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Introduction: Psychomotor slowing and reduced mental flexibility are symptoms of cognitive 
decline that can occur in type 2 diabetes disease (TD2). Strategies that combine the control of 
hyperglycaemia with prevention of cognitive decline are desirable. Thus, this study reports the 
effect of naringin on cognitive deficit in diabetic rats.
Methods: TD2 in Wistar rats was induced with nicotinamide/streptozotocin (NA/STZ). Naringin 
(50 and 100 mg/kg) or glibenclamide (5mg/kg) was administered for 30 days to diabetic rats. 
Cognitive performance was investigated using the Morris water maze. Serum glucose, lipid 
profiles, brain tumour necrosis factor alpha (TNF-α) and acetylcholinesterase (AChE) activity 
were determined.
Results: Naringin and glibenclamide significantly reduced the escape latency, increased the time 
spent in the correct quadrant and number of entries in diabetic rats. Also, naringin reduced blood 
glucose, serum cholesterol, low-density lipoprotein cholesterol levels, triglycerides and prevented 
a decrease in the level of high-density lipoprotein cholesterol, in diabetic rats. Naringin and 
glibenclamide treated diabetic rats showed a significant low levels of AChE activity and TNF-α.
Conclusion: Naringin ameliorates diabetes induced cognitive deficit via reduction of inflamma-
tion, hyperglycemia, hyperlipidaemia and AChE activity.
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Diabetes mellitus is a metabolic disorder which is 
characterized by hyperglycaemia accompanied by im-
paired metabolism of carbohydrates, lipids and protein 
(Baynes, 2015). Diabetes can be categorised broadly 
into insulin dependent diabetes (type 1/TD1), and insu-
lin resistant diabetes (type 2/TD2). In 2019, 463 mil-
lion cases of diabetes were recorded in the world with 

10.2% and 10.9% estimated increase by 2030 and 2045 
respectively (Saelens et al., 2019). TD2 is responsible 
for greater than 90% of the worldwide diabetes cases 
(Duarte, 2015). Uncontrolled hyperglycemia can results 
in long-term damage to the kidneys, liver, eyes, nerves, 
heart, brain and blood vessels.  

In this study our interest is focused on the effect of 
diabetes on the brain which can be structural, neuro-
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physiological and neuropsychological (Brands et al., 
2004).  Imaging of the various region of the brain of 
TD2 patients revealed features similar to that of ageing 
person’s brain suffering with cognitive decline (Biessels 
and Kappelle, 2005). This finding supports the study that 
reported that TD2 induces advanced brain aging result-
ing in cognitive performance deficits and increased risk 
of developing Alzheimer’s disease (AD) (Biessels and 
Kappelle, 2005). AD is a neurodegenerative disorder, 
a form of dementia that affects memory, thinking and 
behaviour. AD is responsible for 60-80% of all cases 
of dementia (Dodel et al., 2013) and about 8% of de-
mentia cases are attributed to TD2 (Kloppenborg et al., 
2008). The increased incidence of AD in TD2 patients 
are linked to insulin resistance, hyperinsulinemia and 
hyperglycemia, in addition to the normally accompa-
nying hypercholesterolemia, hypertension and obesity 
(Sima, 2010).

Strategies that combine the control of hyperglycaemia 
with prevention of cognitive decline is urgently needed 
to enhance diabetic patient’s life quality. Here we eval-
uated the ability of naringin to protect against diabetes 
induced cognitive deficit in rats. Naringin, a flavonoid 
usually seen in some citrus fruits and grapefruit, is hy-
drolysed upon digestion to its aglycone, naringenin by 
intestinal bacteria (Owira and Ojewole, 2010; Ribeiro 
and Ribeiro, 2008). Anti-hyperglycemic effect of nar-
ingin has been previously reported (Ahmad et al., 2017; 
Jung et al., 2004). The potential of its hypoglycaemic 
and hypolipidemic activities have also been document-
ed in experimental models (Bok et al., 2000; Jung et al., 
2006). Naringin has been shown to have antiatherogen-
ic, anti-oxidant, hepatoprotective, neuroprotective, an-
ti-inflammatory, anti-cancer and anti-ulcer properties 
(Adil et al., 2014; Benavente-Garcia and Castillo, 2008; 
Choe et al., 2001). Its ability to regulate the transforming 
growth factor-β and tumour necrosis factor-α (TNF-α) 
expression which were implicated in the lung injury and 
pulmonary fibrosis pathogenesis had been documented 
(Chen et al., 2013). Its in vivo and in vitro potent cardio-
protective and reno-protective activities had been estab-
lished (Rajadurai and Prince, 2007; Singh and Chopra, 
2004). However, information on the effect of naringin to 
protect against cognitive decline in nicotinamide/strep-
tozotocin (NA/STZ) induced cognitive deficit in diabet-
ic rats is sparse. Thus, the effect of naringin on cognitive 
deficit in diabetic rat is reported in this study. 

Material and methods
Experimental animals
Male Wistar rats (180-200g) were purchased at the 

Institute of Advanced Medical Research and Training 
Animal house. They were acclimatized for 1 week and 
fed daily with regular rat chow from commercial source 
(ACE feed®, Ibadan) and water ad libitum. 

The study was approved by both international (Publi-
cations of NIH volume 25 no.28. 1996 revised edition) 
and the Animal Care and Use Research Ethics Commit-
tee institutional rules (UI-ACUREC/17/0075).

Chemicals and reagents
Naringin, STZ and NA were procured from Sig-

ma–Aldrich. Glibenclamide, glucose test strips (Ac-
cuChek™, Roche, Germany) were purchased from a 
reputable pharmacy store. Other chemicals used were 
obtained from local suppliers in Nigeria. 

TD2 induction in Wistar rats
The Wistar rats were fasted overnight, subsequently 

TD2 was induced by administering 110mg/kg NA in-
traperitoneally in physiological saline 15min prior to 
intravenous injection of freshly prepared 65mg/kg STZ 
using 0.1mol/l (pH 4.5) cold citrate buffer. This model 
is based on the partial protection exerted by NA against 
the beta-cytotoxic effect of STZ (Masiello et al., 1998). 
Random blood glucose level (non-fasting) was done 72h 
after STZ injection. Rats with ≥200 mg/dl blood sugar 
levels were selected for the experiment. Thirty rats (24 
diabetic and 6 non-diabetic) distributed into 5 groups 
(6 rats per group) received glibenclamide (5mg/kg), 
naringin (50, 100mg/kg) or 0.9%w/v saline (2ml/kg). 
Drugs were administered once daily for 30 days orally. 

 
Evaluation of antidiabetic activity
Animals’ body weight was measured every week. 

Glucometer was used to determine the random blood 
glucose before the administration of the drug and on day 
30 post drug administration. 

Naringin effect on cognitive function using Morris 
Water Maze (MWM) in diabetic rats 

The MWM assessment on diabetic and non-diabet-
ic rats was performed in accordance with a previously 
published method (Wang et al., 2015). The rats were 
trained before the commencement of treatment. Follow-
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ing treatment with naringin, MWM assessment was per-
formed on diabetic and non-diabetic rats at day 26 post 
treatment. Rats were trained from each group to swim 
freely in a pool of milky water containing a round 14cm 
diameter Plexiglas platform. The platform was firmly 
positioned, equidistant from the tank wall centre and im-
mersed 1.5cm beneath the pool. Four training trials per 
day was done for each of the rat. The rats were placed 
at one of the four designated start point inside the tank 
daily, in a pseudorandom order and 4 days training were 
done to locate the platform. Rats that could not find the 
platform in 1min, were led manually to the platform and 
permitted for 15s to stay. On day 30 (24h after the last 
training), a probe trial was performed after the last train-
ing session which consist of a 1min free swim without 
the platform in the pool. Latency, total time spent in the 
quadrant containing the platform and numbers of entries 
into the quadrant were measured. After the experiment, 
the rats were placed in a warm environment. 

Sample collection and preparation 
Experimental rats were anaesthetized with ketamine/

diazepam 30 days post treatment. Blood samples were 
gotten through cardiac puncture, allowed to clot and 
centrifuged (10min at 20,000g). Sera separated from 
packed blood were stored at –20°C till when needed for 
analysis. Samples from brain were collected and washed 
with cold phosphate buffer saline. It was further homog-
enized in 10% w/v of the buffered saline and centrifuged 
at 4°C for 10min at 1000g. The supernatant was stored 
at –20°C. 

Determination of serum lipids profile
Cholesterol, triglycerides, high-density lipoprotein 

cholesterol (HDL-C) were assessed using biochemical 
kits (Fortress Diagnostic kit®) according to the manu-
facturer’s instruction. Friedewald formula was also used 
to calculate LDL cholesterol (LDL-C): LDL-C= total 
cholesterol- (HDL cholesterol+ triglycerides/5) (Fried-
wald et al., 1972).

Acetylcholinesterase (AChE) activity determination  
The brain AChE activity was evaluated based on pre-

viously reported method (Ellman et al., 1961). Twen-
ty-five microliter of the rat brain homogenate was mixed 
with 125µl of 0.1M phosphate buffer (pH 7.4) and 25µl 
of 5,5′-dithiobis (2-nitrobenzoic acid). Subsequent-

ly, 25µl of acetylcholine iodide solution (20mM) was 
mixed with the reaction. Absorbance at 412nm using 
spectrophotometer was determined and the absorbance 
change was measured after two mins. The activity of 
AChE was presented as mol/min/mg tissue.

Determination of TNF-α in the experimental rats
Brain TNF-α level was assessed with Biolegend® asn-

say kits as instructed by the manufacturer. 

Statistical analysis
Obtained data were presented as the mean±SEM. Dif-

ferences between means were tested for statistical signif-
icance using a one-way analysis of variance (ANOVA), 
followed by Tukey post hoc test. Blood glucose of rats 
in the same group on days 0 and 30 were compared us-
ing paired t test. Likewise, the weights of the rats were 
also compared. All statistical analyses were done us-
ing Graph Pad Prism version 5.0 (La Jolla, CA, USA).  
P<0.05 was taken as significant. 

Results
Effect on the blood glucose levels
The level of blood glucose in experimental rats is 

presented in Figure 1. Twenty-four rats were success-
fully induced with TD2 with evidence of raised blood 
glucose ranging from 244.67 ± 15.84 to 259.50 ± 14.83 
mg/dl while non-diabetic control rats blood glucose was 
116.50 ± 4.57 mg/dl (P<0.001). Following thirty days 
treatment with glibenclamide (5mg/kg) and naringin (50 
and 100mg/kg), diabetic rats blood glucose was signifi-
cantly reduced (P<0.001). 

Effect on the body weight
Figure 2 shows the body weight of the animals. Both 

diabetic control and treated diabetic rats with selected 
doses of naringin or glibenclamide on days 0 and 30 
have similar weight. In contrast, non-diabetic control 
rats significantly gained weight.

 
Cognitive function effect in diabetic rats 
Naringin effect on latency to find platform in diabetic 

rats is presented in Figures 3a and b.  Following training 
for 4 days the escape latency of diabetic rats treated with 
naringin or glibenclamide decreased compared to dia-
betic control rats (Figure 3a).  By day 5, the probe day, 
24h post training, the diabetic control group escape la-
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TABLE 1:TABLE 1: The effect of treatment with naringin on lipid profile of diabetic rats

Group (mg/kg)

Lipids (mg/dl)

Total cholesterol Triglyceride HDL-C LDL-C

Non-diabetic control 47.38± 3.87 38.24± 3.71 39.32± 3.32 0.49± 0.12

Diabetic control 75.77±3.46# 107.0± 6.44# 26.56± 3.05# 26.39± 2.28#

Naringin (50) 55.58± 3.06* 68.13± 11.03* 35.73± 2.56* 6.17± 0.16*

Naringin (100) 60.89±1.11* 76.61± 8.50* 32.60± 4.43 13.11± 1.09*

Glibenclamide (5) 49.69±5.55* 55.70± 2.95* 35.86± 2.69* 2.57± 0.54*
N=6, data are represented as mean±SEM, #Non-diabetic group vs diabetic control group P<0.05; *diabetic control group vs all 

treatment groups P<0.05 (one-way ANOVA test followed by Tukey post hoc test). 

 
 

 

                                                                               

    

 

 

 

 

FIGURE 1:FIGURE 1: The effect of naringin on blood glucose levels in diabetic rats. N=6, data are represented as mean±SEM. *Day 30 diabetic control 
vs day 30 of all other groups, P<0.05 (one-way ANOVA test followed by Tukey post hoc test), #Day 0 vs day 30 of each group P< 0.05 (paired 
t test).

 
 

   

  
 

 

 

 

FIGURE 2:FIGURE 2: Body weight of rats before and after induction of diabetes. N=6, data are represented as mean±SEM. *Day 0 vs day 30 for each 
group P<0.05 (paired t test).



tency was markedly increased in comparison to non-di-
abetic control group (P=0.0001). Glibenclamide (5mg/
kg) or naringin at 50 and 100mg/kg significantly de-
creased diabetic rats escape latency (Figure 3b; P≤0.02). 
Furthermore, the number of entries into the quadrant 
and the time spent in correct quadrant were significantly 
decreased in diabetic control rats in contrast to non-di-

abetic control rats (Figs 4 and 5; P≤0.0002). Treatment 
of diabetic rats with naringin or glibenclamide increased 
the entry numbers and the time spent in correct quadrant 
(P≤0.002).

Effect on serum lipids profile 
Serum lipid profile of the experimental rats is present-

 
 

 

 

 FIGURE 3:FIGURE 3: (A) Latency to find platform in diabetic rats during four days of training. N=6, data are represented as mean±SEM. (B) Latency 
to find platform decreases with treatment with naringin. N=6, data are represented as mean±SEM. *diabetic control vs all other groups, P<0.05 
(one-way ANOVA test followed by Tukey post hoc test).

 
 

 

 

 

 

FIGURE 4:FIGURE 4: Naringin increases the number of entries in target quadrant in diabetic rats. N=6, data are represented as mean±SEM. #Diabetic 
control vs all other groups P<0.05 (one-way ANOVA test followed by Tukey post hoc test).
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ed in Table 1. Diabetic control rats showed a significant 
HDL-C reduction, while the triglycerides, cholester-
ol and LDL-C increased compared to the non-diabetic 
control rats (P≤0.0001). However, naringin (50 and 100 

mg/kg) and glibenclamide (5mg/kg) treatment resulted 
in a significant low level of cholesterol, triglycerides and 
LDL-C compared to diabetic control rats (P≤0.0082). 
Naringin (50mg/kg) and glibenclamide prevented re-

 
 

 

 

 

 

 

 

  

FIGURE 5:FIGURE 5: Naringin increases time spent in correct quadrant in diabetic rats. N=6, data are represented as mean±SEM. #Diabetic control vs 
all other groups P<0.05 (one-way ANOVA test followed by Tukey post hoc test).

 
 

 

 

 

 

 

FIGURE 6:FIGURE 6: Naringin reduces acetylcholinesterase (AChE) activity in the brain of diabetic rats. N=6, data are represented as mean±SEM. 
#Diabetic control vs all other groups P<0.05 (one-way ANOVA test followed by Tukey post hoc test).

 
 

 

 

 

 

 

 

 

 

                                                            

 

 

 

 

 

 

 

 

FIGURE 7:FIGURE 7: Naringin reduces brain TNF- α levels in diabetic rats. N=6, data are represented as mean±SEM. #Diabetic control vs all other 
groups P<0.05 (one-way ANOVA test followed by Tukey post hoc test).
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duction in HDL-C level.

Effect on AChE activity in diabetic rats
AChE activity in diabetic control rats was significant-

ly increased (3704.21 ± 210.61 mol/min/mg tissue) in 
comparison to non-diabetic control rats (2440.4 ± 39.28 
mol/min/mg tissue; P<0.0001; Figure 6). Following na-
ringin and glibenclamide treatment, AChE activity de-
creased significantly (P<0.0001; Figure 6). 

Effect on TNF-α levels in diabetic rats
Brain TNF-α increased significantly in diabetic con-

trol rats (56.0±5.0 pg/mg tissue) compared to non-dia-
betic control rats (27.28±0.42 pg/mg tissue; P=0.0002; 
Figure 7). Treatment with 50 and 100mg/kg naringin 
(33.07±2.17 and 37.44±5.79 pg/mg tissue) and 5 mg/kg 
glibenclamide (29.24±5.27 pg/mg tissue) prevented the 
elevation of brain TNF-α significantly compared to the 
diabetic control rats (P≤0.04).

Discussion
Diabetes-associated cognitive decline is a neurodegen-

erative disorder that can lead to dementia and about 8% 
of dementia cases are attributed to TD2 (Kloppenborg 
et al., 2008). Strategies that combine the control of hy-
perglycaemia with prevention of cognitive decline will 
enhance the quality life of diabetic patients. Thus, the 
capacity of naringin to protect against diabetic induced 
cognitive deficit in rats was evaluated in this study. 

TD2 induction in experimental rats was achieved by 
using NA/STZ which resulted in moderate pancreatic 
β-cells destruction, causing insulin release impairment 
and subsequent insulin resistance (Masiello et al., 1998). 

A rise in the level of serum glucose in diabetic rats as 
opposed to non-diabetic rats, 72h after TD2 induction 
using NA/STZ observed in this study is similar to pre-
viously reported study (Ahmed et al., 2017). Previous 
studies reported that naringin treatment decreased glu-
cose level in diabetic rats (Ahmed et al., 2017; Jung et 
al., 2004). Reduced hyperglycaemia observed in rats 
treated with naringin might prevent the adverse effects 
of hyperglycaemia on the brain and its vasculature. Hy-
perglycemia is a central feature of TD2 and may induce 
changes in cognitive function through a variety of mech-
anisms including polyol pathway activation, increased 
formation of advanced glycation end products, diacyl-
glycerol activation of protein kinase C and increased 

glucose shunting in the hexosamine pathway (Madonna 
and Caterina, 2011).  Glucose, the primary substrate for 
brain energy metabolism is not stored in the neurons but 
transported across the blood brain barrier (Jurcovicova, 
2014). In insulin resistance diabetes, the brain may not 
get enough glucose it needs especially for memory be-
cause insulin’s signal is ignored by cells. Insulin also 
regulates expression of the neurotransmitters acetylcho-
line and norepinephrine, both of which are known to 
influence cognition (Kopf and Baratti, 1999; Rosen et 
al., 1993). Furthermore, insulin acts to increase cortical 
cerebral glucose metabolism in brain regions important 
for learning and memory (Madsen et al., 2002). These 
many influences of insulin are compromised in insulin 
resistance state. This is because, there is reduced ability 
of insulin to exert its action on target tissues which can 
be associated with neuropathological processes that un-
derlie cognitive aging and dementia (Craft et al., 2013). 
In this study, cognitive function in diabetic rats treated 
with naringin was assessed using MWM. The MWM is 
used to determine learning and spatial memory (Brom-
ley-Brits et al., 2011; Morris, 1981). Naringin reduced 
the latency time and significantly prolonged the time 
spent in the correct quadrant containing the platform. 
There was increase in the number of entries into the 
correct quadrant in comparison with untreated diabetic 
control group. Thus, naringin and glibenclamide pro-
tects diabetic rats from impaired cognitive performance. 

AD and TD2 share the presence of systemic and neu-
ro-inflammation, enhanced production and accumula-
tion of β-amyloid peptide and abnormal levels of the 
enzymes AChE and butyrylcholinesterase (Mushtaq et 
al., 2014). Acetylcholine, a neurotransmitter associated 
with learning and memory, is degraded by the enzyme 
AChE, terminating the physiological action of the neu-
rotransmitter. Learning disabilities and memory loss 
have been associated with reduced level of brain ace-
tylcholine (Haam and Yakel, 2017). The inhibition of 
AChE will enhance cholinergic transmission and lowers 
the amyloid beta peptide aggregation (Carvajal and In-
estrosa, 2011).  A reduction in the AChE activity could 
increase synaptic cleft acetylcholine level and might 
ameliorate cognitive symptoms partially (Carvajal and 
Inestrosa, 2011), thus improving the quality life of pa-
tients with cognitive impairment 

Chronic inflammation is suggested in the pathophys-
iology of TD2 (Pollack et al., 2016). In addition, astro-

Naringin prevents cognitive decline Physiology and Pharmacology 26 (2022) 20-29 | 26



cytes are vulnerable to inflammatory attack and can re-
lease inflammatory factors like TNF-α and IL-6 upon 
activation to trigger neuroinflammation (Namas et al., 
2009). The release of TNF-α will potentiate the inflam-
matory response resulting in pancreatic β-cells destruc-
tion (Lin et al., 2012). Thus, leading to insulin resistance 
(Lin et al., 2012; Stephens et al., 1997) and thereby 
worsen hyperglycemia-induced brain injury. Agents that 
target inflammation and reduce hyperglycaemia may 
improve diabetes by preventing diabetes progression 
and vascular complications (Pollack et al., 2016).  In this 
study, naringin and glibenclamide markedly decreased 
the brain TNF-α level in NA/STZ induced diabetic rats. 
Naringin has been shown by previous reports to inhibit 
inflammatory process in diabetic rat and mice (Chen et 
al., 2015; Liu et al., 2016). 

Elevation of lipids seen in the serum of untreated di-
abetic rats might be due to abnormal lipid metabolism. 
The lipoprotein lipase dysfunction will contribute to 
hypertriglyceridemia in insulin deficient state due to 
catabolism of triglyceride rich particles impairment 
(Dallinga-Thie et al., 2016). Insulin is believed to ele-
vate receptor mediated LDL- cholesterol removal. Thus, 
the reduced insulin activity in diabetes will lead to high 
serum LDL-cholesterol level (hypercholesterolemia) 
(Saravanan and Pari, 2005). Naringin at the doses tested 
reduced significantly triglycerides, total cholesterol and 
LDL-cholesterol in diabetic rats. Reduction in HDL-C 
level was also prevented. It has been shown that nar-
ingin and its metabolites naringenin might possess in-
sulinotrophic and insulin sensitizing actions (Ahmad et 
al., 2017). 

Conclusion
The present study showed that naringin significantly 

reduced hyperglycaemia, hyperlipidaemia and amelio-
rated diabetes induced cognitive deficits via reduction 
of AChE activity and inhibition of inflammation in NA/
STZ induced diabetes in rats. Naringin might be useful 
in preventing type 2 diabetes cognitive function impair-
ment.  
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