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Introduction: The positive impact of physical activity on age-related memory impairment 
is well documented. There is no clear report on the effects of pre-adolescent exercise on 
cognitive abilities in adulthood.
Methods: Male Wistar rats (4-week-old) were randomized to a non-swimmer (control, 
n=20) and swimmer (n=20). The swimmer group trained for 30min a day, 6 days per week, 
6 weeks. After the last day, behavior (through passive avoidance learning and radial maze) 
and electrophysiological techniques were evaluated in rats.
Results: Swimming exercise led to a decrease in the number of trials in the passive avoidance 
test. In addition, swimming reduced the number of working memory and reference memory 
errors in the radial maze task. On the radial maze task, the two groups showed equal learning 
ability in finding the baited food arms by day 15. The results of the recall tests showed that 
the number of total memory errors and working memory errors was significantly lower in 
the swimmer group than in the non-swimmer group. Exercise also improved both Population 
spike (PS)  amplitude and field-excited postsynaptic potential slope.
Conclusion: These results revealed that swimming exercise could improve memory by 
increasing synaptic plasticity in rats.
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Adolescence is a vulnerable developmental stage char-
acterized by critical neuronal purification, risky behav-
iors and emotional instability (Khani et al., 2022). This 
phase is a transition from pre-adolescence to adulthood 

(Dahl, 2004; Eiland and Romeo, 2013). Adolescence 
generally allocated in early, middle and late stages. In 
humans, around 10-14 years are considered earlier, 15-
17 years middle and 18-25 years late adolescence or 
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initial adulthood (Arnett, 2000). Parallel values ​​are ob-
served in rodents, where PNDs 28 to 42 are measured 
to be in early middle adolescence (Brust et al., 2015) 
and PNDs 42 to 55 are reflected to be in the context of 
overdue adolescence/advancing adulthood (Salmanza-
deh et al., 2020). There are distinct physiological and 
behavioral traits to each of those ranges (Bogin, 1994). 
In addition, removal of excessive neuronal connections 
increases early in life, leading to reduced synaptic densi-
ty in late preadolescence and late adolescence (Lenroot 
et al., 2007). In this growth phase, white matter integrity 
is also connected with the enhancement in interhemi-
spheric transmission (Muetzel et al., 2008), inhibitory 
management (Liston et al., 2006) and functioning mem-
ory (Olesen et al., 2003).

Memory is a complex brain function to learn and recall 
new facts (Shahidi et al., 2018). Two types of memory, 
consisting of reference memory and working memory 
can be expected in spatial tasks in rodents, specifical-
ly in the Morris water maze and the radial arm maze 
(Shahidi et al., 2014; Shahidi et al., 2004). As part of the 
limbic system, the hippocampus appears to be crucial 
for memory function (Shahidi et al., 2018).

Exercise has positive properties on the functions of 
various organs in the body (Khajehnasiri et al., 2021; 
Sadeghian et al., 2021), including the nervous system 
and the brain (Molaei et al., 2020). Current studies have 
shown that exercise significantly facilitates the acquisi-
tion and/or retention of several hippocampus-dependent 
tasks in rodents (Abshenas et al., 2020; Molaei et al., 
2020). Exercise improved learning and memory through 
hippocampal neurogenesis (Abshenas et al., 2020). In 
addition, exercise improves brain-derived neurotrophic 
factor (BDNF) levels and synaptic plasticity within the 
hippocampus of physically active rats (Abshenas et al., 
2020; Farmer et al., 2004). 

The dentate gyrus (DG) is part of the formation of the 
hippocampus in the temporal lobe of the brain (Amaral 
et al., 2007). This rejoin is a useful resource in the forma-
tion of the most recent episodic memories (Hatami et al., 
2018), spontaneous exploration of novel environments 
(Poulter et al., 2020) and other features. It is noteworthy 
that the presence of extensive neurogenesis in the adult 
human dentate gyrus was the challenge of the discussion 
(Hatami et al., 2018). The hippocampus consists of three 
main parts: the DG, the cornea ammonia (CA) 1 and 3. 
Information is transmitted through the entorhinal cortex 

to the DG, CA1 and CA3 (via perforant pathway fibers), 
DG to pyramidal neurons CA3 (via mossy fibers) and 
pyramidal neurons CA3 to CA1 (via Schaffer collater-
als). CA1, in turn, returns to the cerebral cortex as a one-
way stimulus and forms the “hippocampal trisynaptic 
circuit” (Avchalumov and Mandyam, 2021).

Some studies have been supported the molecular basis 
of long-term potential (LTP) in the CA1 region of the 
hippocampus in memory consolidation for avoidance 
learning (Ahmed and Frey, 2005). In another study, in 
both hippocampal subregions, the DG and CA1 regions, 
LTP was shown to be uniformly facilitated by the same 
novel environment (Kemp and Manahan-Vaughan, 
2008; Shahidi et al., ). Many studies have shown that 
treadmill running leads to selective improvements in 
hippocampal plasticity (Abshenas et al., 2020). This 
study examined the effect of exercise during the pre-ad-
olescent period on memory and synaptic plasticity in 
adult male rats.

 
Material and methods

Groups
Our research performed on 40 male Wistar rats (4-5 

weeks; Purchased from the Hamadan University of 
Medical Sciences animal house). The animals were 
subjected to controlled environmental factors includ-
ing: temperature of 20±2°C, light/dark cycle of 12/12 
hours and relative humidity of 60±5% and had free ac-
cess to food and water. After 7 days of adaptation, the 
rats were randomly distributed into two groups (n=20 
rats/group): group 1 (non-swimmers; animals unable to 
swim) and group 2 (swimmer group; animals trained to 
swim). All experimental and animal care procedures ac-
cepted by the Hamadan University of Medical Scienc-
es Ethics Committee (Umsha.1387.42458) and carried 
out in accordance with the National Institutes of Health 
guidelines (NIH Publication 8023, 1996) on laboratory 
animal care standards. 

Exercise protocol
The animals were acclimated to the pool for five con-

secutive days (5-20min per day). After acclimatization, 
the trained rat swam for six consecutive days (60min per 
day) for two weeks. Control rats did not swim (Habibi 
et al., 2016). On the first day, the training sessions lasted 
10min and increased by 10min every 7 days. On the ul-
timate day, the animals swam constantly for 20min and 
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on the give up of the 14th day for 30min. Daily training 
(30min) was maintained from day fourteen to the end of 
work  (de Lima et al., 2012). After the last training day, 
each animal exposed to a series of behavioral tests.

Passive avoidance learning test (PAL)
Basically, the equipment and methods were similar to 

previous studies (Afshar et al., 2018). Briefly, a passive 
avoidance device (namely, a shuttle box) consisted of 
two equally sized compartments divided by a guillo-
tine door. The walls and floor of a light compartment 
were made of transparent sheets and the walls of a dark 
chamber were prepared of dark opaque plastic. An elec-
tric shock used to be conveyed to the flooring of the 
darkroom by a stimulator (50Hz, 1.5s, 0.4mA intensity)  
(Hosseini et al., 2010). 

The PAL test consists of three phases: habituation, ac-
quisition and retention. During the habituation stage, all 
experimental groups underwent two tests. At first, each 
rat was placed in the bright compartment of the device 
and after 15s, the guillotine door was raised so that the rat 
entered the dark compartment. Then the door was closed 
and 30s later, the rat was taken out. After 30min, this 
habituation test repeated. In passive avoidance training, 
animal was placed inside a lighted room. Five seconds 
later, the door was opened and when the rat entered the 
dark room, the door was closed and the rat received an 
electric shock. The avoidance behavior was repeated un-
til the rats did not enter the dark room within 120s. Dark 
section input latency (step-through latency, STLa) and 
number of tests to acquisition were recorded (Dehbani 
et al., 2019). In the retention experiment (24h after PAL 
acquisition), the rat was located in the lighted section 
and after 5s the guillotine door was raised. Step-through 
latency during the retention trial (STLr) and time spent 
in the dark compartment (TDC) recorded up to 300s. No 
electric shock administered in this experiment.

Radial maze
Spatial memory measured in an 8-arm radial maze. 

The device consisted of eight arms (50cm long, 15cm 
high, 10cm wide) extending from a small central plat-
form (20cm in diameter). A feeding station was located 
at the end of each arm and food pellets inserted at the 
distal end of four arms. Several additional visual cues 
for the labyrinth added to the walls for orientation. The 
rat located in the maze and allowed to find and eat all of 

the food pellets for a maximum duration of 5min. All 
animals trained 3 trials per day, with an interval between 
trials of 5min and the trials were recorded by the vid-
eo tracking software for 6 consecutive days. On the last 
day, the trial completion time and the number of food 
arms baited measured. A reference memory error was 
measured when the rat never visited baited arms, while 
a working memory error was calculated when a rat vis-
ited a baited arm more than once (Huang et al., 2004; 
Shahidi et al., 2014).

Electrophysiological study
Electrophysiological techniques previously described 

(Shahidi et al., 2019a; Shahidi et al., 2019b). After be-
havioral testing, anesthetized rats were fixed inside the 
stereotaxic apparatus using urethane (1.5g/kg, IP, Sig-
ma-Aldrich, USA). An electric heating pad kept the rats’ 
body temperature at 36.5±0.5°C. Based on the Paxinos 
and Watsons atlas, the position of the DG and the per-
forating pathway (PP) (Shahidi et al., 2021) was deter-
mined and small holes were drilled in the skull. Then 
the recording and stimulation electrodes were located 
in the DG and PP areas, respectively. In each region 
(DG/PP), Teflon-insulated bipolar stimulation/record-
ing electrodes (concentric; 125m in diameter) were used 
(Mohammadi et al., 2019). 

An input/output response curve was plotted by the in-
tensity of a single-pulse stimulation and the average of 
five responses for each intensity. This recorded baseline 
response was considered a “0 min” time in the measure-
ment of PS amplitude and field-excited postsynaptic 
potential (fEPSP) immediately before high-frequency 
stimulation (HFS). HFS (400Hz, excitation time of 0.2 
milliseconds, 10 bursts of 20 stimuli and burst interval 
of 10s) induced LTP. After HFS, the proposed responses 
recorded at 5, 30, 60min, fEPSP and PS were measured.

Excitation parameters were set from the stimulus us-
ing eTrace software and supplied to the constant current 
cutoff system “A365, WPI, and Inc. USA” through a 
data acquisition device before being transmitted to the 
PP via the excitation electrode. The DG’s field-induced 
potential response passed through the preamplifier, am-
plified (1000) and filtered (1Hz to 3kHz) (Karamian et 
al., 2015). These data were stored on a computer for fu-
ture offline analysis (Salehi et al., 2015). The PS ampli-
tude is the distance of the negative peak between two 
positive peaks.  The slope fEPSP is that the slope of the 

Physiology and Pharmacology 27 (2023) 161-170 | 163 Shahidi et al.



primary positive peak.

Statistical analysis 
The data analyzed in SPSS version 16.0. Electrophys-

iological data, including PS amplitude and EPSP slope, 
analyzed using two-way ANOVA. In addition, data from 
behavioral examination statistically evaluated with the 
help of a t-test. The statistical difference was P<0.05. 
All statistics mentioned as mean±SEM.

Results
Passive avoidance learning test
As demonstrated in Figure 1A, there has been no 

remarkable difference within the STLa within the 
first acquisition trial among the experimental groups 
(non-swimmer: 16.3±4, swimmer: 21.6±4.8). An evalu-
ation of the number of trials to acquisition indicated that 
there was a noteworthy difference between the groups 
(non-swimmer: 1.2±0.16, swimmer: 1±0; Fig. 1B). Es-
pecially, the number of trials inside the Swimmer group 
become noticeably decrease than the non-swimmer 
group (P<0.05).

Figure 1 showed the consequences of the retention 
phase in the PAL test. Our results showed no remark-
able difference in STLr between groups (non-swimmer: 
195.2±43, swimmer: 163.1±32; Fig. 1C). Furthermore, 
no significant differences in TDC were observed be-
tween the experimental groups (non-swimmer: 36.1±12, 
swimmer: 47.1±14; Fig. 1D).

Radial maze 
As indicated in Figure 2, there have been no significant 

differences within the trial termination times [non-swim-
mer: 105.35±12, swimmer: 105.10±15] between the two 
groups on the last day of training. According to the re-
sults, there was a significant difference in the number of 
references [non-swimmer: 2.4±0.16, swimmer: 2±0.1] 
and working memory errors [non-swimmer: 0.85±0.2, 
swimmer: 0.35±0.1] between two experimental groups. 
Figure 3 showed that the number of reference memo-
ry errors in the Swimmer group significantly decreased 
compared to the non-swimmer group (P<0.01). It also 
found that the number of working memory errors in the 
Swimmer group considerably reduced compared to the 
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FIGURE 1.FIGURE 1. Results of the passive avoidance learning (PAL) test among the experimental groups: swimmer and non-swimmer (n=20 per 
group). Step through latency in the acquisition stage (STLa) (A), the number of trials to acquisition (B), step-through latency during the reten-
tion trial (STLr) (C), and the time spent in the dark compartment during the retention trial (TDC) (D). *P<0.05 as compared to the non-swimmer 
group.
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FIGURE 2.FIGURE 2. Effect of swimming exercise on the trial termination time on the radial maze task (n=20 per group).

 

FIGURE 3.FIGURE 3. Effect of swimming exercise on the number of reference memory errors on the radial maze task (n=20 per group). **P<0.01 as 
compared to the non-swimmer group.

 

FIGURE 4.FIGURE 4. Effect of swimming exercise on the number of working memory errors on the radial maze task (n=20 per group). **P<0.01 as 
compared to the non-swimmer group.
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non-swimmer group (P<0.01, Fig.4). 

Effect of swimming exercise on the amplitude of PS of 
the granular cell of DG

Figure 5 showed sample trace responses in groups. 
Two-way ANOVA revealed remarkable differences in 
the PS amplitude experimental groups and time points 
(5, 30, 60 and 120min). In addition, the PS amplitude 
of the swimmer group was remarkably higher at 30 
(P˂0.05), 60 (P˂0.05) and 120min (P˂0.01) than that 
of the non-swimmer group, as shown by Student’st-test 
(Fig. 6). 

Effect of swimming exercise on the EPSP slope of the 
granular cell of DG

Figure 7 indicates the effects of swimming on the 
fEPSP slope in the DG granular cell synapses. Consis-
tent with PS amplitude, there was a significant effect of 
treatment and time points in the EPSP slope of DG gran-
ule cells. Our results revealed that the fEPSP slope was 

considerably increased in the swimmer group at 60 and 
120min compared to the non-swimmer group (P˂0.05).

Discussion
The main findings of this study consist of: (1) Swim-

ming exercise reduced the number of passive avoidance 
test trials; (2) Swimming exercise enhanced retrieval of 
spatial memory by decreasing the number of working 
memory and reference memory errors, and (3) Swim-
ming exercise increased hippocampal PS amplitude and 
fEPSP slope.

The present study demonstrated that swimming ex-
ercise improves learning as measured by the PAL test. 
In addition, swimming improved both spatial reference 
and working memory in the radial maze task. Since Da 
Cruz et al. (2012) reported that swimming exercise in-
creased non-spatial memory in the novel object test. 
Several studies have shown that swimming exercise im-
proves new object recognition memory in rats (Cechella 
et al., 2014; O’Callaghan et al., 2007). Another study in-
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FIGURE 5.FIGURE 5. Stimulated field potential sample traces in the dentate gyrus region in groups before and after high-frequency stimulation.
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dicated that training improved the learning and memory 
of sleep deprivation rats in the Y maze test (Zhang et al., 
2017). Accumulating evidence demonstrated that tread-
mill exercises enhanced memory in the PAL and MWM 
tests (Abshenas et al., 2020). There is evidence-based 
physical activity such as running and swimming can 
increase BDNF expression in the rat hippocampus and 
increase cognitive function (Abshenas et al., 2020; 
Zhang et al., 2017). Regular physical activity seems to 
enhance educational and work performance in children, 
young adults and the elderly, with or without cognitive 

impairment (Raichlen and Alexander, 2017).
Surprisingly, benefits were associated with time spent 

on physical activity (Raichlen and Alexander, 2017). 
These enhancements frequently paired with anatomical 
and functional changes in the brain. Extension of part of 
the brain (Sexton et al., 2016), improved brain connec-
tivity (Li et al., 2017) and increased blood flow in the 
cerebral and hippocampus (Steventon et al., 2020) are 
among these changes, which are combined with neuro-
genesis (Abshenas et al., 2020). The molecular bases of 
these adaptations attributed mainly to neutrophils, par-

 

 

 

 

FIGURE 7.FIGURE 7. The effect of swimming exercise on the fEPSP LTP of DG granule cells following a 400-Hz HFS applied to the PP. Data are ex-
pressed as mean±SEM % of baseline. LTP of the EPSP slope in area DG granular cell synapses of the hippocampus was significantly different 
between groups. *P<0.05 as compared to non-swimmer group.

 

FIGURE 6.FIGURE 6. The effect of swimming exercise on the PS LTP of DG granule cells following a 400-Hz HFS applied to the PP. Data are expressed 
as mean±SEM % of baseline. LTP of the PS amplitude in area DG granular cell synapses of the hippocampus are significantly different between 
groups. **P<0.01 and *P<0.05 as compared to non-swimmer group.
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ticularly BDNF (Abshenas et al., 2020).
Our findings showed that swimming exercise in-

creased EPSP slope and PS amplitude. Similarly, a sig-
nificant enhancement LTP following training was ob-
served by O’Callaghan et al. (2007). In another study, 
voluntary training improved synaptic plasticity dis-
orders in sleep-deprived female rats (Rajizadeh et al., 
2020). Consistent with our results, exercise enhanced 
long-term potentiation in mice (Liu et al., 2011; Van 
Praag et al., 1999). Based on these findings, exercise 
can improve synaptic plasticity and LTP, up-regulation 
of BDNF expression and improve cognitive tasks.

Conclusion
Our results demonstrated that swimming exercise im-

proved learning in the PAL test and memory in the radial 
maze task. Moreover, swimming improved hippocam-
pal LTP in rats. Further studies such as histology and 
molecular experiments should be focused to regulate the 
mechanistic pathways of exercise.
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