Volume 26, Issue 4 (December 2022)                   Physiol Pharmacol 2022, 26(4): 440-450 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sahraei M, Nasiri A, Hossein-Mardi L, Faraji N, Sahraei H. Ascorbic acid inhibits the acquisition and expression of morphine-induced conditioned place preference and sensitization in male Swiss-Webster mice. Physiol Pharmacol 2022; 26 (4) :440-450
URL: http://ppj.phypha.ir/article-1-1751-en.html
Abstract:   (1415 Views)
Introduction: Ascorbic acid is shown to reduce the signs of opioid dependence and addiction. The present experiments investigated the possible influence of ascorbic acid in acquiring and expressing morphine conditioned place preference (CPP) and sensitization in mice. Methods: Male Swiss-Webster mice (20-25 g) were used. The unbiased method and an open field procedure were conducted for place preference and sensitization studies, respectively. Animals received different doses of morphine (1, 5, 10, and 20 mg/kg), ascorbic acid (1, 10, 100, and 1000 mg/kg), or saline (10 ml/kg) for place preference studies. Ascorbic acid was injected into the animals 20 min before each morphine (5 mg/kg) injection (acquisition) or 20 min before the test of morphine CPP (expression). Mice received morphine (5 mg/ kg) for three consecutive days, followed by five resting days for sensitization. Animals’ hyperactivity after morphine (1 mg/kg) challenge dose confirmed the sensitization. Ascorbic acid was administered 20 min before each morphine (5 mg/kg) injection (acquisition) or 20 min before each morphine challenge dose (1 mg/kg) administration on the test day (expression). Results: Morphine induced significant place preference dose-dependently. Furthermore, intraperitoneal (i.p.) administration of ascorbic acid failed to induce any aversion or preference effects. Ascorbic acid reduced the expression and acquisition of morphine place conditioning. Intraperitoneal injections of ascorbic acid also reduced the expression and acquisition of morphine sensitization. Conclusion: Ascorbic acid could affect the motivational effects of morphine in mice. The exact mechanism by which the vitamin reduces the morphine effect must be evaluated in future studies.
Full-Text [PDF 836 kb]   (247 Downloads)    
Type of Manuscript: Experimental research article | Subject: Others

References
1. Abbasi I, Maleki S, Najafi G H, Eftekhari S K. The effect of vitamine C on expression of morphine-induced place preference in male mice. Journal of Sabzevar University of Medical Sciences 2012; 19(2): 164-172.
2. Aguilar M A, Manzanedo C, Do Couto B R, Rodríguez-Arias M, Miñarro J. Memantine blocks sensitization to the rewarding effects of morphine. Brain research 2009; 1288: 95-104. [DOI:10.1016/j.brainres.2009.06.100]
3. Ahmadi S, Radahmadi M, Alaei H, Ramshini E. Effect of Aerobic Exercise on Morphine Self-administration and Pain Modulation in Rats. Advanced biomedical research 2018; 7. [DOI:10.4103/abr.abr_181_17]
4. Alaei H, Esmaeili M, Nasimi A, Pourshanazari A. Ascorbic acid decreases morphine self-administration and withdrawal symptoms in rats. Pathophysiology 2005; 12: 103-107. [DOI:10.1016/j.pathophys.2005.03.004]
5. Arrigoni O, De Tullio M C. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta -General Subjects 2002; 1569: 1-9. [DOI:10.1016/S0304-4165(01)00235-5]
6. Bakhtazad A, Vousooghi N, Nasehi M, Sanadgol N, Garmabi B, Zarrindast M R. The effect of microinjection of CART 55-102 into the nucleus accumbens shell on morphine-induced conditioned place preference in rats: Involvement of the NMDA receptor. Peptides 2020; 129: 170319. [DOI:10.1016/j.peptides.2020.170319]
7. Becker J A, Pellissier L P, Corde Y, Laboute T, Léauté A, Gandía J, et al. Facilitating mGluR4 activity reverses the long-term deleterious consequences of chronic morphine exposure in male mice. Neuropsychopharmacology 2020: 1-13. [DOI:10.1101/2020.06.27.174771]
8. Cammack J, Ghasemzadeh B, Adams R. The pharmacological profile of glutamate-evoked ascorbic acid efflux measured by in vivo electrochemistry. Brain research 1991; 565: 17-22. [DOI:10.1016/0006-8993(91)91731-F]
9. Carlezon W A, Boundy V A, Haile C N, Lane S B, Kalb R G, Neve R L, et al. sensitization to morphine induced by viral-mediated gene transfer. Science 1997; 277: 812-815. [DOI:10.1126/science.277.5327.812]
10. Carr A C, McCall C. The role of vitamin C in the treatment of pain: new insights. Journal of translational medicine 2017; 15: 77. [DOI:10.1186/s12967-017-1179-7]
11. Charmchi E, Faramarzi G, Rashvand M, Zendehdel M, Haghparast A. Restraint Stress Potentiated Morphine Sensitization: Involvement of Dopamine Receptors within the Nucleus Accumbens. Neurochemical Research 2021 Mar;46(3):648-659. [DOI:10.1007/s11064-020-03199-5]
12. De Angelis L. Ascorbic acid and atypical antipsychotic drugs: modulation of amineptine-induced behavior in mice. Brain research 1995; 670: 303-307. [DOI:10.1016/0006-8993(94)01305-2]
13. Deshpande C, Dhir A, Kulkarni S. Antagonistic activity of ascorbic acid (Vitamin C) on dopaminergic modulation: Apomorphine-induced stereotypic behavior in mice. Pharmacology 2006; 77: 38-45. [DOI:10.1159/000092409]
14. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences 1988; 85: 5274-5278. [DOI:10.1073/pnas.85.14.5274]
15. Diliberto Jr E J, Daniels A J, Viveros O H. Multicompartmental secretion of ascorbate and its dual role in dopamine β-hydroxylation. The American journal of clinical nutrition 1991; 54: 1163S-1172S.
16. Domjan M. Pavlovian conditioning: A functional perspective. Annu. Rev. Psychol. 2005; 56: 179-206.
17. Dzoljic E, De Vries R, Dzoljic M. New and potent inhibitors of nitric oxide synthase reduce motor activity in mice. Behavioural brain research 1997; 87: 209-212. [DOI:10.1016/S0166-4328(97)02281-X]
18. Evangelou A, Kalfakakou V, Georgakas P, Koutras V, Vezyraki P, Iliopoulou L, et al. Ascorbic acid (vitamin C) effects on withdrawal syndrome of heroin abusers. In vivo 2000; 14: 363-366.
19. Fitzgerald L W, Ortiz J, Hamedani A G, Nestler E J. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. Journal of Neuroscience 1996; 16: 274-282. [DOI:10.1523/JNEUROSCI.16-01-00274.1996]
20. Glare PA, Walsh, TD. Clinical pharmacokinetics of morphine. Therapeutic Drug Monitoring1991; 13(1): 1-23. [DOI:10.1097/00007691-199101000-00001]
21. Garthwaite J, Garthwaite G, Palmer R M, Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. European journal of pharmacology 1989; 172: 413-416. [DOI:10.1016/0922-4106(89)90023-0]
22. Grünewald R. Ascorbic acid in the brain. Brain Research Reviews 1993; 18: 123-133. [DOI:10.1016/0165-0173(93)90010-W]
23. Hnasko T S, Sotak B N, Palmiter R D. Morphine reward in dopamine-deficient mice. Nature 2005; 438: 854-857. [DOI:10.1038/nature04172]
24. Johnson S, North R. Opioids excite dopamine neurons by hyperpolarization of local interneurons. Journal of neuroscience 1992; 12: 483-488. [DOI:10.1523/JNEUROSCI.12-02-00483.1992]
25. Johnston P, Chahl L A. Chronic treatment with ascorbic acid inhibits the morphine withdrawal response in guinea-pigs. Neuroscience letters 1992; 135: 23-27. [DOI:10.1016/0304-3940(92)90127-S]
26. Kalivas P, Duffy P. Sensitization to repeated morphine injection in the rat: possible involvement of A10 dopamine neurons. Journal of Pharmacology Experimental Therapeutics 1987; 241: 204-212.
27. Katsidoni V, Tzatzarakis M N, Karzi V, Thermos K, Kastellakis A, Panagis G. Differential effects of chronic voluntary wheel-running on morphine induced brain stimulation reward, motor activity and striatal dopaminergic activity. Behavioural Brain Research 2020; 394: 112831. [DOI:10.1016/j.bbr.2020.112831]
28. Khaksari M, Nakhaei P, Khastar H, Bakhtazad A, Rahimi K, Garmabi B. Circadian fluctuation in curiosity is a risk factor for morphine preference. Biological Rhythm Research 2020: 1-13. [DOI:10.1080/09291016.2020.1719682]
29. Kimura K, Sidhu A. Ascorbic Acid Inhibits 125I‐SCH 23982 Binding but Increases the Affinity of Dopamine for D1 Dopamine Receptors. Journal of neurochemistry 1994; 63: 2093-2098. [DOI:10.1046/j.1471-4159.1994.63062093.x]
30. Liang J, Ma S-S, Li Y-J, Ping X-J, Hu L, Cui C-L. Dynamic changes of tyrosine hydroxylase and dopamine concentrations in the ventral tegmental area-nucleus accumbens projection during the expression of morphine-induced conditioned place preference in rats. Neurochemical research 2012; 37: 1482-1489. [DOI:10.1007/s11064-012-0739-8]
31. Liu J-l, Li S-q, Zhu F, Zhang Y-x, Wu Y-n, Yang J-s, et al. Tyrosine Hydroxylase Gene Polymorphisms Contribute to Opioid Dependence and Addiction by Affecting Promoter Region Function. NeuroMolecular Medicine 2020: 1-10. [DOI:10.1007/s12017-020-08597-0]
32. Ma Y-Y, Meng L, Guo C-Y, Han J-S, Lee D Y-W, Cui C-L. Dose-and time-dependent, context-induced elevation of dopamine and its metabolites in the nucleus accumbens of morphine-induced CPP rats. Behavioural brain research 2009; 204: 192-199. [DOI:10.1016/j.bbr.2009.06.017]
33. May J M, Qu Z-c, Meredith M E. Mechanisms of ascorbic acid stimulation of norepinephrine synthesis in neuronal cells. Biochemical biophysical research communications 2012; 426: 148-152. [DOI:10.1016/j.bbrc.2012.08.054]
34. Meredith M E, May J M. Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid. Brain research 2013; 1539: 7-14. [DOI:10.1016/j.brainres.2013.09.040]
35. Motahari A A, Sahraei H, Meftahi G H. Role of nitric oxide on dopamine release and morphine-dependency. Basic clinical neuroscience 2016; 7: 283. [DOI:10.15412/J.BCN.03070401]
36. Nejati S, Khakpai F, Zarrindast M-R. Synergistic effect between citalopram and citicoline on anxiolytic effect in non-sensitized and morphine-sensitized mice: an isobologram analysis. Brain research 2020; 1734: 146701. [DOI:10.1016/j.brainres.2020.146701]
37. Oke A F, May L, Adams R N. Ascorbic Acid Distribution Patterns in Human Brain: A Comparison with Nonhuman Mammalian Species a. Annals of the New York Academy of Sciences 1987; 498: 1-12. [DOI:10.1111/j.1749-6632.1987.tb23747.x]
38. Olmstead M C, Franklin K B. The development of a conditioned place preference to morphine: effects of microinjections into various CNS sites. Behavioral neuroscience 1997; 111: 1324. [DOI:10.1037/0735-7044.111.6.1324]
39. Pinkerton E, Good P, Gibbons K, Hardy J. An open-label pilot study of oral vitamin C as an opioid-sparing agent in patients with chronic pain secondary to cancer. Supportive Care in Cancer 2017; 25: 341-343. [DOI:10.1007/s00520-016-3472-z]
40. Pontieri F, Tanda G, Di Chiara G. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the" shell" as compared with the" core" of the rat nucleus accumbens. Proceedings of the National Academy of Sciences 1995; 92: 12304-12308. [DOI:10.1073/pnas.92.26.12304]
41. Rebec G V, Pierce R C. A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Progress in neurobiology 1994; 43: 537-565. [DOI:10.1016/0301-0082(94)90052-3]
42. Rebec G V, Wang Z. Behavioral activation in rats requires endogenous ascorbate release in striatum. Journal of Neuroscience 2001; 21: 668-675. [DOI:10.1523/JNEUROSCI.21-02-00668.2001]
43. Rescorla R A. Behavioral studies of Pavlovian conditioning. Annual review of neuroscience 1988; 11: 329-352. [DOI:10.1146/annurev.ne.11.030188.001553]
44. Sahraei H, Aliabadi A A, Zarrindast M-R, Ghoshooni H, Nasiri A, Barzegari-Sorkheh A A, et al. Ascorbic acid antagonizes nicotine-induced place preference and behavioral sensitization in mice. European journal of pharmacology 2007a; 560: 42-48. [DOI:10.1016/j.ejphar.2006.12.019]
45. Sahraei H, Barzegari A-A, Shams J, Zarrindast M-R, Haeri-Rohani A, Ghoshooni H, et al. Theophylline inhibits tolerance and sensitization induced by morphine: a conditioned place preference paradigm study in female mice. Behavioural pharmacology 2006a; 17: 621-628. [DOI:10.1097/01.fbp.0000236274.18042.54]
46. Sahraei H, Faghih‐Monzavi Z, Fatemi S M, Pashaei‐Rad S, Salimi S H, Kamalinejad M. Effects of Papaver rhoeas extract on the acquisition and expression of morphine‐induced behavioral sensitization in mice. Phytotherapy Research 2006b; 20: 737-741. [DOI:10.1002/ptr.1922]
47. Sahraei H, Zarei F, Eidi A, Oryan S, Shams J, Khoshbaten A, et al. The role of nitric oxide within the nucleus accumbens on the acquisition and expression of morphine-induced place preference in morphine sensitized rats. European journal of pharmacology 2007b; 556: 99-106. [DOI:10.1016/j.ejphar.2006.10.044]
48. Seitz G, Gebhardt S, Beck J F, Böhm W, Lode H N, Niethammer D, et al. Ascorbic acid stimulates DOPA synthesis and tyrosine hydroxylase gene expression in the human neuroblastoma cell line SK-N-SH. Neuroscience letters 1998; 244: 33-36. [DOI:10.1016/S0304-3940(98)00129-3]
49. Steketee J D, Kalivas P W. Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacological reviews 2011; 63: 348-365. [DOI:10.1124/pr.109.001933]
50. Talkhooncheh M, Alaei H A, Ramshini E, Shahidani S. The effect of vitamin C on morphine self-administration in rats. Advanced biomedical research 2014; 3. [DOI:10.4103/2277-9175.139524]
51. Tolbert L C, Morris Jr P E, Spollen J J, Ashe S C. Stereospecific effects of ascorbic acid and analogues on D1 and D2 agonist binding. Life sciences 1992; 51: 921-930. [DOI:10.1016/0024-3205(92)90400-J]
52. Touretzky D S, Saksida L M. Operant conditioning in Skinnerbots. Adaptive Behavior 1997; 5: 219-247. [DOI:10.1177/105971239700500302]
53. Vanderschuren L J, Kalivas P W. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 2000; 151: 99-120. [DOI:10.1007/s002130000493]
54. Vekovischeva O Y, Zamanillo D, Echenko O, Seppälä T, Uusi-Oukari M, Honkanen A, et al. Morphine-induced dependence and sensitization are altered in mice deficient in AMPA-type glutamate receptor-A subunits. Journal of Neuroscience 2001a; 21: 4451-4459. [DOI:10.1523/JNEUROSCI.21-12-04451.2001]
55. Vekovischeva O Y, Zamanillo D, Echenko O, Seppälä T, Uusi-Oukari M, Honkanen A, et al. Morphine-induced dependence and sensitization are altered in mice deficient in AMPA-type glutamate receptor-A subunits. Journal of Neuroscience 2001b; 21: 4451-4459. [DOI:10.1523/JNEUROSCI.21-12-04451.2001]
56. Vezina P, Stewart J. The effect of dopamine receptor blockade on the development of sensitization to the locomotor activating effects of amphetamine and morphine. Brain research 1989; 499: 108-120. [DOI:10.1016/0006-8993(89)91140-2]
57. Webb I C, Baltazar R M, Wang X, Pitchers K K, Coolen L M, Lehman M N. Diurnal variations in natural and drug reward, mesolimbic tyrosine hydroxylase, and clock gene expression in the male rat. Journal of biological rhythms 2009; 24: 465-476. [DOI:10.1177/0748730409346657]
58. Wise R A. Dopamine, learning and motivation. Nature reviews neuroscience 2004; 5: 483-494. [DOI:10.1038/nrn1406]
59. Yang L, Chen M, Ma Q, Sheng H, Cui D, Shao D, et al. morphine selectively disinhibits glutamatergic input from mPFC onto dopamine neurons of VTA, inducing reward. Neuropharmacology 2020; 176: 108217. [DOI:10.1016/j.neuropharm.2020.108217]
60. Zachry J E, Nolan S O, Brady L J, Kelly S J, Siciliano C A, Calipari E. Sex differences in dopamine release regulation in the striatum. Neuropsychopharmacology 2020: 1-9. [DOI:10.1038/s41386-020-00915-1]
61. Zarrindast M-R, Gholami A, Sahraei H, Haeri-Rohani A. Role of nitric oxide in the acquisition and expression of apomorphine-or morphine-induced locomotor sensitization. European journal of pharmacology 2003; 482: 205-213. [DOI:10.1016/j.ejphar.2003.10.006]
62. Zelfand E. Vitamin C, Pain and Opioid Use Disorder. Integrative Medicine: A Clinician's Journal 2020; 19.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.