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Introduction  

Human immunodeficiency virus (HIV), the virus that 

causes AIDS (acquired immunodeficiency syndrome)
 

has become one of the world’s most serious health 

and development challenges. Current management 

of HIV requires at least three classes of antiretroviral 

drugs, this combination is known as highly active 

antiretroviral therapy (HAART). Lopinavir is a 
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Abstract 

Introduction: The use of lopinavir/ritonavir (LPV/r) has decreased morbidity and 

mortality due to human immunodeficiency virus (HIV); however its use could be 

impaired by hepatotoxicity. Therefore, this study was designed to investigate the 

effects of melatonin (MT) and alpha lipoic acid (ALA) on LPV/r-induced hepatotoxicity 

in male albino rats. 

 

Methods: Rats were divided into groups and treated with MT (10 mg/kg/day), ALA 

(10 mg/kg/day) and LPV/r (22.9/5.71, 45.6/11.4 and 91.2/22.9 mg/kg/day) for 60 days 

respectively. Rats were pretreated with MT (10 mg/kg), ALA (10 mg/kg) and 

combined doses of ALA and MT prior to treatment with LPV/r (22.9/5.71, 45.6/11.4 

and 91.2/22.9 mg/kg/day) for 60 days. Rats were sacrificed and serum was collected 

and evaluated for liver enzymes. The liver was harvested and evaluated for 

malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and 

catalase (CAT) levels. 

 

Results: Significant (P<0.05) decreases in baseline serum aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) 

and liver MDA levels with increases in liver SOD, CAT and GSH levels were obtained 

in MT and ALA treated animals when compared to control. On the contrary, significant 

(P<0.05) and dose dependent increases in serum AST, ALT, ALP and liver MDA 

levels with decreases in liver SOD, CAT and GSH levels were obtained in LPV/r 

treated rats when compared to placebo control. However, LPV/r-induced changes in 

the above parameters were attenuated in MT and ALA pretreated rats. Attenuations 

were significantly (P<0.05) different in rats pretreated with combined doses of MT and 

ALA when compared to their individual doses. 

 

Conclusion: Results of this study showed that MT and ALA could be used for the 

treatment of LPV/r associated hepatotoxicity. 
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protease inhibitor used as a vital component of 

HAART and is usually co-formulated with ritonavir 

(Kumar et al., 1999). The introduction of LPV/r 

(lopinavir/ritonavir) in combination with other 

antiretroviral drugs has decreased mortality, morbidity 

and prolonged life expectancy of people living with 

HIV. However, the use of LPV/r in the management 

of HIV could be associated with some toxicities 

including hepatotoxicity (Sulkowski, 2004; Almond et 

al., 2004; Hughes et al., 2011). Clinical trials reported 

10% of LPV/r associated hepatotoxicity characterized 

by grade 3 and 4 increases in aminotransferases 

(Kemmer et al., 2000; Chihrin et al., 2004). Hepatitis, 

hepatic failure and death could be associated with the 

use of LPV/r and there may be an increased risk for 

aminotransferase elevations in patients with 

preexisting liver disease (Sulkowski, 2004). Also, 

studies have reported structural alterations in the liver 

of LPV/r treated animals (Van Gend, 2008). 

Hepatotoxicity due to treatment with LPV/r-induced 

hepatotoxicity could be associated with oxidative 

stress due to reported mitochondria damage, 

oxidative radical production and the depletion of 

antioxidants in animal studies (Zaera et al., 2001; 

Chandra et al., 2009; Touzet and Philips, 2010). 

Melatonin (MT) and its major hepatic metabolites are 

antioxidants, which can reduce oxidative stress via 

scavenging of oxidative radicals and the regeneration 

of other antioxidants (Tan et al., 2001; Tan et al., 

2007). MT has a plethora of significant actions which 

include oncostatic effect, immune system stimulation 

and anti-inflammatory functions (Blask et al., 2002). 

Also, it has hepatoprotective activity as evidenced by 

the inhibition of lipopolysaccharide (LPS)-induced 

hepatotoxicity in endotoxemic rats (Sewerynek et al., 

1995; Crespo et al., 1999). It has also been found 

that MT has protective effect against immunological 

liver injury induced by Bacillus Calmette-Guerin and 

LPS (Wang et al., 2004) In addition; MT has 

protective effect against LPS-induced liver damage in 

galactosamine sensitized mice (Wang et al., 1997).  

Alpha lipoic acid (ALA) is a cofactor of α-ketoacid 

dehydrogenase complexes and plays a fundamental 

role in fuel metabolism (Siti et al., 2008). It has been 

found that ALA affects cellular metabolic processes, 

alters redox status of cells and interacts with thiols 

and other antioxidants (Packer et al., 2001). It is an 

amphiphilic antioxidant that quenches reactive 

oxygen species, chelates metal ions and reduces the 

oxidized forms of other antioxidants. It has anti-

inflammatory effect and can inhibit the release of 

inflammatory cytokines and other inflammatory 

mediators (Henriksen et al., 2006; Heibashy et al., 

2013). It can inhibit xenobiotic-induced liver toxicity 

as reported in adriamycin-induced hepatotoxicity in 

rats (Anandakumar et al., 2007) and restored hepatic 

function in chloroquine intoxicated rats (Pari and 

Murugavel, 2004). In addition, it ameliorated aflatoxin 

B1-induced excess production of lipid peroxides and 

maintained intracellular antioxidant status in the liver 

(Li et al., 2014). Furthermore, studies have reported 

synergistic activity with concurrent use of MT and 

ALA (Mukherjee et al., 2011). Therefore, the present 

study was designed to investigate the effects of MT 

and ALA on LPV/r-induced hepatotoxicity in albino 

rats. 

Materials and methods  

Animals 

Eighty five healthy adult male albino rats were used 

for this study. The rats were supplied by the animal 

house of the University of Port Harcourt, Choba, 

Rivers State. The rats were housed in individual 

cages at 21±2 °C, 40–60% relative humidity and 

exposed to a 12-h light–dark cycle, with the light 

cycle coinciding with daylight hours. The rats were 

allowed free access to food and water ad libitum. 

 

Drugs 

Lopinavir/ritonavir (LPV/r) (Myland Laboratories 

Limited India), melatonin and alpha lipoic acid (AO 

Pharm Import and Export Co Ltd China) were used 

for this study. All other chemicals used for this study 

were of analytical grade. LPV/r (22.9/5.71, 45.6/11.4 

and 91.2/22.9 mg/kg) (Hull et al., 2009), MT 10 mg/kg 

and ALA 10 mg/kg (Ali, 2013; Bilginoğlu et al., 2014) 

were used for this study. ALA was dissolved in water 

(Shagirtha et al., 2011). LPV/r was dissolved in 1% 

ethanol (Reyskens et al., 2013), while MT was 

dissolve in 1% ethanol and diluted with normal saline 

(Kaplan et al., 2009). 

 

Experimental design 

Rats used for this study were divided into 6 groups 

(A-F). Group A served as the control and was divided 

into two sub-groups, A1 and A2 of 5 rats each. Rats 

in group A1 (placebo control) and A2 (solvent control) 
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were orally treated with normal saline and 1% ethanol 

for 60 days respectively. Groups B-F contained 15 

rats each which were divided into 3 sub-groups of 5 

rats each. Rats in group B were orally treated with 10 

mg/kg/day of ALA and combined doses of MT and 

ALA for 60 days. Rats in group C were orally treated 

with 22.9/5.71, 45.6/11.4 and 91.4/22.9 mg/kg/day of 

LPV/r for 60 days. Groups D-F were pretreated with 

10 mg/kg/day of MT, 10 mg/kg/day of ALA and 

combined doses of MT and ALA prior to oral 

treatment with 22.9/5.71, 3 45.6/11.4 and 91.4/22.9 

mg/kg/day of LPV/r, for 60 days respectively. 

 

Collection of sample for analysis 

Animals were sacrificed using diethyl ether and blood 

samples were collected via cardiac puncture. The 

blood samples were allowed to clot and centrifuged at 

1200 rpm for 15 min and serum separated for the 

evaluation of liver function parameters. Liver was 

harvested via dissection and washed in an ice cold 

1.15% potassium chloride solution. Liver was 

homogenized in 0.1 M phosphate buffer (pH 7.2) then 

centrifuged at 2500 rpm speed for 15 min. The 

supernatant was decanted and used for the 

evaluation of oxidative stress indices. 

 

Evaluation of serum liver function parameters 

and liver oxidative stress indices  

Aspartate aminotransferase and alanine 

aminotransferase were evaluated as reported by 

Reitman and Frankel, 1975. Alkaline phosphatase 

(ALP) was evaluated as reported by Babson et al., 

1966. Liver malondialdehyde (MDA) was evaluated 

as reported by Buege and Aust, 1978 while 

superoxide dismutase (SOD) was evaluated 

according to the method of Sun and Zigma, 1978. 

Glutathione (GSH) analyzed according to Sedlak and 

Lindsay, 1968 while catalase (CAT) was evaluated as 

reported by Sinha et al., 1972. 

 

Statistical analysis 

Data was analyzed using one way analysis of 

variance. Results are expressed as mean ± standard 

error of mean (SEM). Statistical significance set was 

at P<0.05. 

Results 

In this study, rats treated with individual doses of MT 

and ALA showed significant (P<0.05) decreases in 

baseline serum AST, ALT and ALP levels when 

compared to control. However, most pronounced 

decreases in baseline serum AST, ALT and ALP 

levels were obtained in rats co-administered with MT 

and ALA which were significantly (P<0.05) different 

when compared to their individual doses (Table1). 

Baseline MDA levels were significantly (P<0.05) 

decreased while SOD, CAT and GSH levels were 

significantly (P<0.05) increased in rats treated with 

individual doses of MT and ALA when compared to 

control. Interestingly, effects on MDA, SOD, CAT and 

GSH were most pronounced with concurrent use of 

MT and ALA and were significantly (P<0.05) different 

when compared to effects of treatments with their 

individual doses (Table1). Furthermore, liver MDA 

levels were increased while SOD, CAT and GSH 

levels were decreased significantly (P<0.05) and in a 

dose-dependent manner in rats treated with 

22.9/5.71-91.2/22.9 mg/kg/day of LPV/r for 60 days 

when compared to control (Table 2). However, 

Table 1: Effects of treatments with melatonin and alpha lipoic acid on baseline serum liver function parameters and 

oxidative stress indices of albino rats.                                                                                                                         

DOSE ALP (U/L) AST(U/L) ALT(U/L) MDA 

nmole/mg 
protein 

GSH 

µmole/mg 
protein 

CAT 

U/mg protein 

SOD 

U/mg protein 

Control 

MT  

LA  

MT+LA 

36.9 ± 2.60 

24.0 ± 1.62 

26.6 ± 1.78 

15.5 ± 0.86** 

36.1 ± 1.63 

22.7 ± 1.20* 

25.4 ± 1.97* 

18.2 ± 0.68** 

37.5 ± 2.39 

24.1 ± 1.34* 

26.9 ± 1.81 

18.9 ± 0.57** 

0.76 ± 0.04 

0.50 ± 0.62* 

0.54 ± 0.08* 

0.30 ± 0.03** 

15.5 ± 0.55 

20.4 ± 0.49* 

21.9 ± 0.49* 

32.2 ± 2.44** 

15.2 ± 0.01 

25.6 ± 0.70* 

23.6 ± 0.72* 

40.4 ± 3.33** 

21.9 ± 0.65 

30.0 ± 2.33* 

28.3 ± 1.19* 

40.5 ± 3.04** 

MT=Melatonin. ALA= Alpha lipoic acid. n=5. Results are expressed as mean ± SEM * Significant (P<0.05) difference when 
compared to control. ** Significant (P<0.05) difference when compared to treatments with individual doses of MT and ALA 
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supplementations with individual doses of MT and 

ALA prior to treatment with 22.9/5.71-91.2/22.9 

mg/kg/day of LPV/r produced significant (P<0.05) 

decreases in serum levels of AST, ALT and ALP 

when compared to treatment with LPV/r. Further and 

significant (P<0.05) decreases in serum AST, ALT 

and ALP levels were obtained in rats supplemented 

concurrently with MT and ALA when compared to 

supplementation with their individual doses (Table 2).  

Furthermore, liver MDA levels were increased while 

SOD, CAT and GSH levels were decreased 

significantly (P<0.05) and in a dose-dependent 

manner in rats treated with 22.9/5.71-91.2/22.9 

mg/kg/day of LPV/r for 60 days when compared to 

control. However, this study obtained decreases in 

MDA levels with increases in SOD, CAT and GSH 

levels in rats pretreated with individual doses of MT 

and ALA prior to treatment with 22.9/5.71-91.2/22.9 

mg/kg/day of LPV/r. The effects on MDA, SOD, CAT 

and GSH were significantly (P<0.05) different when 

compared to LPV/r treated rats. Interestingly, 

pretreatment with combined doses of MT and ALA 

further decreased MDA levels while SOD, CAT and 

GSH levels were increased. The effects on MDA, 

SOD, CAT and GSH levels in rats pretreated with 

combined doses of MT and ALA were significantly 

(P<0.05) different when compared to their individual 

doses (Table 3 and 4). 

Discussion 

The liver functions in transforming and detoxifying 

drugs and metabolites. It also produces different 

types of plasma proteins such as albumin, which are 

delivered into the blood, as well as metabolites that 

are constituents of the bile (Sasse et al., 1992; Arias 

et al., 1997). The constant involvement of the liver in 

drug biotransformation could lead to hepatotoxicity 

(Woodward et al., 2009; An et al., 2011). Oxidative 

stress produced by free radicals has been implicated 

in the pathogenesis of drug-induced hepatotoxicity 

(Stehbens, 2003). Therefore, this study evaluated the 

effects of MT and ALA on LPV/r- induced 

hepatotoxicity in male albino rats. The present study 

observed decreases in
 
baseline AST, ALT, ALP and 

MDA levels with increases in SOD, GSH and CAT 

Table 2: Effects of melatonin and alpha lipoic acid on lopinavir/ritonavir- induced serum levels of aminotransferases 

and alkaline phosphatase in male albino rats. 

Serum aspartate aminotransferase (U/L)

Dose (mg/kg) LPV/r MT+LPV/r ALA+LPV/r MT+ALA+LPV/r

Control 

22.9/5.71 

45.6/11.4 

91.2/22.9

36.13 ± 2.71 

66.43 ± 4.90 

86.30 ± 4.84 

101.1 ± 6.80

36.13 ± 2.71 

35.40 ± 1.44* 

40.15 ± 2.75* 

49.85 ± 3.42*

36.13 ± 2.71 

37.55 ± 2.46* 

41.73 ± 2.51* 

52.18 ± 3.34*

36.13 ± 2.71 

32.93 ± 1.42* 

35.78 ± 2.47* 

37.10 ± 3.89**

Serum alkaline phosphatase (U/L)

Control 

22.9/5.71 

45.6/11.4 

91.2/22.9

36.93 ± 2.60 

76.08 ± 4.00 

80.70 ± 3.74 

94.15 ± 4.12

36.93 ± 2.60 

39.28 ± 1.20* 

48.78 ± 2.90* 

51.08 ± 3.80*

36.93 ± 2.60 

39.03 ± 2.34* 

46.93 ± 2.96* 

54.95 ± 3.04*

36.93 ± 2.60 

32.18 ± 1.38* 

35.28 ± 3.49** 

39.10 ± 2.51**

Serum alanine aminotransferase (U/L)

Control 

22.9/5.71 

45.6/11.4 

91.2/22.9

37.53 ± 2.39 

79.88 ± 3.47 

86.78 ± 3.09 

92.33 ± 4.71

37.53 ± 2.39 

38.90 ± 2.49* 

47.03 ± 2.28* 

50.33 ± 3.44*

37.53 ± 2.39 

43.33 ± 2.40* 

45.00 ±2 .59* 

53.55 ± 3.18*

37.53 ± 2.39 

30.03 ± 1.42* 

32.73 ± 1.26** 

34.05 ± 2.49**

MT = Melatonin. ALA= Alpha lipoic acid. n=5. Results are expressed as mean ± SEM * Significant (P<0.05) difference 

when compared to treatment with LPV/r. ** Significant (P<0.05) difference when compared to pretreatments with 

individual doses of MT and ALA 
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levels in rats treated with MT and ALA. These 

observations are in agreement with previous reports 

(Bilginoğlu et al., 2014). The effects on the above 

parameters were most pronounced in rats treated 

concurrently with MT and ALA. On the contrary, 

dose-dependent increases in serum AST, ALT, ALP 

and liver MDA levels with decreases in SOD, GSH 

and CAT levels were obtained in rats treated with 

LPV/r. These findings are consistent with some 

reported observations (Kontorinis and Dieterich, 

2003; Sulkowski, 2003; Chai et al., 2005; Chandra et 

al., 2009; Deng et al., 2010). AST, ALT and ALP are 

considered as markers of hepatocellular injury; 

therefore, increases in their levels in LPV/r treated 

rats are indicators of hepatocellular damage. This 

may be due to LPV/r-induced increase in the 

permeability of cell membrane or liver systol resulting 

in the release of AST, ALT and ALP into the blood 

stream (Sarkar et al., 1998). Also, LPV/r could induce 

oxidative stress or direct liver damage leading to liver 

Table 3: Effects of melatonin and alpha lipoic acid on lopinavir/ritonavir- induced liver levels of malondialdehyde and 

superoxide dismutase in male albino rats. 

Liver malondialdehyde   (nmol/mg protein)

Dose (mg/kg) LPV/r MT+LPV/r ALA+LPV/r MT+ALA+LPV/r

Control 

22.9/5.71  

45.6/11.4 

91.2/22.9

0.86 ± 0.04 

2.38 ± 0.01 

3.90 ± 0.01 

5.65 ± 0.05

0.86 ± 0.04 

0.87 ± 0.01* 

0.90 ± 0.08* 

1.23 ± 0.08*

0.86 ± 0.04 

0.93 ± 0.02* 

0.13 ± 0.01* 

1.48 ± 0.07*

0.86 ± 0.04 

0.63 ± 0.01**  

0.67 ± 0.08** 

0.70 ± 0.03**

Liver  superoxide dismutase  (U/mg protein)

Control 

22.9/5.71  

45.6/11.4 

91.2/22.9

15.21 ± 1.01 

8.98 ± 0.04 

6.45 ± 0.02 

3.89 ± 0.08

15.21 ± 1.01 

13.20 ± 0.11* 

11.21 ± 0.18* 

8.03 ± 0.05*

15.21 ± 1.01 

12.24 ± 0.12* 

9.27± 0.37* 

7.02 ± 0.05*

15.21 ± 1.01 

16.42 ± 0.33* 

16.17 ± 0.13** 

14.13 ± 1.56**

MT= Melatonin. ALA = Alpha lipoic acid. n=5. Results are expressed as mean ± SEM * Significant (P<0.05) difference 

when compared to treatment with LPV/r. ** Significant (P<0.05) difference when compared to pretreatments with 

individual doses of MT and ALA 

 

Table 4: Effects of melatonin and alpha lipoic acid on lopinavir/ritonavir- induced liver levels of catalase and 

glutathione in male albino rats.  

Liver catalase  (U/mg protein)

Dose (mg/kg) LPV/r MT+LPV/r ALA+LPV/r MT+ALA+LPV/r

Control 

22.9/5.71  

45.6/11.4 

91.2/22.9

21.88 ± 1.65 

10.40 ± 0.55 

7.60 ±  0.01 

5.05 ± 0.05

21.88 ± 1.65 

18.80 ± 1.32* 

17.85 ± 1.21* 

14.75 ± 0.93*

21.88 ± 1.65 

17.40 ± 1.20* 

16.98 ± 1.15* 

12.68 ± 0.18*

21.88 ± 1.65 

23.45 ± 1.21** 

22.23 ± 1.16** 

24.05 ± 1.25**

Liver glutathione  (µmol/mg protein)

Control 

22.9/5.71  

45.6/11.4 

91.2/22.9

15.48 ± 0.35 

6.25 ± 0.09 

4.37 ± 0.01 

3.51 ± 0.02

15.48 ± 0.35 

14.95 ± 0.15* 

11.08 ± 0.23* 

7.30 ± 0.08*

15.48 ± 0.35 

14.55 ± 1.25* 

10..88 ± 0.75* 

7.23 ± 0.32*

15.48 ± 0.35 

15.98 ± 1.02* 

15.51 ± 1.05** 

14.80 ± 0.91**

MT= Melatonin. ALA = Alpha lipoic acid. n=5. Results are expressed as mean ± SEM * Significant (P<0.05) difference 

when compared treatment with LPV/r. ** Significant (P<0.05) difference when compared to pretreatments with 

individual doses of MT and ALA 
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dysfunction and disturbance in the biosynthesis of 

liver aminotransferases and alkaline phosphatase. In 

the present study, increases in liver MDA levels with 

decreases in SOD, GSH and CAT levels obtained in 

LPV/r treated rats are pointers to oxidative stress 

through free radical production (Plummer et al., 1981; 

Fridovich, 1995; Zini et al., 2007). Generally, 

malondialdehyde is used as an index for lipid 

peroxidation, and lipid peroxidation is postulated as 

one of the mechanisms of free radical-induced tissue 

injury (Lykkesfeldt et al., 2007). Therefore, increases 

in MDA levels observed in LPV/r treated rats suggest 

lipid peroxidation. Lipid peroxidation can alter 

membrane fluidity of liver cells, causing changes in 

carrier mediated transport, activities of membrane 

bound enzymes and receptor binding, which could 

result in the leakage of certain intracellular enzymes 

(Munyon et al., 1987; Lewis and Zimmerman, 1999).  

Interestingly, supplementations with individual doses 

of MT and ALA prior to treatment with LPV/r 

decreased serum AST, ALT, ALP and liver MDA 

levels while liver SOD, CAT and GSH levels were 

increased. Effects on these parameters were most 

pronounced in rats supplemented concurrently with 

MT and ALA. This observed ameliorative effect is 

consistent with the work of Rishi et al. (2008), which 

reported the inhibitory effect of MT on endotoxin-

induced hepatotoxicity in rats. Similarly, Hussein et 

al. (2014), reported the protective effects of MT and 

ALA on cadmium-induced oxidative damage in the 

liver of rats which is in agreement with our finding. In 

this study, attenuation of LPV/r-induced 

hepatotoxicity by MT and ALA pretreatments could be 

attributed to the inhibition of LPV/r-induced hepatic 

oxidative stress by these antioxidants (Herrera and 

Barbas, 2001). In addition, increases in liver SOD, 

CAT and GSH levels in MT and ALA supplemented 

animals could be attributed to the stimulatory effects 

of MT and ALA on the regeneration or the synthesis 

of these antioxidants. ALA and its reduced form, MT 

and its metabolites are amphiphilic antioxidants that 

scavenge free radicals and prevent oxidative stress-

induced damage (Pieri et al., 1994; Vriesman et al., 

1997; Tan et al., 1998; Trujillo and Radi, 2002). 

These antioxidants can up-regulate the activities of 

antioxidants such as SOD, GSH and CAT; thereby, 

facilitating more antioxidant activities (Bast and 

Haenen, 2003; Bilska et al., 2008). Due to its small 

size and high lipophilic nature, MT can cross 

biological membranes easily and reach all 

compartments within the cell (Sener et al., 2003), 

thus protecting DNA, proteins and biological 

membrane lipids from the deleterious effects of free 

radicals (Reiter et al., 1993). Moreover, besides its 

free radical scavenging and antioxidant functions, 

melatonin’s receptor-mediated local functions may 

contribute to its ability to preserve cell function and 

limit cell death from apoptosis or necrosis due to 

oxidative damage (Cabrera et al., 2003; Barrett et al., 

2003). Inflammation has been reported as an integral 

aspect of xenobiotic-induce hepatotoxicity. ALA and 

MT can inhibit oxidative stress-induced inflammatory 

cascade characterized by the production of 

inflammatory mediators (Crespo et al., 80 1999; 

Kwiecien et al., 2013; Nasole et al., 2014). 

Furthermore, hepatic damage induced by 

inflammatory cytokines and other mediators of 

inflammation was reported to be attenuated by MT 

(Bellezzo et al., 1998). MT can maintain hepatocytes 

membrane integrity, thus reducing the leakage of liver 

enzymes and can inhibit neutrophil infiltration and 

accumulation in damaged hepatic tissues (Ohta et al., 

2000; Sulaiman et al., 2006; Goraca et al., 2011). In 

the present study, most pronounced effects obtained 

with combined doses of MT and ALA could be 

attributed to synergy in antioxidant and anti-

inflammatory activities of these antioxidants. 

Conclusion 

The present study demonstrated the modulatory 

effects of MT and ALA on LPV/r-induced 

hepatotoxicity with most pronounced modulation 

obtained in rats pretreated concurrently with MT and 

ALA. Considering the results of this study, MT and 

ALA could be used for the treatment of 

lopinavir/ritonavir-associated hepatotoxicity. 
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