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Introduction  

Cognitive functions are affected by pain in both 

human and animals (Moriarty and Finn, 2014). Pain-

induced learning and memory deficits have been 

reported in several studies (Apkarian et al., 2004; 

Dick and Rashiq, 2007; Kooshki et al., 2016). We 

have previously reported that pulpal pain can impair 

spatial learning and memory in male rats in the Morris 

water maze (MWM) test (Raoof et al., 2015; 

Amirkhosravi et al., 2015). Although the precise 

mechanisms of pain-related cognitive impairment 

have not yet been elucidated, a number of possible 

mechanisms for this phenomenon may include 

synaptic plasticity, down-regulation of neurotrophic 
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Abstract 

Introduction: Learning and memory requires a brain-derived neurotrophic factor 

(BDNF)-dependent phase in the hippocampus. It has been reported that chronic pain 

decreases hippocampal BDNF levels. We have also previously reported that noxious 

stimulation of the rat tooth pulp impairs learning and memory. Therefore, we decided 

to find the changes in the hippocampal BDNF expression which are associated with 

tooth pain and learning and memory impairment. 

 

Methods: Dental pulp nociception was induced by intradental injection of capsaicin 

(100µg) in male Wistar rats. BDNF expression levels were determined by semi-

quantitative RT-PCR and western blotting. 

 

Results: The data indicated that capsaicin elicited pain behaviors and impaired 

learning and memory in Morris water maze test. The protein and mRNA levels of 

BDNF were significantly (P<0.05) decreased in capsaicin-treated rats as compared 

with control animals. Furthermore, iboprofen (120mg/kg, ip) treatment caused a 

significant (P<0.05) up-regulation of the BDNF protein and mRNA in the hippocampus 

of capsaicin-injected animals. 

 

Conclusion: These findings suggest that inflammatory dental pain induces 

hippocampal function impairments by decreasing in BDNF expression. 
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factors and their receptors (Kozlovskiy et al., 2012), 

elevated pro-inflammatory cytokines (Khairova et al., 

2009) and alterations in cannabinoid receptor 

function (Chevaleyre et al., 2006).   

The hippocampus is an essential site for learning and 

spatial memory processing, and it is one of the few 

brain regions to display adult neurogenesis. It has 

been hypothesized that adult hippocampal 

neurogenesis is also involved in hippocampal-related 

learning and memory (Leuner et al., 2006). Damage 

to the hippocampal structures has been also 

associated with learning and memory impairments 

(Squire, 1992). It is likely that hippocampal 

vulnerability may result from cellular components 

involved in hippocampal apoptosis and neurogenesis 

(Kuhajda et al., 2002). We have previously reported 

that apoptotic factors are over-expressed in the 

hippocampus of adult male rats suffering from 

inflammatory pulpal pain (Raoof et al., 2015). 

However, the exact cellular mechanisms underlying 

the vulnerability of hippocampus remain to be 

elucidated.  

The involvement of neurotrophic growth factors in the 

underlying mechanism of hippocampal neurogenesis 

has been much reported recently (Lee and Son, 

2009; Leal and Yassa, 2015). Adult hippocampal 

neurogenesis is positively affected by neurotrophic 

factors such as brain-derived neurotrophic factor 

(BDNF), nerve growth factor (NGF) and neurotrophin-

3. Among these, BDNF has been intensively shown 

to be involved in learning, memory and synaptic 

plasticity (Poo, 2001; Leal and Yassa, 2015). 

Surprisingly, spatial learning and memory is impaired 

in a BNDF-deficient animal model (Mu et al., 1999; 

Petzold et al., 2015). 

Since the role of BDNF on the decreased 

hippocampal function following orofacial pain has not 

been fully elucidated, the present study was designed 

to analyze the expression level of BDNF in the 

hippocampus of dental pain suffering and dental pain-

induced cognitive impaired rats. 

Materials and methods  

Animals 

Experiments were carried out on adult male Wistar 

rats weighing 250-300g. The animals were kept 

under controlled temperature (24±1°C) and 12-h light-

dark cycle, four per cage and had free access to food 

(standard rodent diet) and water. All experimental 

protocols and treatments were approved by the 

Ethics Committee of Kerman Neuroscience Research 

Center (Ethics Code: EC/94). All efforts were made to 

minimize the number and suffering of animals in all 

steps of the study. 

 

Nociceptive behavior 

Pain behaviors were monitored between 10:00 and 

13:00 am in a quiet room maintained at 23–24°C. 

Before capsaicin injection, each animal was placed in 

the test box for a 30-min habituation period to 

minimize additional stress. The rats did not have 

access to food or water during the test. 

Immediately following the injection, each rat was 

placed back in the transparent Plexiglass box 

(25×35×35) with a transparent floor positioned over a 

mirror at an angle of 45 degrees to allow for 

observation of nociceptive behavior. The rats’ 

behavior was observed for 21 minutes, divided into 7 

blocks of 3 minutes. Pain scores were determined for 

each block by scoring the animal behaviors 

presented each of the following responses which 

represents the same scoring criteria as Chidiac et al. 

(2002) study: 0– Calm, normal behavior such as 

grooming; 1– Abnormal head movements such as 

mild head shaking or continuous placement of the jaw 

on the floor or the wall of the cage; 2– Abnormal 

continuous shaking of the lower jaw; 3– Excessive 

rubbing of the mouth with foreleg movements, such 

as head grooming, but concentrated consistently and 

mainly on the lower jaw. A video camera was used to 

record the behavioral response.  

 

Morris water maze test 

Spatial learning was evaluated using a modified 

version of MWM. Briefly, the experimental apparatus 

consisted of around water tank (140cm wide and 

45cm high) filled with water (25°C) and surrounded 

by visual cues around the tank. In the MWM task, a 

platform (diameter, 20cm; height, 32cm; and depth, 

1-2cm below the surface of the water) was located in 

the center of one of the four quadrants. Data were 

collected automatically by a video-image motion 

analyzer (Ethovision, Version 3.1, Noldus Information 

Technology, Netherlands). The animals were 

exposed to the swimming pool without the platform 

for 2min one day before, aiming to habituate them to 

the experimental procedure and reduce their stress. 
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Tissue extraction and preparation 

The rats were anesthetized (exposed to a CO2 

atmosphere) and decapitated and the brains were 

removed immediately. Brains were dissected along 

the sagittal midline, followed by bilateral removal of 

the hippocampus. The hippocampus was immediately 

placed on ice in a glass petri dish. Tissue samples 

were weighed and immediately frozen in liquid 

nitrogen and stored at −70°C until assay. The 

dissected hippocampus from each rat was randomly 

distributed for further western blot and RT-PCR 

assays.   

 

mRNA analysis 

Total cellular RNAs were isolated from the 

hippocampus by a modification of the guanidine 

isothiocyanate–phenol–chloroform method using 

RNX+ reagent. A semiquantitative RT-PCR reaction 

was performed using Oligo-dT primer and M-MuLV 

reverse transcriptase. Three separate PCR reactions 

were used for studying gene expression in the 

samples obtained from each rat. Each PCR reaction 

was carried out using selective forward and reverse 

primers for β-actin (as an internal standard) and 

BDNF proteins. 

The sequence of the primers used was: BDNF 

forward: 5′-GAC GAC GAC GTC CCT GGC TGA-3′, 

BDNF reverse: 5′-ACG ACT GGG TAG TTC GGC 

ACT GG-3′; β-actin forward: 5′-CCC AGAGCA AGA 

GAG GCA TC-3′, β-actin reverse: 5′-CTC AGG AGG 

AGC AAT GAT CT-3′. 

Taq DNA polymerase (Cinaclon, Iran) used for DNA 

amplification and reactions were set up according to 

the manufacturer’s protocol. The PCR reactions were 

incubated at 94°C for 5 min, followed by 25 cycles of 

thermal cycling (45s at 94°C, 45s at 55°C and 45s at 

72°C). The final cycle was followed by a 5min 

extension step at 72°C. The reaction parameters 

were adjusted to obtain a condition with a linear 

relation between the number of PCR cycles and PCR 

products and with linear relation between the initial 

amount of cDNA template and PCR product. PCR 

products bands were quantified by densitometry 

using LabWorks analyzing software (UVP, UK).  

 

Western blot analysis 

Rat hippocampal tissues were lysed in RIPA buffer 

containing 10 mM Tris–HCl, pH 7.4, 150mM NaCl, 

1mM EDTA, 0.1% sodium dodecyl sulfate (SDS), 

0.1% Na-deoxycholate, 1% NP-401% NP-40 and 

protease inhibitors (1mM phenylmethylsulfonyl 

fluoride, 2.5μg/ml of leupeptin, 10μg/ml of aprotinin) 

and 1mM sodium orthovanadate. Equal amounts of 

protein from each sample (40μg) were separated 

using SDS–PAGE gel and transferred 

to PVDF membrane. The blots were then 

blocked with 3% non-fat milk in 0.1% Tween-Tris-

buffered saline for 2h at room temperature, followed 

by overnight (4°C) incubation with BDNF primary 

antibody (1:15,000, Santa Cruz biotechnology, USA). 

The primary antibody was detected with goat anti-

rabbit horseradish peroxidase-conjugated secondary 

antibody (1:15,000, Santa Cruz biotechnology, USA). 

Blots were developed with the chemiluminescence 

reagent its detection film. Quantification of 

western blot signals was conducted by densitometry 

analysis using images J software. 

 

Statistical analysis 

Data are presented as mean±standard error of mean 

(SEM). Differences in pain scores, learning and 

memory indices and the amount of BDNF mRNA and 

protein levels between experimental groups were 

determined by one-way analysis of variance 

(ANOVA) followed by Tukey’s test. P<0.05 was 

considered significant. 

Results 

Assessment of pain behaviors in experimental 

groups 

As a model of inflammatory orofacial pain, we used 

100μg injections of capsaicin into the dental pulp, 

which produced nociceptive behaviors (Fig. 1). 

Ibuprofen pretreatment (120mg/kg, intragastrically) 

significantly decreased capsaicin-induced pain 

scores. 

 

Assessment of spatial learning and memory in 

experimental groups 

Inflammatory pulpal pain significantly (P<0.001) 

increased time to find the platform as compared to 

intact and sham-vehicle animals in hidden platform 

trials. Ibuprofen completely inhibited the effect of 

capsaicin in this test (Fig. 2A). As shown in Figure 

2B, traveled distance was also significantly increased 

in capsaicin-treated group which was reversed by 
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Fig.1. Dental pain score in control (intact), sham, capsaicin and capsaicin plus ibuprofen-treated groups. Each value in the 

graph represents the mean±SEM. ***P<0.001 versus intact and sham groups. +++P<0.001 versus capsaicin-treated (Caps) 

animals. 
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Dental pain-evoked down-regulation of BDNF 

expression in the hippocampus  

 Twenty-four hours after the intradental injection of 

capsacin, hippocampal BDNF mRNA levels were 

significantly decreased by 33% (Fig. 3). BDNF 

expression in ibuprofen-treated rats was similar to 

sham controls group. Figure 5 shows the nociceptive 

regulation of the BDNF protein; however, BDNF 

Fig.3. Comparison of BDNF gene expression (mRNA) level between study groups. One-way analysis of variance used. 

Values represent mean±SEM. **P<0.01 versus control animals. #P<0.05 versus capsaicin-treated group. 

β-actin 

 
BDNF 

                    
BDNF 

  

  

  

β-actin 

Fig.4. Comparison of BDNF protein level between study groups. One-way analysis of variance used. Values represent 

mean±SEM. *P<0.05 versus control group. +P<0.05 versus capsaicin-treated group. 

http://www.molecularpain.com/content/3/1/32/figure/F1
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protein was down-regulated in pain suffering animals 

and restored to the basal control levels after 

ibuprofen treatment.  

 

Effect of tooth inflammatory pulpal pain on BDNF 

protein level in hippocampus 

Inflammatory tooth pain induced by intradental 

application of capsaicin (100µg/rat) could decrease 

the level of BDNF in hippocampus (P<0.05); 

however, in ibuprofen-pretreated rats, BDNF protein 

level was closed to that in control groups (P>0.05, Fig 

4). 

Discussion 

To test the potential distractive effect of orofacial pain 

on learning and memory, we used male rats which 

had inflammatory dental pain. Molecular assays 

showed that dental pain could decrease the 

hippocampal levels of BDNF mRNA and protein. 

Meanwhile, administration of ibuprofen attenuated 

hippocampal BDNF decrement. It has been 

demonstrated that BDNF is crucial for the 

maintenance of neural plasticity during aging and in 

neurodegenerative disease (Xu et al., 2000). 

Therefore, hippocampal BDNF can mediate the effect 

of pain on cognitive functions. 

The role of BDNF on hippocampus-dependent 

learning and memory has been reported in numerous 

conflicting reports. It seems the hippocampus, which 

is required for many forms of long-term memory in 

humans and animals, appears to be an important site 

of BDNF action. It has been documented that BDNF 

has an improving role in hippocampal-dependent 

learning and memory (Pisu et al., 2011; Lubin, 2011). 

In contrast, some investigations showed that central 

administration of BDNF has no effect on the learning 

rate of the spatial learning-impaired rats (Linnarsson 

et al., 1997). Formalin induced pain as well as 

complete Freund's adjuvant induced inflammation in 

rats caused significant reduction on neurogenesis in 

the hippocampal dentate gyrus and levels of both NK-

1 receptor and BDNF mRNAs (Duric and McCarson, 

2006).  

Rapid and selective induction of BDNF expression 

has been observed in the hippocampus during 

contextual learning (Binder and Scharfman, 2004). 

Chronic pain stress in neonatal rats caused 

impairment in the spatial learning and memory in 

MWM test. The Bcl-2 and BDNF mRNA expressions 

decreases in the hippocampus of pain-suffered rats 

(Li et al., 2005). 

It has been reported that the exposure to chronic 

restraint stress increases the adrenal gland weight 

and decreases the hippocampal BDNF levels 

(Macedo et al., 2015). After neuropathic pain 

induction by a chronic constriction injury of the sciatic 

nerve, hippocampal CA1 region BDNF levels is 

decreased (Saffarpour et al., 2017). However, dental 

pain-induced stress may be involved in the changes 

of BDNF in this study.  

BDNF has a modulatory action at hippocampal 

synapses and at the first pain synapse between 

primary sensory neurons and spinal dorsal horn 

neurons. Actually hippocampal and sensory neurons 

share some properties for the release of endogenous 

BDNF. The binding of BDNF to the high-affinity TrkB 

receptors is essential for the induction of long-term 

potentiation as well as synaptic plasticity in the 

hippocampus (Malcangio and Lessmann, 2003). Rats 

hind paw inflammatory injection caused significant 

increase in BDNF mRNA levels in the ipsilateral 

dorsal horn, surprisingly, an opposite effect was 

observed in the hippocampus (Duric and McCarson, 

2007). 

It has been indicated that there are same plasticity 

mechanisms both in pain and learning and memory 

processes. BDNF is required for the hippocampus 

long-term potentiation (LTP) induction, and also 

hippocampal dendritic BDNF expression have a 

crucial for maintenance of late phase LTP (Lu et al., 

2008). Acute application of exogenous BDNF 

increases evoked responses at the sites of BDNF 

and TrkB expression. Granule cell axons (mossy 

fibers) of dentate gyrus show the strongest BDNF 

immunoreactivity in brain (Rudge et al., 1998). Study 

of the transgenic mice over-expressing BDNF shows 

that normal function of the brain need to limited range 

of BDNF level (Croll et al., 1999).  

It has been shown that pain elicits substantial 

changes in the hippocampal dendritic structure 

including morphology, length and arborization and 

spine density. In addition, levels of BDNF and the 

presynaptic proteins are indicators of abnormal 

neural plasticity (Tajerian et al., 2014). The release of 

neurotrophins from neurons is constitutive as well as 

activity dependent. High-frequency synaptic 

discharge is necessary for inducing BDNF release 
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from both presynaptic and postsynaptic elements of 

hippocampal neurons. More recent evidence 

indicates that BDNF may act postsynaptically in 

dentate granule cells of hippocampus (Malcangio and 

Lessmann, 2003). 

Furthermore, exogenous BDNF facilitates the release 

of glutamate and NMDA-receptor-mediated synaptic 

transmission in the hippocampus (Riedel et al., 

2003). Therefore, it’s logic that BDNF down-

expression can be attributed in the induction of 

learning and memory deficit by pain.  

Application of nonsteroidal anti-inflammatory drug 

and a tricyclic antidepressant drug on pain- and 

stress-evoked gene expression in the rat spinal cord 

dorsal horn and hippocampus showed blocking of 

both pain- and stress-evoked alterations in 

hippocampal and spinal NK-1 and BDNF gene 

expression (Duric and McCarson, 2006). It has been 

demonstrated that pain-related plasticity has a crucial 

role for the recovery and survival of the organisms 

from the injury (Price and Inyang, 2015). 

Conclusion 

Learning and memory deficits as well as changes in 

neurotrophic factors have been previously reported in 

association of different type of pain. Taken together, 

the data demonstrate that changes in the 

hippocampal BDNF expression are accompanied with 

dental tooth inflammatory pain and may play a crucial 

role in pain-induced memory dysfunction; however 

further studies are needed to clarify the detailed 

mechanism. 
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