Volume 26, Issue 3 (September 2022)                   Physiol Pharmacol 2022, 26(3): 299-312 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Atelhe Amama E, Lishilinimye Udefa A, Nyoh Beshel F, Aniekan Archibong E, Okpa S, Nwandimma Nwangwa J, et al . Fresh palm oil improves impaired renal function in phenylhydrazine-induced anaemic Wistar rats via its anti-anaemic effect and modulation of expressions of pro-oxidant/antioxidants, inflammatory cytokines and caspase-3 in the kidneys. Physiol Pharmacol 2022; 26 (3) :299-312
URL: http://ppj.phypha.ir/article-1-1680-en.html
Abstract:   (1645 Views)
Introduction: Phenylhydrazine (PHZ)-induced anaemia is associated with oxidative damage to erythrocytes and impaired renal function. Fresh palm oil (FPO) is a rich source of antioxidants and preserves renal function. This study investigated the possible reno-protective effects of FPO in PHZ-induced anaemic Wistar rats. Methods: Eighteen male Wistar rats were randomly assigned into normal control (NC), anaemic control (AC; 60mg/kg of PHZ) and anaemic treated (A+FPO; 60mg/kg of PHZ + 15% FPO diet) groups. PHZ was administered twice consecutively at 48h interval while FPO diet was given throughout the study period (14 days). Results: Erythrocyte count, haemoglobin concentration and haematocrit were increased in A+FPO compared with AC. FPO improved imbalances in the levels of glucose and electrolytes (Na+, Cl-, K+, HCO3-) in serum and urine of the anaemic rats. Urea and creatinine concentrations were decreased in serum and increased in urine in the A+FPO relative to AC. Proteinuria was decreased in A+FPO compared with AC. The levels of malondialdehyde, proinflammatory cytokines and caspase-3 were down-regulated in A+FPO compared with AC while interleukin-10 concentration, enzymatic antioxidants activities and total antioxidant capacity were up-regulated in A+FPO compared with AC. Conclusion: FPO demonstrated anti-anaemic effect and improved the impaired renal function associated with PHZ-induced anaemia.
Full-Text [PDF 809 kb]   (270 Downloads)    

References
1. Ani EJ, Nna VU, Owu DU, Osim EE. Effect of chronic consumption of two forms of palm oil diet on serum electrolytes, creatinine and urea in rabbits. J Appl Pharm Sci. 2015; 5: 115-119. [DOI:10.7324/JAPS.2015.50619]
2. Annuk M, Zilmer M, Lind L, Linde T, Fellstrom B. Oxidative stress and endothelial function in chronic renal failure. J Am Soc Nephrol 2001; 12: 2747-2752. [DOI:10.1681/ASN.V12122747]
3. Aprioku JS. Pharmacology of free radicals and the impact of reactive oxygen species on the testis. J Reprod Infertil. 2013; 14: 158-172.
4. Arduini A, Stern A, Storto S, Belfiglio M, Mancinelli G, Scurti R, Federici G. Effect of oxidative stress on membrane phospholipid and protein organization in human erythrocytes. Arch Biochem Biophys 1989; 273: 112-120. [DOI:10.1016/0003-9861(89)90168-9]
5. Augusto O, Kunze KL, De Montellano OPR. N-Phenylprotoporphyrin IX formation in the hemoglobin phenylhydrazine reaction. Evidence for a protein stabilized iron-phenyl intermediate. J. Biol. Chem. 1982; 257: 6231-6241. [DOI:10.1016/S0021- 9258(20)65129-8]
6. Balasubramaniam P, Malathi A. Comparative study of hemoglobin estimated by Drabkin's and Sahli's methods. J postgraduate med. 1992; 38: 8-9.
7. Berger J. Phenylhydrazine haematotoxicity. J Appl Biomed. 2007; 5: 125-130. [DOI:10.32725/jab.2007.017]
8. Beshel FN, Antai AB, Osim EE. Chronic consumption of three forms of palm oil diets alters glomerular filtration rate and renal plasma flow. General Physiology and Biophysics 2013; 33: 251-256. [DOI:10.4149/gpb_2013069]
9. Beshel FN, Beshel JA, Osim EE, Antai AB. Derrangement of K+, Na+, Cl- and HCO3- levels by chronic consumption of oxidized palm oil. Saudi J Med Pharm Sci. 2018; 4: 1214-1220. http://dx.doi.org/10.21276/sjmps.2018.4.10.18
10. Beshel FN, Eyo HE, Beshel JA. Ferrous sulphate improves electrolyte levels in phenylhydrazine induced hemolytic anaemia in Wistar rats. Sch Int J Anat Physiol. 2019; 2: 209-214. http://dx.doi.org/10.21276/sijap.2019.2.5.4
11. Biswas S, Bhattacharyya J, Dutta AG. Oxidant induced injury of erythrocyte-role of green tea leaf and ascorbic acid. Mol Cell Biochem. 2005; 276: 205-210. [DOI:10.1007/s11010- 005-4062-4]
12. Clairborne A. Catalase activity. In: Greewald RA (Eds.), Handbook of methods for oxygen radical research (pp. 237-242). Boca Raton, FL: CRC 77 Press; 1995.
13. Clemens MR, Remmer H, Waller HD. Phenylhydrazine-induced lipid peroxidation of red blood cells in vitro and in vivo: monitoring by the production of volatile hydrocarbons. Biochem Pharmacol. 1984; 33: 1715-1718. [DOI:10.1016/0006-2952(84)90338-1]
14. Day TG, Drasar ER, Fulford T, Sharpe CC, Thein SL. Association between hemolysis and albuminuria in adults with sickle cell anemia. Haematologica 2012; 97: 201-205. [DOI:10.3324/haematol.2011.050336]
15. Decaux G, Musch W, Penninckx R, Soupart A. Low plasma bicarbonate level in hyponatremia related to adrenocorticotropin deficiency. The J Clin Endocrinol Metab. 2003; 88: 5255-5257. [DOI:10.1210/jc.2003-030399]
16. Ebong PE, Owu DU, Isong EU. Influence of palm oil (Elaesis guineensis) on health. Plant Foods Hum Nutr. 1999; 53: 209-222. [DOI:10.1023/A:1008089715153]
17. Edem DO. Palm oil: biochemical, physiological, nutritional, hematological and toxicological aspects: a review. Plant Foods Hum. Nutr. 2002; 57: 319-341. [DOI:10.1023/A:1021828132707]
18. Erejuwa O, Sulaiman SA, Wahab MS, Sirajudeen KNS, Salleh SM, Gurtu S. Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. Int J Mol Sci. 2010; 11: 2056-2066. [DOI:10.3390/ijms11052056 Estridge]
19. BH, Reynolds AP, Walters NJ. Basic medical laboratory techniques. 4th ed, Thomson Learning, USA; 2000.
20. Fernández I, Peña A, Del Teso N, Pérez V, Rodríguez-Cuesta J. Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. J Am Assoc Lab Animal Sci 2010; 49: 202-206.
21. Ferrali M, Signorini C, Sugherini L, Pompella A, Lodovici M, Caciotti B, et al. Release of free, redox-active iron in the liver and DNA oxidative damage following phenylhydrazine intoxication, Biochem Pharmacol. 1997; 53: 1743-1751. [DOI:10.1016/S0006- 2952(97)82456-2]
22. Fibach E, Rachmilewitz E. The role of oxidative stress in hemolytic anemia. Curr Mol Med. 2008; 8: 609-619. [DOI:10.2174/156652408786241384]
23. Hashmi AN, Saleemuddin M. Phenylhydrazine causes sulfhydryl oxidation and protein aggregation in hemoglobin-free human erythrocyte membranes. Biochem Mol Biol Int. 1996; 40: 543-550. [DOI:10.1080/15216549600201123]
24. Haymann JP, Stankovic K, Levy P, Avellino V, Tharaux PL, Letavernier E, et al. Glomerular hyperfiltration in adult sickle cell anemia: a frequent hemolysis associated feature. Clin J Am Soc Nephrol 2010; 5: 756-761. [DOI:10.2215/CJN.08511109]
25. Imoisi OB, Ilori GE, Agho I, Ekhator JO. Palm oil, its nutritional and health implications (Review). J Appl Sci Environ Manage. 2015; 19: 127-133. [DOI:10.4314/jasem.v19i1.17]
26. Jaiswal A, Ganeshpurkar A, Awasthi A, Bansal D, Dubey N. Protective effects of beetroot extract against phenyl hydrazine induced anemia in rats. Phcog J 2014; 6: 1-4. [DOI:10.5530/pj.2014.5.1]
27. Kale OE, Awodele O, Akindele AJ. Protective effects of Acridocarpus smeathmannii (DC.) Guill. & Perr. root extract against phenylhydrazine-induced haematotoxicity, biochemical changes, and oxidative stress in rats. Biochemistry Insights 2019; 12: 1-14. [DOI:10.1177/1178626419883243]
28. Kaplan A, Teng LL. Serum urea (urea-Berthelot). In: Selected methods of clinical chemistry, Faulkner WR and Meites S (Eds). AACC, Washington, 1982;9:357-363.
29. Kok S, Ong-Abdullah M, Ee GC, Namasivayam P. Comparison of nutrient composition in kernel of tenera and clonal materials of oil palm (Elaeis guineensis Jacq.). Food Chem. 2011; 129: 1343-1347. [DOI:10.1016/j.foodchem.2011.05.023]
30. Kolawole AT, Dapper VD, Eziuzo CI. Effects of the methanolic extract of the rind of Citrullus lanatus (watermelon) on some erythrocyte parameters and indices of oxidative status in phenylhydrazine-treated male Wistar rats. J Afr Ass Physiol Sci. 2017; 5: 22-28.
31. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V. Method for the measurement of antioxidant activity in human fluids. J Clin Pathol. 2001; 54: 356-361. [DOI:10.1136/jcp.54.5.356]
32. Korubo-Owiye T, Dapper DV, Amadi CE. Relationship between the specific gravity of whole blood, haemoglobin concentration and haematocrit in healthy Nigerians in Port Harcourt. Niger Med Pract. 1998; 36: 34-37.
33. Koseoglu M, Hur A, Atay A, Cuhadar S. Effects of hemolysis interferences on biochemistry parameters. Biochemia Medica 2011; 21: 79-85. [DOI:10.11613/BM.2011.015]
34. Li K, Menon MP, Karur VG, Hegde S, Wojchowski DM. Attenuated signaling by a phosphotyrosine-null Epo receptor form in primary erythroid progenitor cells. Blood 2003; 102: 3147-3153. [DOI:10.1182/blood-2003-01-0078]
35. Loganathan R, Subramaniam KM, Radhakrishnan AK, Choo Y, Teng K. Health-promoting effects of red palm oil: evidence from animal and human studies. Nutr Rev 2017; 75: 98-113. [DOI:10.1093/nutrit/nuw054]
36. Luangaram S, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Pannangpetch P. Protective effects of quercetin against phenylhydrazine-induced vascular dysfunction and oxidative stress in rats. Food Chem Toxicol. 2007; 45: 448-455. [DOI:10.1016/j.fct.2006.09.008]
37. Luber S. Biochemistry (3rd ed.). New York: W. H. Freeman 1988; 80-89.
38. Mesembe OE, Ibanga I, Osim EE. The effects of fresh and thermoxidized palm oil diets on some haematological indices in the rat. Nigerian J Physiol Sci 2004:19:86-91. [DOI:10.4314/njps.v19i1.32641]
39. McMillan DC, Powell CL, Bowman ZS, Morrow JD, Jollow DJ. Lipids versus proteins as major targets of pro-oxidant, direct-acting hemolytic agents. Toxicol Sci. 2005; 88: 274-283. [DOI:10.1093/toxsci/kfi290]
40. Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972; 247: 3170-3175. [DOI:10.1016/S0021-9258(19)45228-9]
41. Mortensen A. Analysis of a complex mixture of carotenes from oil palm (Elaeis guineensis) fruit extract. Food Res Int. 2005; 38: 847-853. [DOI:10.1016/j.foodres.2005.01.009]
42. Mukherjee S, Mitra A. Health effects of palm oil. J Hum Ecol. 2009; 26: 197-203. [DOI:10.1080/09709274.2009.11906182]
43. Novelli EM, Hildesheim M, Rosano C, Vanderpool R, Simon M, Kato GJ, et al. Elevated pulse pressure is associated with hemolysis, proteinuria and chronic kidney disease in sickle cell disease. PloS one 2014; 9: e114309. [DOI:10.1371/journal.pone.0114309]
44. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochem 1979; 95: 351-358. [DOI:10.1016/0003-2697(79)90738-3]
45. Orozco M, Ventura I, Solomons NW. Household usage of and recipe creation with condiment sauces based on red palm oil: exploring the potential for targeted micronutrient delivery to different family members. J Oil Palm Res. 2006; 18: 181-188.
46. Osafanme IL, Duniya SV, Chukwuemeka NP, Mercy O, Adejoh IP. Haematinic effects of aqueous extract of Lophira lanceolata leaves in phenylhydrazine-induced anaemia in Wistar rats. Asian J Res Biochem. 2019; 4: 1-6. [DOI:10.9734/ajrb/2019/v4i130057]
47. Ozcan A, Atakisi E, Karapehlivan M, Atakisi O, Citil M. Effect of L-Carnitine on oxidative damage to liver, kidney and spleen induced by phenylhydrazine in mice. J Appl Anim Res. 2007; 32: 97-100. [DOI:10.1080/09712119.2007.9706855]
48. Palmer BF, Clegg DJ. Physiology and pathophysiology of potassium homeostasis. Adv Physiol Edu. 2016; 40: 480-490. [DOI:10.1152/advan.00121.2016]
49. Parodi S, De Flora S, Cavanna M, Pino A, Robbiano L, Bennicelli C, et al. DNA-damaging activity in vivo and bacterial mutagenicity of sixteen hydrazine derivatives as related quantitatively to their carcinogenicity. Cancer Res. 1981; 41: 1469-1482.
50. Radhika MS, Bhaskaram P, Balakrishna N, Ramalakshmi BA. Red palm oil supplementation: A feasible diet-based approach to improve the vitamin A status of pregnant women and their infants. Food Nutr Bulletin 2003; 24: 2008-2017. [DOI:10.1177/156482650302400214]
51. Ramsay AG. Clinical application of the Henderson-Hasselbalch equation. Appl Ther. 1965; 7: 730-736.
52. Sahay M, Sahay R. Hyponatremia: a practical approach. Indian J Endocrinol Metab. 2014; 18: 760-771. [DOI:10.4103/2230-8210.141320]
53. Sambanthamurthi R, Sundram K, Tan Y. Chemistry and biochemistry of palm oil. Prog Lipid Res. 2000; 39: 507-558. [DOI:10.1016/S0163-7827(00)00015-1]
54. Sampaio KA, Ceriani R, Silva SM, Taham T, Meirelles AJA. Steam deacidification of palm oil. Food Bioprod Process. 2011; 89: 383-390. [DOI:10.1016/j.fbp.2010.11.012]
55. Sanni FS, Ibrahim S, Esievo KAN, Sanni S. Effect of oral administration of aqueous extract of Khaya senegalensis stem bark on Phenylhydrazine-induced anemia in rats. Pakistani J Biol Sci. 2005; 8: 255-258. [DOI:10.3923/pjbs.2005.255.258]
56. Sochaski MA, Bartfay WJ, Thorpe SR, Baynes JW, Bartfay E, Lehotay DC, et al. Lipid peroxidation and protein modification in a mouse model of chronic iron overload. Metabolism 2002; 51: 645-651. [DOI:10.1053/meta.2002.30530]
57. Stern A. Drug-induced oxidative denaturation in red blood cells. Semin Hematol. 1989; 26: 301- 306.
58. Stevens GA, Bennett JE, Hennocq Q, Lu Y, De-Regil LM, Rogers L, et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. Lancet Glob Health 2015; 3: 528-536. [DOI:10.1016/S2214-109X(15)00039-X]
59. Sutapa M, Analava M. Health effects of palm oil. J Hum Ecol. 2009; 26: 197-203. [DOI:10.1080/09709274.2009.11906182]
60. Udefa AL, Amama EA, Archibong EA, Nwangwa JN, Adama S, Inyang VU, Inyaka GU, Aju GJ, Okpa S, Inah IO. Antioxidant, anti-inflammatory and anti-apoptotic effects of hydroethanolic extract of Cyperus esculentus L. (tigernut) on lead acetate-induced testicular dysfunction in Wistar rats. Biomed Pharmacother 2020; 129. [DOI:10.1016/j.biopha.2020.110491]
61. Vilsen B, Nielsen H. Reaction of phenylhydrazine with erythrocytes: cross-linking of spectrin by disulfide exchange with oxidized hemoglobin. Biochem Pharmacol. 1984; 33: 2739-2748. [DOI:10.1016/0006-2952(84)90690-7]
62. Yang B, Johnson TS, Thomas GL, Watson PF, Wagner B, El Nahas AM. Apoptosis and caspase3 in experimental anti-glomerular basement membrane nephritis. J Am Soc Nephrol. 2001; 12: 485-495. [DOI:10.1681/ASN.V123485]
63. World Health Organization. Phenylhydrazine: Concise International Chemical Assessment Document; 19. WHO, Geneva, 2000.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.