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Introduction  

Epilepsy is among the most common neurological 

diseases which affects 1-2 percent of peoples (more 

than 50 million) all over the world (Graves, 2006). 

Epilepsy can be considered as occurrence of sudden, 

spontaneous and recurrent seizures. A seizure can 

define as an abnormal, synchronized hyperactivity in 

a group of neurons (Millichap, 2003). It usually 

accompanies with some behavioral manifestations 

(i.e. convulsive seizures). Outcome of seizures strictly 

depends on the brain regions that are affected by 

hyperactivity (Michael-Titus et al., 2007). Despite of a 

lot of progress in finding the mechanisms involved in 

epileptic seizures, there is not a definite treatment 

way for their complete suppression. Antiepileptic 

drugs can only reduce the rate of seizures in about 

40 percent of patients (McNamara, 1994). Therefore, 

many studies are done to find new antiepileptic 

drugs.  

One important change in epileptic brain is an 

imbalance in excitation to inhibition ratio (Engel and 

Pedley, 2008). Although this change is usually 

because of abnormal activity in glutamatergic and/or 

GABAergic neurons per se, however, 

neuromodulators such as dopamine can also affect 

this ratio by inducing some changes in the activity of 

glutamatergic and/or GABAergic neurons (Gonzalez-

Islas and Hablitz, 2003; Slaght et al., 2002). Many 

evidences show that dopaminergic system has a 

critical role in controlling the neuronal activities during 

seizure. Previous studies have shown that significant 

changes occur in different aspects of dopaminergic 

system (such as release, metabolism and receptor 

binding of dopamine) following epileptic seizures both 

in human and laboratory animals (Bozzi et al., 2011; 

Waddington, 1993; Starr, 1996). In addition, 

dopaminergic neurons modulate the synaptic 

plasticity, a phenomenon that is also affected by 

seizure activity (Hansen and Manahan-Vaughan, 

2014). Any abnormal variation in synaptic plasticity 

may change the neuronal responsiveness and leads 

to seizure induced impairment in different aspects of 

brain function of epileptic patients such as 

progressive hyper-excitabilities and cognitive 
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dysfunctions. Therefore, understanding the effects of 

dopaminergic system in neuronal activities in epileptic 

brain and knowing the seizure-induced changes in 

dopaminergic system can shed light into finding the 

mechanisms involved in epileptogenesis and can 

help us in finding new treatments for epilepsy. In this 

review we will briefly introduce dopaminergic system 

and its changes in brain areas which have role in 

epilepsy. Then, we will focus on the evidences 

showing the relationship between epilepsy and 

dopaminergic system.  

Dopamine receptors 

Dopamine is one of the most important modulatory 

neurotransmitters in the central nervous system 

which is released from dopaminergic fibers. There 

are four main dopaminergic pathways in central 

nervous system including: 1) the nigrostriatal, 2) 

mesolimbic, 3) mesocortical and 4) tuberoinfundibular 

systems (Fig. 1) (Koob, 1992). Based on sequence 

homology, pharmacology and second messenger 

activation, dopamine receptors are divided into two 

subfamilies: D1 -like and D2 -like receptors. The D1-

Table 1: Cell signaling pathways of dopaminergic receptors 

Reference Signaling pathway Cellular effector 
Coupled G 

proteins 

Dopamine 

receptors 

(Beaulieu and 

Gainetdinov 2011) 
Increasing cAMP 

Adenylyl cyclase, 

Protein kinase A 

stimulation 

Gαs/Gαolf 

D1 

(Clifford, Tighe et al. 

1999) 

Increasing inositol 3 

phosphate/Diacylglyserol 
Phospholipase C Gαq 

(Beaulieu and 

Gainetdinov 2011) 

Decreasing cAMP 

Adenylyl cyclase, 

Protein kinase A 

inhibition 

Gαi/Gαo 

D2/D3/D4 

Increasing inositol 3 

phosphate/Diacyl glyserol 

Phospholipase C, 

Ca
2+

 channles 
Gβγ 

(Sahu, Tyeryar et al. 

2009) 

Increasing cAMP 
Adenylyl cyclase, 

Protein kinase A 
Gαs 

D5 

Increasing inositol 3 

phosphate/Diacyl glyserol 
Phospholipase C Gαq 

 

Fig.1. The main dopaminergic pathways of the adult rodent brain in the sagittal plane. The numbers show these pathways 

including: 1- Nigrostriatal pathway, 2- mesolimbic pathway, 3- mesocortical pathway and 4- tuberoinfundibular pathway. 

http://europepmc.org.sci-hub.io/abstract/med/9200717/?whatizit_url_Chemicals=http://www.ebi.ac.uk.sci-hub.io/chebi/searchId.do?chebiId=CHEBI%3A59905
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like subfamily includes D1 and D5 receptors, while the 

D2-like consists D2, D3 and D4 receptors (Sibley et al., 

1993; Vallone et al., 2000). Using mRNA analysis, it 

has been shown that D2 like receptors are abundantly 

expressed in many brain regions, such as frontal 

cortex, olfactory bulbs, nucleus accumbens, 

hippocampus and amygdala. D2 and D3 dopamine 

receptors are also expressed in substantia nigra pars 

compacta and ventral tegmental area (VTA, the main 

anatomical regions that dopaminergic fibers give 

raise). In these areas D2-like receptors indicate 

mainly a presynaptic location. D1 -like receptors are 

expressed in striatum, frontal cortex, nucleus 

accumbens, substantia nigra and amygdala which 

are exclusively postsynaptic location (Civelli et al., 

1991; Jackson and Westlind-Danielsson, 1994; Perez 

de La Mora et al., 2012; Cocker et al., 2014). 

Numerous signal transduction pathways activated by 

dopamine receptors. Dopamine receptors belong to 

the family of seven transmembrane domain G-protein 

coupled receptors. Activation or inhibition of the cyclic 

adenosine monophosphate (cAMP) pathway and 

modulation of Ca
2+ 

signaling are the best described 

effects mediated by dopamine receptors. D1 -like 

receptors are generally coupled to Gαs/olf and 

stimulate the production of the second messenger 

cAMP which activates protein kinase A (PKA). In 

contrast, D2 -like receptors are coupled to Gαi/o and 

negatively regulate the production of cAMP which 

leads to decreasing PKA activity (Table 1). 

D1 -like receptors, especially D5 receptors, may also 

couple to Gαq and regulate phospholipase C (PLC). 

Activation of PLC leads to the production of inositol 

triphosphate (IP3) and diacylglycerol that result to 

activation of PKC and an increased mobilization of 

intracellular calcium in response to IP3 (Table 1). 

Alternatively, dopamine receptors have been shown 

to make heterodimers with a number of other G-

protein coupled receptors (Clifford et al., 1999; 

Beaulieu and Gainetdinov, 2011). It has been shown 

that D1/D2 dopamine receptor heterodimers regulate 

calcium-dependent cell signaling in some neuronal 

populations. D2 -like receptors also can regulate 

intracellular calcium levels by acting on ion channels 

or intracellular calcium stores that are mediated by 

the Gβγ subunits, separated from Gα subunit after 

receptor activation, of heterotrimeric G proteins 

(O'Sullivan et al., 2008).   

D1 and D2 -like receptors have different affinity to 

dopamine. In rat central nervous system, the D1 -like 

receptor have primarily low affinity, whereas the D2 -

like receptors have high affinity to dopamine agonist 

(Richfield et al., 1989). 

Dopamine neurons have two firing patterns: phasic 

(spontaneous bursts, followed by pauses, 10–30 Hz) 

and tonic (regular firing patterns, 1–4 Hz). Tonic firing 

is defined as random spikes at an average rate of 4 

Hz, but phasic mode is defined as transient increases 

in firing rate using random spikes with average firing 

rate of 20 Hz (Dreyer et al., 2010; Dreyer and 

Hounsgaard, 2013). These neurons shift from a tonic 

to phasic firing mode on encountering salient stimuli 

or unexpected appetitive stimuli like food, water and 

novelty.  

The different firing patterns of dopaminergic neurons 

influence the balance between D1 and D2 receptor 

dependent pathways. It has been hypothesized that 

the tonic mode of dopamine firing maintains a basal 

dopamine tone in the range of nM that activates the 

higher affinity D2-like receptors. Phasic dopamine 

firing induces a fast and transient rise in dopamine 

concentration in the range of µM to mM. This range of 

concentration enables the activation of the lower 

affinity D1-like receptors. Therefore, phasic firing 

mode of dopamine neurons primarily increases D1-

like receptor occupancy, whereas D2-like receptor 

occupancy is less affected. Phasic pattern reduces 

the average occupancy of D2-like receptors by >40% 

compared to tonic firing (Dreyer and Hounsgaard, 

2013).  

 

Distribution of dopamine receptors 

Different performance of neuromodulatory function of 

dopamine D1- and D2-like receptors may be related to 

various distributions of these receptors. As there is no 

specific ligands for all dopamine receptor subtypes, in 

situ hybridization is broadly used for measuring the 

dopamine receptor mRNAs in the brain (Missale et 

al., 1998). On the whole, the most widespread 

dopamine receptor is D1 receptor (Dearry et al., 1990; 

Fremeau et al., 1991; Weiner et al., 1991). 

Distribution of various dopamine receptors in different 

brain areas has been reviewed in Table 2. 

 

The role of dopamine receptors in seizure 

Many studies on animal models showed the opposite 

actions of D1-like and D2-like receptor signaling in 

limbic epileptogenesis. D1-like receptors signaling is 
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Table 2: Distribution of dopamine receptors in different brain areas 

Dopamine receptors Location Distribution Density Reference 

D1 

Hippocampal 
formation 
 
 

Molecular layer of CA1  
Dentate gyrus  
Stratum moleculare  
stratum oriens  

++ 
++ 
+ 
+ 

(Savasta et al., 1986) 
(Mansour et al., 1990) 
 
 

Cerebral cortex 
 

Suprarhinal  dopamine terminal 
Anteromedial dopamine terminal 

++ 
++ 

(Savasta et al., 1986) 
 

Basal ganglia 
 
 
 
 
 

Pars reticulate 
ventral tegmental area 
Caudate-putamen 
Nucleus accumbens  
Globus pallidus 
Striatal GABAergic neurons 

+++ 
++ 
+++ 
+++ 
+++ 
+++ 

 
(Mansour et al., 1990) 
(Le Moine et al., 1991) 
(Gerfen et al., 1990) 
 
 

Hypothalamus 
 
 
 

Lateral nucleus 
Ventromedial  nucleus 
Arcuate  nucleus 
Suprachiasmatic nucleus 

+ 
+ 
+ 
+++ 

(Mansour et al., 1990) 
 
 
 

Midbrain Superior colliculus +++ (Mansour et al., 1990) 

Amygdala 
 
 
 
 

Cortical  nucleus 
Lateral  nucleus 
Basalateral  nucleus 
Medial nucleus 
Intercalated  nucleus 

+++ 
+++ 
+++ 
++ 
+ 

 
 
(Mansour et al., 1990) 
(Levey et al., 1993) 
 

Olfactory bulb 
 

internal granular layer 
Plexiform layer 

+ 
+ 

(Levey et al., 1993) 
 

D2 

Hippocampal 
formation 
 
 
 
 
 
 

Stratum lacunosum 
Stratum moleculare 
Subiculum 
Pyramidal cell layer  CA1,  CA2,  CA3 
Granular cells of DG 
Molecular layer of DG 
Hilar region 
Subicular region 

+++ 
+++ 
+++ 
+ 
+ 
+ 
+ 
+ 

 
 
 
(Mansour et al., 1990) 
 
 
(Khan et al., 1998) 
 

Cerebral cortex All cortical regions +++ (Khan et al., 1998) 

Basal ganglia 
 
 
 

Nucleus accumbens 
Substantia nigra pars compacta 
Globus pallidus 
Olfactory nerve 

+++ 
+ 
+++ 
+ 

(Jackson and Westlind-
Danielsson, 1994) 
 
(Levey et al., 1993) 

amygdala Central nucleus + (Levey et al., 1993) 

Hypothalamus 
 
 
 

Arcuate  nucleus 
Supraoptic  nucleus 
Suprachiasmatic  nucleus 
Mammillary nucleus 

+ 
+ 
+ 
+ 

(Khan et al., 1998) 
 
 
 

D3 

Hippocampal 
formation 

 

 

Stratum oriens of CA1 

Stratum radiatum of CA1 

Molecular layer of DG 

Subicular region 

+++ 

+++ 

+++ 

+ 

(Khan et al., 1998) 
 
 
 

Cerebral cortex All cortical regions +++ (Khan et al., 1998) 

Basal ganglia 
 
 
 
 
 

Nucleus accumbens 
Ventral pallidum 
Olfactory tubercle 
Islands of Calleja 
Dorsal striatum 
Substantia nigra pars compacta 

+ 
+ 
+ 
+ 
+ 
+ 
 

(Bouthenet et al., 1991) 

(Diaz et al., 1994) 

(Bouthenet et al., 1991; 
Levesque et al., 1992; 
Sokoloff et al., 1990) 

(Diaz et al., 1994; Diaz 
et al., 1995) 
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generally pro-epileptogenic, whereas signaling from 

D2-like receptors perform an anti-epileptogenic effect 

(Bozzi and Borrelli, 2013). Dopamine has inhibitory 

effect on excitability of hippocampal neurons through 

D2-like receptors (Starr, 1996; Starr, 1993). 

Drugs that stimulate dopaminergic system such as L-

DOPA and anti-parkinson drugs (bromocriptine, 

pergolide), apomorphine and amphetamines have 

anti-epileptic and anti-convulsant effects (Starr, 

1996). In epileptic patients, the anti-psychotic drugs 

(D2-like antagonists) decrease seizure threshold and 

in patients without previous history of the disease 

promote the seizures. On the other hand, activation 

of dopamine D1-like receptors exerts a proconvulsant 

effect and decrease the seizure threshold (Starr, 

1996; Starr, 1993).  

The opposite action of dopamine D1- and D2-like 

receptors signaling in epilepsy may be because of 

glutamate-dopamine interaction in limbic 

epileptogenesis. This hypothesis has been supported 

by studies in animal models in which activation of D1-

like receptors can activate glutamatergic neurons 

during seizure (Gangarossa et al., 2011). 

Epilepsy is accompanied with impairment in 

Table 2: 

Dopamine receptors Location Distribution Density Reference 

D4 

Hippocampal 
formation 
 
 

Dentate gyrus 
Polymorphic layer of CA1,  CA2,  CA3 
Entorhinal cortex 

+++ 
+ 
+++ 

(O'Malley et al., 1992) 

Cerebral cortex 
 
 
 

Cerebral neocortex 
Medial frontal cortex layer II,III 
Layer IV,V 
Corpus callosum 

+++ 
+++ 
+ 
+++ 

(Defagot et al., 1997) 
 
 
(Khan et al., 1998) 

Amygdala Anterior cortical 
Posterolateral cortical 
Basomedial 

+++ 
+++ 
+ 

(Defagot et al., 1997) 

Basal ganglia Substantia nigra 
Pars compacta 
Pars reticulata 

+++ 
+++ 
+ 

(Defagot et al., 1997) 

Hypothalamus Paraventricular nucleus 
Supraoptic nucleus 

+++ 
+++ (Defagot et al., 1997) 

Thalamus Reticular nucleus + 

Cerebellum Purkinje cells 
Molecular layer 
Granular layer 

+++ 
++ 
++ 

(Defagot et al., 1997) 

Midbrain 
 

Superior colliculus 
Inferior colliculus 

+++ 
+++ 

(Defagot et al., 1997) 

D5 

Hippocampal 
formation 

Pyramidal cells of hippocampus 
Dentate gyrus 

+++ 
+ 

(Huntley et al., 1992) 

Cerebral cortex 
 
 

Frontal areas 
Limbic cortical areas 
Occipital cortex 

+++ 
+++ 
+ 

(Khan et al., 2000; 
Huang et al., 1992) 
 

Basal Ganglia Pars compacta 
Pars reticulate 
Nucleus accumbens 
Globus pallidus 
Islands of Calleja, olfactory tubercle 
Septal area 

+ 
+ 
+ 
+ 
+ 
+ 

(Khan et al., 2000) 

Hypothalamus 
 
 

Hypothalamic arcuate 
Mammillary nucleus 
Supraoptic nucleus 

+ 
+ 
+ 

(Khan et al., 2000) 

Thalamus Lateral dorsal  nucleus 
Anterior ventrolateral 
Anterior dorsomedial lateral Posterior  
nucleus 

+++ 
+++ 
+++ 
+++ 

(Meador-Woodruff et 
al., 1992; Trumpp-
Kallmeyer et al., 1992; 
Khan et al., 2000) 

Cerebellum Granule cell layer + (Khan et al., 2000) 

Midbrain 
 
 

Inferior colliculus 
Oculomotor nucleus central nucleus 
Superior colliculus 

+++ 
+ 
+ 

(Khan et al., 2000) 
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controlling the dopamine level and expression of its 

receptors. The role of dopamine in epilepsy maybe 

due to these impairments. In addition, the level of 

dopamine and its metabolites is markedly changed 

according to the types of epilepsy and animal model 

(Starr, 1996). Most of animal models of temporal lobe 

epilepsy are accompanied with an increase in the 

firing rate of dopaminergic neurons and the level of 

dopamine in extracellular space (Cifelli and Grace, 

2012). 

The role of dopamine in epilepsy is also depends on 

the brain regions which involves in seizure generation 

and/or control. For example, hippocampus is one of 

the regions that involves in temporal lobe epilepsy. In 

this region, the concentration of D2-like (especially 

D4) is more than D1-like receptors. During epilepsy, 

the amount of dopamine increases. Therefore, 

dopamine can inhibit the seizure activity through 

activating of hippocampal D2-like receptors. 

Another region that involves in epilepsy is the dentate 

gyrus. According to dentate ‘gate’ theory of temporal 

lobe epilepsy, seizures happen when the gate 

function of the dentate gyrus is interrupted such that 

excess excitation appears from or passes through the 

dentate gyrus to downstream regions (Heinemann et 

al., 1992; Lothman et al., 1992). In this region, similar 

to the hippocampus, D2-like receptors play an anti-

epileptogenic role. 

 

Changes in dopaminergic system in epilepsy 

Epilepsy has been characterized as an imbalance 

between excitatory (glutamatergic) and inhibitory 

(GABAergic) transmission, however clinical and 

experimental evidences indicate the involvement of 

the major neuromodulatory systems, such as 

dopaminergic system, in epilepsy and seizure activity 

regulation. 

Several studies have suggested the presence of 

dopaminergic dysfunctions either in the brain of 

epileptic patient or in animal models of seizure and 

epilepsy (Starr, 1993; Starr, 1996; Bozzi et al., 2011). 

The involvement of dopamine in epilepsy is likely due 

to a dysfunctional control of dopamine levels or an 

alteration in expression of specific receptors. Any 

changes in dopamine levels and/or its specific 

receptors can alter the neuromodulatory action of 

dopamine on brain circuits especially in the limbic 

system. Different pattern of change may observe in 

the level of dopamine and its metabolites according 

to the type and animal model of epilepsy. 

 

1- Epilepsy and dopamine level 

The extracellular concentration of neurotransmitters 

changes in the brain of epileptic patients and 

Fig.2. Hippocampal-ventral tegmental area loop. Hippocamal glutamatergic neurons (through ventral subicular) projects to 

nucleus accumbens to stimulate its GABAergic projections to ventral pallidum, where inhibition of its GABAergic neurons 

makes a dis-inhibitory effect on ventral tegmental area and activates the dopaminergic fibers of VTA to affect hippocamus 

through D1- (during phasic activity) and D2-like receptors (during tonic activity) (Floresco et al., 2003b; Lisman and Grace, 

2005). 
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experimental animals (Goren et al., 2003). Many 

studies have focused on the hippocampus, because 

its involvement in the pathophysiology of the temporal 

lobe epilepsy, the prevalent type of seizure in adults. 

Several studies have suggested that seizure activity 

leads to enhancement of brain dopamine level.  

In 2008, Meurs and his colleagues, measured the 

level of hippocampal extracellular dopamine using in 

vivo intracerebral microdialysis following seizures 

induced by different pharmacological agents including 

pilocarpine (the muscarinice receptor agonist), 

picrotoxin (the GABAA receptor antagonist) and R,S-

3,5-dihydroxyphenylglycine (the group 1 metabotropic 

glutamate receptor agonist). Intrahippocampal 

administration of these three convulsive drugs 

significantly increased the dopamine dialysated 

concentration. These data confirmed many other 

studies which indicated the presence of higher level 

of dopamine in the brain of epileptic animals (Alam 

and Starr, 1996; Cavalheiro et al., 1994; Clinckers et 

al., 2004; Khan et al., 1999; Khan et al., 2000; Shih 

and McDonough, 1997; Smolders et al., 1997; 

Stragier et al., 2006). Therefore, increased network 

activity during seizure, results in increased level of 

extracellular dopamine. 

In contrast to the above mentioned reports, there are 

another studied showing that the level of dopamine 

decreases in epileptic patients and animal models of 

seizure. Alcantara-Gonzalez et al. (2013), showed 

that extracellular levels of dopamine in hippocampus 

of kindled rat were significantly lower than control 

animals during interictal period. Similarly, it has been 

reported that the tissue content of dopamine in the 

amygdala of kindled animal (Engel and Sharpless, 

1977), and in the epileptic focus (Mori et al., 1987) is 

decreased. The lower amount of dopamine in 

interictal period could be due to an increased 

turnover (Wilkison and Halpern, 1979) or due to 

inhibitory effect of D2 autoreceptors on dopamine 

releasing.  

In addition to experimental models, there are also 

evidences showing that dopaminergic 

neurotransmission alters in the epileptic patients. It 

has been shown that dopamine and its metabolite, 

homovanilic acid, is lower in temporal neocortex of 

patient with mesial temporal lobe epilepsy (Rocha et 

al., 2012) and temporal lobe epilepsy secondary to 

brain tumor or lesion compared with temporal 

neocortex from autopsies from died human due to 

different causes which had no history of neurological 

diseases (Mori et al., 1987; Pacia et al., 2001).  

The reduction in tissue content of dopamine and 

homovalinic acid, may be as a result of decreasing in 

metabolism or release of dopamine, but not 

dopamine syntheses, because according to Pintor et 

al., (1990) no change is observed in tyrosine 

hydroxylase (TH) expression and activity. Other 

possibilities are a) an increase in the expression of 

monoamine oxidase, an enzyme that involves in the 

degradation of dopamine and b) an alteration of 

dopamine reuptake.  

Changes in affinity of dopamine receptors can also 

affect the responsiveness of dopaminergic system 

during seizure. The expression of dopamine 

transporters increases in temporal cortex of patients 

with mesial temporal lobe epilepsy and temporal lobe 

epilepsy. It is interesting that this change positively 

correlates to the frequency of seizure (Del Sole et al., 

2010). These effects may represent a compensatory 

mechanism to remove increased dopamine released 

as result of ictal activity. 

 

2- Epilepsy and alteration in activity of 

dopaminergic neurons  

It has been shown that epilepsy can change the 

activity of dopaminergic neurons. Pilocarpine- treated 

rats display an abnormally enhanced dopaminergic 

neuron drive in the form of an increase in activity of 

dopaminergic neuron population (Cifelli and Grace, 

2012). In normal rats, the activity of VTA 

dopaminergic neurons is regulated by hippocampal-

VTA loop which includes ventral subicular-nucleus 

accumbens-ventral pallidal-VTA pathway (Fig. 2) 

(Floresco et al., 2003). Therefore, during temporal-

lobe epilepsy, the pathological hyperactivity of the 

hippocampal formation (including subiculum) can 

lead to increased VTA dopamine neuron activity. 

Since the phasic burst firing response of 

dopaminergic neurons depends on their spontaneous 

activity (Lodge and Grace, 2006), abnormally high 

levels of population activity would enable a phasic 

burst stimulus to elicit burst firing in a greater number 

of dopamine neurons, thereby putting the 

dopaminergic system in a hyper-responsive state in 

epileptic brain (Floresco et al., 2003; Lisman and 

Grace, 2005) (Fig. 2). 

 

3- Changes in dopamine receptors in animal 
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models of seizure 

 In addition to changes in dopamine level, variations 

in dopamine receptors have also been reported both 

in epileptic patients and animal models of epilepsy. 

D2- like receptor activation (which induces Gi protein 

activity) increases in different brain areas, including 

the ventral hippocampus of kindled rats (Alcantara-

Gonzalez et al., 2013) and in other specific brain 

structures in kainic acid-induced seizures 

(Csernansky et al., 1988; Ando et al., 2004; Sato, 

1983). In contrast, some studies showed reduced 

availability of D2/D3 receptors in the anterior caudate 

putamen of rats during the chronic phase of 

pilocarpine models (Yakushev et al., 2010). 

 

4- Alteration in dopamine receptors and dopamine 

transporter in epileptic patients 

There are a lot of reports on the abnormalities in 

dopamine receptors and transporters in the brain of 

epileptic patients. Most of studies show that the 

binding potential of D2/D3 receptor reduces in the 

brain of epileptic patient. For example, the decrease 

in D2 receptor protein expression in the temporal 

neocortex (Rocha et al., 2012), decrement in binding 

potential of D2/D3 receptors in the ipsilateral temporal 

lobe, bilateral basal ganglia and irritative zone 

surrounding of the epileptogenic area (Werhahn et 

al., 2006) and in thalamus of patient with mesial 

temporal lobe epilepsy (Bernedo Paredes et al., 

2015) have been shown. In addition, it has been 

reported that striatal D1-receptor binding in autosomal 

dominant nocturnal frontal lobe epilepsy (Fedi et al., 

2008) and binding potential of D2/D3 receptors 

bilaterally in the posterior putamen in the patients 

with juvenile myoclonic epilepsy are reduced 

significantly (Landvogt et al., 2010). 

The observed decrease in D2-spicific binding may be 

due to reduction of the receptors amount, decrease in 

receptor affinity and the increase in occupancy of the 

receptors by dopamine or due to dopamine promoted 

receptor internalization (Ginovart et al., 2004). 

However, in contrast to the above mentioned reports, 

significant increase in D2/D3 receptor binding potential 

in the hippocampus (Bernedo Paredes et al., 2015), 

and higher expression of dopamine D1 receptor and 

higher D2-like induced activation of G proteins in the 

neocortex have been observed in patients with 

temporal lobe epilepsy (Rocha et al., 2012).  

In the case of changes in dopamine transporter in 

epileptic patients, there are many controversies in 

results of previous studies. Some investigations show 

that dopamine transporter binding elevates in 

epileptic patient (Rocha et al., 2012; Sander et al., 

2000; Del Sole et al., 2010); a phenomenon which 

may be a compensatory mechanism to remove 

released dopamine due to ictal activity (Meurs et al., 

2008). On the other hand, there are also reports 

show that binding potential of dopamine transporter 

reduces in substantia nigra and midbrain in the 

patients with juvenile myoclonic epilepsy (Ciumas et 

al., 2008).  

 

Dopamine and synaptic plasticity 

Epileptic seizures are accompanied with changes in 

synaptic plasticity. Therefore, the phenomenons 

which are related to synaptic plasticity can be 

affected by seizure occurrence. Synaptic plasticity is 

one of the most important mechanisms that modifies 

the neural circuits in central nervous system. 

Synaptic plasticity is considered as the major cellular 

mechanisms that underlies learning and memory. 

Different kinds of long-lasting changes in the efficacy 

of synapses, includes long term potentiation (LTP), 

long term depression (LTD) and depotentiation, are 

influenced by dopamine (Zucker, 1989; Abraham and 

Bear, 1996; Malinow and Malenka, 2002). 

In 1983, for the first time, two studies (Bliss et al., 

1983; Krug et al., 1983) concurrently demonstrated 

that a depletion of catecholamine could modulate 

LTP in the dentate gyrus of freely moving rats. 

Among catecholamine transmitters, dopamine, has 

been recognized to play an important role in both 

synaptic plasticity and memory processes (Jay, 

2003). 

In addition to its role in reward, dopamine has been 

shown to be essential role in learning and memory 

especially in mesohippocampal pathway (Jay 2003). 

Neuronal activities in different hippocampal 

subregions such as dentate gyrus, CA1 region and 

subiculum are modulated by activation of dopamine 

receptors (Frey et al., 1993; Grace et al., 2007). 

However, it is not completely clear that how do the 

two different classes of dopamine receptors modulate 

different forms of synaptic plasticity. Following 

dopamine denervation, different kinds of plasticity, 

LTP and LTD are lost in different parts of CNS 

(Centonze et al., 1999; Calabresi et al., 2000a; Paillé 

et al., 2010). In recent years, many studies focus on 

https://en.wikipedia.org/wiki/Learning
https://en.wikipedia.org/wiki/Memory
http://topics.sciencedirect.com/topics/page/Dopamine_receptor
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dopaminergic system and dopamine receptors’ role in 

synaptic plasticity; nevertheless, many controversial 

results have been reported.  

D1-like receptors antagonist inhibits the expression 

and maintenance of late LTP, whereas the D1-like 

receptor agonist induces both the early and late 

phases of LTP. Previous studies also demonstrated 

that in D1 knockout mice, late LTP was absent and 

spatial memory impaired (Kusuki et al., 1997; 

Calabresi et al., 2000b; Gurden et al., 2000; Kerr and 

Wickens, 2001; Huang et al., 2004; Matsuda et al., 

2006; Schotanus and Chergui, 2008; Zhou et al., 

2009). But some studies have showed that D1-like 

receptors manipulation had no effect on LTP and LTD 

(Huang and Kandel, 1995; Swanson-Park et al., 

1999; Kulla and Manahan-Vaughan, 2000; Thomas et 

al., 2000; Abe et al., 2008; Xu and Yao, 2010). In 

vitro studies on CA1 synapses showed that both the 

early and late phases of LTD are dependent on D1/D5 

receptor activation. Consistent with this in vitro data, 

D1-like receptors agonist and antagonist facilitates 

and inhibits LTD induction, respectively (Gurden et 

al., 2000; Lemon and Manahan-Vaughan, 2006). 

Interestingly, D1-like receptor manipulation also 

affects depotentiation (a form of plasticity that is the 

reversal of previous potentiation) both in vitro and in 

vivo. Application of D1-like receptors agonist 

decreased depotentiation and antagonist prevented 

inhibition of depotentiation (Otmakhova and Lisman, 

1998). 

Activation of D2-like receptors has suppressive effect 

on LTD in the hippocampal CA1 region of rats (Chen 

et al., 1995). Previous studies on corticostriatal 

synapses showed LTP was enhanced in slices using 

D2-like receptor antagonist or in mice lacking D2-like 

receptors (Matsuda et al., 2006; Rocchetti et al., 

2015). In one study, Rocchetti et al. (2015) showed 

that the genetic deletion and the pharmacologic 

blockade of D2-like receptors in mice severely 

impaired both N-methyl-D-aspartate receptor 

(NMDAR)-dependent LTP and LTD in CA1, and 

decrease learning and memory performance. 

Recently, the deficiency of depotentiation has been 

shown in patients with Parkinson’s disease who lack 

nigrostriatal dopaminergic projections (Rocchetti et 

al., 2015). Another study on hippocampal synapses 

showed that depotentiation was induced through 

activation of D4 receptor but not D1/D5 receptors 

(Kwon et al., 2008).  

In addition to above mentioned effects of D2-like 

receptors on synaptic plasticity in normal conditions, 

these receptors can also modify seizure-induced 

potentiation in kindling model of epilepsy. Previous 

studies showed that kindling can induced synaptic 

potentiation (Sutula and Steward, 1986; Gilbert and 

Mack, 1990; Mohammad-Zadeh et al., 2007) and this 

effect can be prevented by application of low-

frequency stimulation (Mohammad-Zadeh et al., 

2007; Zeraati et al., 2010; Asgari et al., 2016; 

Ghorbani et al., 2007; Ghotbedin et al., 2013; Sadegh 

et al., 2007; Jahanshahi et al., 2009; Shahpari et al., 

2012). This phenomenon depends to activation of D2-

like receptors, so that administration of D2-like 

receptor antagonist can remove the preventing effect 

of low-frequency stimulation (Rezaei, 2016).  

These variations in effects of dopamine on synaptic 

plasticity may be based on difference in brain 

regions, dopaminergic innervation, expression of 

dopamine receptors or protocols of LTP or LTD 

induction.  

Conclusion 

Dopamine as one of the most important 

neuromodulators in the brain has very important 

effects on neuronal excitability. As the main aim of 

using the anticonvulsive therapeutic manners (such 

as antiepileptic drugs or brain stimulations) is to 

reduce the excitation to inhibition ratio in neuronal 

activity, thus, it is necessary to understand the role of 

dopaminergic system on neuronal activity in epileptic 

brain. In addition, by increasing our knowledge on the 

effects of dopamine on synaptic plasticity in both 

normal and epileptic conditions, we can shed lights 

on determining the mechanisms which may be 

responsible in seizure-induced impairments in 

synaptic plasticity-dependent phenomenon. 
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