats and rats fed 8% NaCl diet for 6 weeks and precontracted with PE (1µM) are shown in Fig. 1B. This implies that HS diminished Na₂S-induced aortic relaxation.

Fig.1. (**A**) Dose-response relationship curve to Na₂S induced relaxations in aorta of rats on normal salt diet (\circ ; *n*=9) or 8% NaCl diet (\Box ; *n*=14). Responses were significantly attenuated in HS rats (8% NaCl) diet. All data are expressed as % of relaxation of PE-induced aortic tone and are represented as the mean±SE. Statistical differences were determined using two-way ANOVA supported by Sidak post hoc when carrying out pair wise comparison between the same doses of different groups. ** P<0.01 versus normal diet.(**B**) Typical traces showing the dose-dependent vasodilator effects of Na₂S (1-6mM) on isolated aortic rings from normal rats and rats fed 8% NaCl diet for 6 weeks and precontracted with PE (1 µM).

The effects of extra NaCl incubation on the vasodilator activity of Na₂S

Incubation of aortic rings in a medium of Krebs solution containing either 1mM, 3mM or 5mM of excess NaCl significantly (P<0.001) increased IC₅₀ to (3.78 ± 0.18 , $4.19\pm$, 0.27 and $3.6\pm$ 0.25mM) and shifted the dose-response relationship curve of Na₂S to the left, respectively. Meanwhile, excess NaCl did not change significantly E_{max} (58.07 ± 5.06 , 71.28 ± 9.05 and 61.18 ± 15.65) in comparison to control as shown in Fig. 2A, B and C. Typical traces of the dose-dependent vasodilator effects of Na₂S on isolated aortic rings from aortic rings incubated in a medium of Krebs solution containing either 1mM, 3mM or 5mM of extra NaCl precontracted with 1µM PE are shown in Fig. 2D, E and F.

Effect of Na₂S on aortic constriction evoked by PE or KCI

Aortic rings from HS rats had significantly (P<0.001) attenuated E_{max} in response to Na₂S in KClprecontracted rings (-15.87±2.46%) when compared with those of PE- precontracted rings. While, the value of IC₅₀ was significantly (P<0.001) higher in KCl (4.1±0.39 mM) than PE-precontracted aortic rings (Fig 3A). Furthermore, typical traces of the dosedependent vasodilator effects of Na₂S on isolated aortic rings from rats fed 8% NaCl diet for 6 weeks, precontracted with either PE or KCl are shown in Fig. 3B. This result indicates that Na_2S relaxes aorta in HS rats via activation of K⁺ channels.

The role of K^+ channels in the aortic effects of Na₂S

To identify the role of specific type of K^+ channels in the Na₂S-induced vasorelaxation, aortic rings were incubated with either BaCl₂, GLIB, TEA or 4-AP individually or in combination for 20 minutes prior to the application of Na₂S. Typical traces showing the role of K^+ channels in the dose-response vasodilator effects of Na₂S on aortic rings of HS rats incubated in buffer containing TEA, GLIB, BaCl₂ and 4-AP for 20 min and then contracted with PE are shown in Fig. 5A, B, C and D, respectively.

Fig 4C summarizes the dose-response curve for the inhibitory effect of $BaCl_2$ on Na_2S -induced relaxation in thoracic aortic rings precontracted with PE. The prior addition of $BaCl_2$ significantly (P<0.001) enhanced the IC_{50} (4.54±0.6 mM), whereas significantly reduced E_{max} to (9.12±2%), suggesting that K_{IR} channels are responsible for the Na_2S -induced relaxation in HS rats. Whereas, dose-response curve taken from the rings pretreated with GLIB showed that IC_{50} and E_{max} did not differ

Fig.2. (**A**, **B** and **C**) Dose-response relationship curve to Na₂S induced aortic relaxations in a medium of Krebs solution containing either 1mM (\Box ; *n*=6), 3mM (\Box ; *n*=4) and 5mM (Δ ; *n*=4) extra NaCl, precontracted with 1 µM PE. Although extra NaCl significantly increased IC₅₀ and shifted the dose-response curve of Na₂S to the left, but the E_{max} did not differ significantly in comparison with control rings. All data are expressed as % of relaxation of PE-induced aortic tone and are represented as the mean±SE Statistical differences were determined using two-way ANOVA supported by Sidak post hoc when carrying out pair wise comparison between the same doses of different groups. * P<0.05 versus control; ** P<0.01 versus normal diet; *** P<0.001 versus control. (**D**, **E** and **F**) Typical traces showing the dose-dependent vasodilator effects of Na₂S induced aortic relaxations in a medium of Krebs solution containing either 1mM, 3mM and 5mM extra NaCl, respectively.

significantly in comparison to HS control rings (Fig 4B).

Preincubation of aortic rings with TEA for 20 minute significantly (P<0.001) enhanced relaxation induced by Na₂S with an IC₅₀; 2.64±0.16mM, and E_{max} was increased to 73.43±3.37%, (Fig 4A). On the other hand, preincubation of aortic rings with 4-AP had negligible effect on Na₂S-induced relaxation with an IC₅₀ (2.54±0.19mM) and E_{max} (44.46±2.66%), (Fig 4D).

To determine the possible role of Na2S in the K⁺ activation of more than one channels simultaneously, rings were incubated with а combination of BaCl₂ with either GLIB, 4-AP or TEA. Typical traces showing the role of K⁺ channels in the dose-response vasodilator effects of Na₂S on aortic rings incubated in buffer containing BaCl₂ with either TEA; GLIB or 4-AP, are shown in Fig. 6D, E and F, respectively.

Combination of $BaCl_2$ with either GLIB or 4-AP significantly (P<0.001) shifted the curve to the left and reduced Na₂S-induced relaxation with IC₅₀ 8±2.72 mM and 2.25±1.1mM, and reduced the E_{max} to -1.37±2.1% and -4±1.1% respectively, (Fig 6B and C).

Meanwhile, Fig 6A indicates that combination of BaCl₂ with TEA significantly (P<0.001) enhanced Na₂S-induced relaxation with an IC₅₀ 2.53±0.18 mM, and increased the E_{max} to 60±3.1%. These results further clarify the role of K_{IR} channels in Na₂S-induced relaxation in HS rats.

Discussion

Excess dietary salt is an important risk factor linked to hypertension (Elliot et al., 1996), endothelial dysfunction (Zhu et al., 2004), thickening and stiffening of conduit arteries and thickening and narrowing of resistance arteries (Wardener and MacGregor, 2002). These abnormalities lead to impairment of the vascular relaxation mediated by ACh (Lombard et al., 2003) and NO (Kagota et al., 2002). Although it was described earlier that H₂S relaxes different arteries in normal rats (Zhao et al., 2001; Zhao and Wang, 2002) mutant mice lacking diminished CSE display vasorelaxation after muscarinic and cholinergic stimulation of vascular endothelial cells (Bernatova, 2014). But the vasoactivity of H₂S in rats who remained for

Fig.3. (A) Dose-response relationship curve to Na₂S induced relaxations in rat thoracic aortic rings precontracted with either 1 μ M PE (\Box ; n=14) or 60 mM K-Krebs buffer (Δ ; n=9). Na₂S caused a dose-dependent relaxation after 1 μ M PE precontraction, while relaxation completely blocked by 60 mM KCl. All data are expressed as % of relaxation of PE-induced aortic tone and are represented as the mean±SE Statistical differences were determined using two-way ANOVA supported by Sidak post hoc when carrying out pair wise comparison between the same doses of different groups. *** P<0.001 versus control. (B) Typical traces showing the dose-dependent vasodilator effects of Na₂S (1-6mM) on isolated aortic rings from rats fed 8% NaCl diet for 6 weeks, precontracted with either PE (1 μ M) or KCl (60mM).

Fig.4. Role of K⁺ channels in the vasodilator effects of Na₂S on PE-constricted aortic rings of HS rats. Aortic rings were first incubated in buffer containing (**A**) 1mM TEA ($\mathbf{\nabla}$; n=8), (**B**) 10 mM GLIB (\circ ; n=8), (**C**) 1mM BaCl₂ ($\mathbf{\diamond}$; n=8) and (**D**)1mM 4-AP (Δ ; n=4) for 20 min and then contracted with 1 µM PE. Dose-response relaxation induced by Na₂S significantly blocked by each of BaCl₂ and 4-AP; in contrast enhanced by TEA preincubation. While, GLIB did not change significantly dose-response relaxation induced by Na₂S. All data are expressed as % of relaxation of PE-induced aortic tone and are represented as the mean±SE. Statistical differences were determined using two-way ANOVA supported by Sidak post hoc test when carrying out pair wise comparison between the same doses of different groups. * P<0.05 versus control; ** P<0.01 versus normal diet; *** P<0.001 versus control.

Fig.5. Typical traces showing the role of K⁺ channels in the dose-response vasodilator effects of Na₂S (1-6mM) on aortic rings of HS rats incubated in buffer containing (**A**) 1mM TEA, (**B**) 10 mM GLIB, (**C**) 1mM BaCl₂ and (**D**) 1mM 4-AP for 20 min and then contracted with 1 mM PE.

Fig.6. Role of K⁺ channels combination in the vasodilator effects of Na₂S on PE-constricted aortic rings of rats fed 8% NaCl diet. Aortic rings were first incubated in buffer containing either (**A**) 1mM BaCl₂ and 1mM TEA (Δ ; n=6); (**B**) 1mM BaCl₂ and 10 mM GLIB (•; n=7) or (**C**) 1 mM BaCl₂ and 1mM 4-AP (Δ ; n=7) for 20 min and then contracted with 1mM PE. Combination of BaCl₂ with either GLIB or 4-AP significantly blocked Na₂S-induced aortic relaxation, while combination of BaCl₂ and TEA significantly enhanced dose-response relaxation induced by Na₂S. All data are expressed as % of relaxation of PE-induced aortic tone and are represented as the mean±SE. Statistical differences were determined using two-way ANOVA supported by Sidak post hoc when carrying out pair wise comparison between the same doses of different groups. * P<0.05; ** P<0.01; *** P<0.001 versus control. (**D**, **E** and **F**) Typical traces showing the role of K⁺ channels in the dose-response vasodilator effects of Na₂S (1-6mM) on aortic rings incubated in buffer containing 1mM BaCl₂ with either 1mM TEA; 10 mM GLIB or 1mM 4-AP, respectively.

long period in HS has never been described. Therefore, the results of our study demonstrated that excess dietary salt significantly impairs H_2S -induced aortic relaxation, suggesting that HS diet modulate the molecular pathway of vasorelaxation mediated by H_2S .

Plasma Na⁺ may be raised by 1-3 mM/L in hypertensive population and spontaneous rats. However, increase hypertensive in Na⁺ concentration to more than 5 mM/L could have damaging effects on the brain (de Wardener et al., 2004; Oberleithner et al., 2007). Based on this evidence, we hypothesize that a small rise in Na⁺ concentrations may impair H₂S induced aortic relaxation. Three doses of excess Na⁺ were used to test this hypothesis. We demonstrated that doseresponse aortic relaxation curve of H₂S is sensitive to changes in Na⁺ concentrations. There is evidence to demonstrate that small changes in plasma Na⁺ concentration have a great effect on the stiffness and elasticity of endothelial cells (Oberleithner et al., 2007) that could inactivate NOS (Li et al., 2009; Oberleithner et al., 2010). Therefore, it is important to recognize that this study is the first attempt to confirm that a small rise in plasma Na⁺ concentration will impair vascular activity of H₂S.

It is well documented that muscle contractility and vascular tone are principally regulated by K⁺ channels (Nelson and Quayle, 1995). A rise in K⁺ permeability normally hyperpolarizes cell membrane and thus inhibits Ca⁺⁺ influx through voltage-gated Ca⁺⁺ channels, resulting in muscle relaxation (Callera et al., 2004). To test whether or not H₂S can increase K^+ permeability, the relaxation response to H₂S in aortic rings taken from HS rats were treated with high K⁺ Krebs solution, non-selective K⁺ channels blocker (Tsang et al., 2003). The vascular tone induced by high K^+ concentration was comparable to that of PE. Although, the relaxation response to H₂S was smaller in rings receiving K^+ than those receiving PE, suggesting that H₂S dilates aorta at least through activation of K^{\dagger} channels. It is difficult to compare the results since no data are available on the effect of PE and KCI on the relaxation response of aorta to H₂S in HS rats. However, more or less the same type response was reported for rats fed normal diet (Kiss et al., 2008).

Based on the above results, we further studied the possible role of K_{IR} channels in H₂S-induced aortic

relaxation mechanism in HS rats. K_{IR} channels are unique among the classes of K⁺ channels in that an increase in external K⁺, favours the opening of the channel, allowing the ion to flow out of the cell and produce hyperpolarization and relaxation (Loeb *et al.*, 2000). In VSMCs , the K_{IR} channels are characterised by a current that is rectified at potentials positive to the K⁺ equilibrium potential (Edwards and Hirst, 1988) and might contribute to the resting membrane potential (Ko *et al.*, 2008). The first important finding of this study is that pre-treatment with BaCl₂, a blocker of K_{IR} channels strongly abolished aortic relaxation induced by cumulative doses of Na₂S. This finding indicates that H₂S may exert a vasodilatory

One of the interesting results we would like to point out is simultaneous incubation of K_{IR} with either K_{ATP} or K_V channels blockers enhanced the reduction of aortic relaxations induced by cumulative doses of Na₂S. These data clearly demonstrate the important role of K_{IR} channels in the vasodilatory effect of H_2S in HS rats.

effect possibly by activation of KIR channels in HS

rats.

Generally, some of the vasodilatory actions of H_2S have been linked to K_{ATP} channels activation. The first clear connection between H_2S and K_{ATP} channels was demonstrated by Zhao *et al.* (2001) through a series of *in vivo* and *in vitro* experiments. In this study, previous inhibition of the K_{ATP} channel by GLIB did not alter H_2S -induced vasorelaxation. This effect has best been explained by Whidden *et al.* (2011) who demonstrated that HS alters K_{ATP} channels function and affects the mediation of dilator stimuli.

A wide range of K_V channels are expressed in VSMCs, they open to allow an efflux of K^+ in response to depolarization of the membrane, resulting in repolarization and maintenance of resting vascular tone (Ko et al., 2008). Ky channels may also be a part of the mechanism of action of both vasodilators and vasoconstrictors (Jackson, 2000). The results of this study demonstrated that K_V channels have a minor role in the relaxation mechanism of H_2S , suggesting that K_V channels might not be responsible for the H₂S-induced aortic relaxation in HS rats. Although, there was no previous set of data to explain the relation between K_V channels and H_2S in salt-sensitive hypertensive rats, according to Ko et al. (2010) and Tajada et al. (2012) studies, the functional expression of different K_v channels are decreased and downregulated in essential hypertension and decreased K_v current intensity were observed in spontaneously hypertensive rats, implying that these channels are small enough to be induced by H₂S.

Opening of K_{Ca} channels are induced by cytosolic Ca⁺⁺ ions (Faber and Sah, 2003). It hyperpolarizes the membrane, promoting closure of Ca⁺⁺ channels and thus opposing vasoconstriction (Ledoux et al., 2006). Different changes in the K_{Ca} channels expression and current have been described in different animal models of hypertension (Liu et al., 1998; Tajada et al., 2012; Joseph et al., 2013) as a negative feedback response to the increased vascular tone (Pinterova et al., 2011). However, the literature regarding the effects of H_2S on K_{Ca} channels is not as extensive. It's known that H₂S induces vasorelaxation by activating endothelial K_{Ca} channels (Mustafa et al., 2011; Beltowski and Jamroz-Wisniewska, 2014). Interestingly, the second important finding of this study is that inhibition of K_{Ca} channels in HS rats enhanced the dose-dependent relaxation response to Na₂S. It has been proposed that composition of K_{Ca} channels unit changes during hypertension which leads to increased Ca⁺⁺ sensitivity of K_{Ca} channels and increase in vascular tonality (Amberg et al., 2003). This indicates that K_{Ca} channels play a negative role in contributing to the vasodilating effect of H₂S in HS rats.

Conclusion

In conclusion, the results of this study demonstrated that the mechanism of H₂S-induced aortic relaxation differs from those of normal rats and HS rats. The H₂S-induced relaxation in aorta measured in rats that remained in excess sodium diet is mainly mediated by the stimulation of K_{IR} channels. In addition, H_2S induced aortic relaxation in HS rats significantly enhanced by blocking K_{Ca} channels; this can be considered as a future choice for treatment of saltsensitive hypertension. Furthermore, cell signal transduction pathways of the vasorelaxation mediated by exogenous H₂S in different animal models to study endothelial dysfunction and hypertension should be further investigated in order to understand its molecular mechanism.

Acknowledgment

I thank members of the Biology Department, Faculty of Science, Zakho University for technical support. This work was financially supported by Zakho University.

Conflict of Interest

There is no conflict of interest.

References

- Adegunloye B, Sofola O. Relaxation responses of aortic rings from salt-loaded high calcium fed rats to potassium chloride, calcium chloride and magnesium sulphate. Pathophysio. 1998; 4: 275–280.
- Al-Habib O, Salihi A. Endothelium derived relaxation factors reduce sulfur dioxide-induced aortic relaxation. OJMIP. 2013; 03: 181-185.
- Altaany Z, Moccia F, Munaron L, Mancardi D, Wang R. Hydrogen sulfide and endothelial dysfunction: Relationship with nitric oxide. Curr Med Chem. 2014; 21: 3646-61.
- Amberg GC, Bonev AD, Rossow CF, Nelson MT, Santana LF. Modulation of the molecular composition of large conductance, ca2+ activated k+ channels in vascular smooth muscle during hypertension. JCI. 2003; 112: 717-724.
- Beltowski J, Jamroz-Wisniewska A. Hydrogen sulfide and endothelium-dependent vasorelaxation. Mol. 2014; 19: 21183-21199.
- Bernatova I. Endothelial dysfunction in experimental models of arterial hypertension: Cause or consequence? Biomed Res Int. 2014; 2014: 598271.
- Blanco-Rivero J, Gamallo C, Aras-López R, Cobeño L, Cogolludo A, Pérez-Vizcaino F, et al. Decreased expression of aortic kir6.1 and sur2b in hypertension does not correlate with changes in the functional role of katp channels. Eur J Pharmacol. 2008; 587: 204-208.
- Callera G, Yogi A, Tostes R, Rossoni L, Bendhack L. Ca2+activated k⁺ channels underlying the impaired acetylcholine-induced vasodilation in 2k-1c hypertensive rats. J Pharmacol Exp Ther. 2004; 309: 1036-42.
- Cheng Y, Ndisang JF, Tang G, Cao K, Wang R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol. 2004; 287: 10.
- Cordaillat M, Fort A, Virsolvy A, Elghozi JL, Richard S, Jover B. Nitric oxide pathway counteracts enhanced contraction to membrane depolarization in aortic rings of rats on high-sodium diet. Am J Physiol Regul Integr Comp Physiol. 2007; 292: R1557-62.
- de Wardener HE, He FJ, MacGregor GA. Plasma sodium and hypertension. Kidney Int. 2004; 66: 2454-66.
- Dombkowski R, Russell M, Olson K. Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol.

2004; 286: R678-R685.

- Edwards D, Farquhar W. Vascular effects of dietary salt. Curr Opin Nephrol Hypertens. 2015; 24: 8-13.
- Edwards FR, Hirst GD. Inward rectification in submucosal arterioles of guinea-pig ileum. J Physiol. 1988; 404: 437-54.
- Elliot P, Stamler J, Nichols R, Dyer AR, Stamler R, Kesteloot H, et al. Intersalt revisited: Further analyses of 24 hour sodium excretion and blood pressure within and across populations. Br. Med. J. 1996; 312: 1249-1253.
- Faber ES, Sah P. Calcium-activated potassium channels: Multiple contributions to neuronal function. Neurosci. 2003; 9: 181-94.
- Giardina J, Green G, Rinewalt A, Granger J, Khalil R. Role of endothelin b receptors in enhancing endotheliumdependent nitric oxide–mediated vascular relaxation during high salt diet. Hypertens. 2001; 37: 516-523.
- Haddy F, Vanhoutte P, Feletou M. Role of potassium in regulating blood flow and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2006; 290: R546–R552.
- Izzard A, Heagerty A. Impaired flow dependent dilation in distal mesenteric arteries from the spontaneously hypertensive rat. J Physiol. 1999; 518: 239–245.
- Jackson W. Ion channels and vascular tone. Hypertension. 2000; 35: 173-178.
- Joseph BK, Thakali KM, Moore CL, Rhee SW. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches. Pharmacol Res. 2013; 70: 126-38.
- Kagota S, Tamashiro A, Yamaguchi Y, Nakamura K, Kunitomo M. High salt intake impairs vascular nitric oxide/cyclic guanosine monophosphate system in spontaneously hypertensive rats. J Pharm Exper Therap. 2002; 302: 344-351.
- Kiss L, Deitch EA, Szabo C. Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sci. 2008; 83: 589-94.
- Ko EA, Han J, Jung ID, Park WS. Physiological roles of k+ channels in vascular smooth muscle cells. J Smooth Muscle Res. 2008; 44: 65-81.
- Ko EA, Park WS, Firth AL, Kim N, Yuan JX, Han J. Pathophysiology of voltage-gated k+ channels in vascular smooth muscle cells: Modulation by protein kinases. Prog Biophys Mol Biol. 2010; 103: 95-101.
- Konishi M, Su C. Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertens. 1983; 5: 881–886.
- Ledoux J, Werner ME, Brayden JE, Nelson MT. Calciumactivated potassium channels and the regulation of vascular tone. Physio. 2006; 21: 69-78.
- Li J, White J, Guo L, Zhao X, Wang J, Smart EJ, et al. Salt inactivates endothelial nitric oxide synthase in endothelial cells. J Nutr. 2009; 139: 447-51.
- Li L, Moore PK. An overview of the biological significance of endogenous gases: New roles for old molecules. BiocheM Soc Trans. 2007; 35: 1138-1141.
- Liu Y, Hudetz A, Knaus H, Rusch N. Increased expression of ca2+-sensitive k+ channels in the cerebral

microcirculation of genetically hypertensive rats evidence for their protection against cerebral vasospasm. Circ Res. 1998; 82: 729-737.

- Loeb AL, Godeny I, Longnecker DE. Functional evidence for inward-rectifier potassium channels in rat cremaster muscle arterioles. Microvasc Res. 2000; 59: 1-6.
- Lombard J, Sylvester F, Phillips S, Frisbee J. High-salt diet impairs vascular relaxation mechanisms in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 2003; 284: H1124–H1133.
- Lowicka E, Beltowski J. Hydrogen sulfide (h2s) the third gas of interest for pharmacologists. Pharm Rep. 2007; 59: 4-24.
- Luscher T, Raij L, Vanhoutte P. Endothelium-dependent vascular responses in normotensive and hypertensive dahl rats. Hypertens. 1987; 9: 157–163.
- Moore P, Bhatia M, Moochhala S. Hydrogen sulfide: From the smell of the past to the mediator of the future? Trends Pharmacol Sci. 2003; 24: 609-611.
- Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, et al. Hydrogen sulfide as endotheliumderived hyperpolarizing factor sulfhydrates potassium channels. Circ Res. 2011; 109: 1259-68.
- Nelson M, Quayle J. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995; 268 C799-822.
- Nishida Y, Ding J, Zhou M, Chen Q, Murakami H, Wu X, et al. Role of nitric oxide in vascular hyperesponsiveness to norepinephrine in hypertensive dahl rats. J Hypertens. 1998; 16: 1611–1618.
- Oberleithner H, Kusche-Vihrog K, Schillers H. Endothelial cells as vascular salt sensors. Kidney Int. 2010; 77: 490-4.
- Oberleithner H, Riethmuller C, Schillers H, MacGregor GA, de Wardener HE, Hausberg M. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci U S A. 2007; 104: 16281-6.
- Pinterova M, Kunes J, Zicha J. Altered neural and vascular mechanisms in hypertension. Physiol Res. 2011; 60: 381-402.
- Pushpakumar S, Kundu S, Sen U. Endothelial dysfunction: The link between homocysteine and hydrogen sulfide. Curr Med Chem. 2014; 21: 3662-3672.
- Rusch NJ, Liu Y. Potassium channels in hypertension: Homeostatic pathways to buffer arterial contraction. J Lab Clin Med. 1997; 130: 245-51.
- Simon G. Development of structural vascular changes in salt-fed rats. Am J Hypertens. 2003; 16: 488-493.
- Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol. 2001; 21: 28-38.
- Sofola O, Yakubu M, Igbo I, Newaz M, Oyekan A. High salt diet modulates camp- and nitric oxide-mediated relaxation responses to isoproterenol in the rat aorta. Eur J Pharmacol. 2003; 474: 241-247.
- Struck MB, Andrutis KA, Ramirez HE, Battles AH. Effect of a short-term fast on ketamine–xylazine anesthesia in rats. J Am Assoc Lab Anim Sci. 2011; 50: 344-8.
- Sun YH, Zhao J, Jin HT, Cao Y, Ming T, Zhang LL, et al. Vasorelaxant effects of the extracts and some

flavonoids from the buds of coreopsis tinctoria. Pharm Biol. 2013; 51: 1158-64.

- Tajada S, Cidad P, Moreno-Dominguez A, Perez-Garcia MT, Lopez-Lopez JR. High blood pressure associates with the remodelling of inward rectifier k+ channels in mice mesenteric vascular smooth muscle cells. J Physiol. 2012; 590: 6075-91.
- Tang G, Wu L, Liang W, Wang R. Direct stimulation of k(atp) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol. 2005; 68: 1757-64.
- Tsang SY, Yao X, Wong CM, Au CL, Chen ZY, Huang Y. Contribution of na+ -ca2+ exchanger to pinacidilinduced relaxation in the rat mesenteric artery. Br J Pharmacol. 2003; 138: 453-60.
- Vapaatalo H, Mervaala E, Nurminen M. Role of endothelium and nitric oxide in experimental hypertension. Physiol Res. 2000; 49: 1-10.
- Wang R. Gasotransmitters: Growing pains and joys. Trends Biochem. Sc. 2014; 39: 227-232.
- Wardener H, MacGregor G. Harmful effects of dietary salt in addition to hypertension. J Hum Hypertens. 2002; 16: 213–223.
- Whidden MA, Basgut B, Kirichenko N, Erdos B, Tumer N. Potassium atp channel function is altered in mesenteric arteries of old high salt fed rats. FASEB J. 2011; 25:

860.10.

- Yang G, Sun X, Wang R. Hydrogen sulfide-induced apoptosis of human aorta smooth muscle cells via the activation of mitogen-activated protein kinases and caspase-3. FASEB J. 2004; 18: 1782-4.
- Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H2s as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008; 322: 587-90.
- Zhao W, Wang R. H(2)s-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol. 2002; 283: H474-80.
- Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of h(2)s as a novel endogenous gaseous k(atp) channel opener. Embo J. 2001; 20: 6008-16.
- Zhong G, Chen F, Cheng Y, Tang C, Du J. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J Hypertens. 2003; 21: 1879-1885.
- Zhu J, Mori T, Huang T, Lombard JH. Effect of high-salt diet on no release and superoxide production in rat aorta. Am J Physiol Heart Circ Physiol. 2004; 286: H575-83.
- Zoccali C, Catalano C, Rastelli S. Blood pressure control: Hydrogen sulfide, a new gasotransmitter, takes stage. Nephrol Dial Transplant. 2009; 24: 1394-6.