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The organ of Corti of mammals has an organized structure in which row of inner and outer 
hair cells (HCs) are enclosed within the numerous cells on the basilar membrane. Given 
the prevalence of sensorineural hearing loss due to aging and acoustic insult, it is highly 
desirable to develop a protocol that produces cochlear sensory cells and their associated 
spiral sensory neurons as a tool to advance understanding of inner ear development. The 
replacement of damaged auditory neurons holds promise for significantly improving clinical 
outcomes in deaf patients. Cell therapy is one of the treatment options for deafness. The 
progress in cell therapy and reprogramming techniques has opened avenues to stimulate 
either endogenous or transplanted stem cells, aiming to replace and repair damaged inner ear 
HCs and restore auditory function. In fact, current research focuses on generating functional 
HCs. Various approaches are being explored to regenerate auditory HCs and facilitate neural 
connections. Here is an overview of existing experimental culture setups for the HCs and 
auditory neurons regeneration and their potential treatment for hearing disorders.
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Hair cells (HCs) and auditory neurons in the inner ear 
work together to send acoustic information to the brain 
(Hyakumura et al., 2019). A complex cell arrangement 
during embryonic development in a precisely coordinat-
ed spatiotemporal manner is required for proper func-
tion of the inner ear of vertebrates. HCs are located in 
both the auditory and vestibular regions of the inner ear 
(Menendez et al., 2020). The primary cause of deafness 
often stems from the death and/or dysfunction of HCs 
within the organ of Corti (Khoshsirat et al., 2021). HCs 

are precisely arranged, with a single row of inner HCs 
on the medial side of the epithelium and three rows of 
outer HCs positioned more laterally within the organ 
of Corti (Fig 1). Supporting cells, including Hensen’s 
cells, Deiters’ cells, pillar cells and phalangeal cells, in-
termingle with HCs in the cochlea. HCs are susceptible 
to degradation with age and can sustain damage from 
loud noises, and treatments like those used in infections 
or cancer chemotherapy. In mammals, lost HCs cannot 
be repaired or replaced. While extensively studied in 
mice, studying HCs poses challenges due to their limit-
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ed numbers in the inner ear and their deep location with-
in the temporal bone. Researchers are looking for ways 
to grow HCs in the laboratory to better understand their 
functionalities and the contributing factors to their deg-
radation and loss (Menendez et al., 2020). Several exper-
imental studies have shown the regeneration of auditory 
neurons through the application of exogenous neurotro-
phins in cases of sensorineural hearing loss (Gillespie 
and Shepherd, 2005; Shepherd et al., 2008; Bader et al., 
2010; Chen, 2011; Ortiz-Marquez et al., 2013). How-
ever, the neuroprotective effect of neurotrophic factors 
was not observed after treatment (Momeni et al., 2011). 
Long-term delivery of exogenous neurotrophins to the 
cochlea using pump-based systems presents challenges 
due to increased infection risks associated with device 
reloading or replacement, commonly applied in labo-
ratory animal studies (Chuang, 2012). In regarding to 
these difficulties, researchers are developing multiple 
strategies to direct the differentiation of progenitor and 

exogenous cells towards the regeneration of function-
al HCs and auditory neurons (Chen et al., 2012; Okano 
and Kelley, 2012; Peyvandi et al., 2018a; Peyvandi et 
al., 2018b). Cell therapy holds promise as a treatment 
for sensorineural hearing loss, potentially enabling the 
repair or replacement of lost HCs. Utilizing various 
sources of adult and embryonic stem cells in monocul-
ture has been investigated for repairing or replacing in-
jured HCs (Zengler et al., 2002). Interactions and signal 
transduction between developing tissues play important 
roles in the regulation of differentiation in vivo. Due to 
cellular signaling pathways complexity, it is often diffi-
cult to completely mimic this environment in vitro (Pey-
vandi et al., 2018a; Peyvandi et al., 2018b). Efforts have 
been made to derive auditory neurons from stem cells 
established in vitro or through co-culture approaches, 
aiming to repair or regenerate hearing loss caused by 
sensorineural issues (Coleman et al., 2007; Samban-
dam, 2018). The purpose of this study is to review the 
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FIGURE 1.FIGURE 1. The anatomy of the human ear and cochlear partition. (A) The human ear consists of three primary components: the outer, middle, 
and inner ear. (B) In the cochlea, a cross-sectional view reveals three ducts: the scala vestibuli, scala media (or cochlear duct), and the scala 
tympani. Scala media, an endolymph-filled compartment includes sensory hair cells (Adapted from Noback 1967). (Noback, 1967; Kandel et 
al., 2000).



induction procedures for stem cell differentiation into 
cochlear HCs or auditory neurons, offering a potential 
therapeutic approach for treating deafness. 

Literature Search
Papers were collected from Web of Science, PubMed, 

Scopus, and Google Scholar electronic databases from 
2000 to 2022 to discuss the development of cell therapy 
approaches for damaged cochlear HCs regeneration or 
replacement which help in resolving deafness. Also, an 
e-book (1967) was used for schematic illustrations.

Conventional Approaches
Repairing HCs damage is important for maintaining 

auditory function throughout life, as mammalian HCs 
do not replace or regenerate. For decades, researchers 
across the globe have been dedicated to discovering 
cures for deafness (Nakagawa, 2014). Although co-
chlear implants have gained popularity for managing 
hearing loss, they do not cure deafness or restore natural 
hearing. These devices transform input sounds into elec-
trical stimuli within the Spiral ganglion neurons (Sprinzl 
and Riechelmann, 2010). Recent biological approaches 
aiming to regenerate cochlear HCs in mammals offer 

promising directions for treating deafness by modulat-
ing molecular pathways or through cell transplantation 
(Steel and Kros, 2001; Li et al., 2004) (Fig 2).

 
Cochlear Implant
A cochlear implant (CI) is a small electronic device 

designed to electrically stimulate the SGNs within the 
cochlea of deaf people, enabling them to receive and in-
terpret sound. By bypassing the normal auditory trans-
mission pathway through hair cells, a CI provides direct 
electrical stimulation to the SGNs. In fact, it bypasses 
the damaged part of the cochlea and directly stimulates 
the remaining auditory neurons. While cochlear im-
plants do not cure or restore hearing, they help people 
with severe or complete deafness in perceiving sound 
(Ramsden, 2002).

Growth Factors Therapy
Growth factors, a class of secretory proteins, play 

critical roles in cell survival, proliferation, and differ-
entiation, particularly in various conditions aimed at 
differentiating auditory HCs (Bakhtiarzadeh et al., 
2018; Mahmoudian-Sani et al., 2018). Three families 
of growth factors, including fibroblast growth factor 
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FIGURE 2.FIGURE 2. Biological approaches for cochlear regeneration in sensorineural hearing loss



(FGF), neurotrophin (NT), and insulin growth factor-1 
(IGF-1), are involved in otic neurogenesis. In this re-
gard, auditory neurons can connect to the sensory mech-
anoreceptors, HCs, and central nervous system of the 
ear (Alsina et al., 2003). Neurotrophic factors are criti-
cal for the developing auditory system and innervation 
during development. In addition, they are necessary for 
the survival and maintenance of SGNs in adulthood. 
Treatment with neurotrophins protects and prevents co-
chlear cells from degeneration caused by drugs, noise, 
or aging (Niknazar et al., 2022) (Mahmoudian-Sani et 
al., 2018). Simultaneous application of multiple growth 
factors with neomycin has significant effects in reducing 
HC loss. Among these, epidermal growth factor (EGF) 
has proven effective in supporting the survival of out-
er HCs (Lou et al., 2015). EGF receptor transcripts are 
upregulated in neomycin-treated cochlear epithelium in 
3-day-old rats, that increases mammalian neonatal HC 
replacement process following neomycin induced HC 
toxicity (Zine et al., 2000). Furthermore, interventions 
involving brain derived neurotrophic factor (BDNF) 
and ciliary neurotrophic factor (CNTF) have enhanced 
the survival and function of SGNs in guinea pig models 
of hearing loss (Shinohara et al., 2002). Studies admin-
istrating glial-derived neurotrophic factor (GDNF) to 
the inner ear of hearing-impaired animals have reported 
protective effects on SGNs survival and electrical re-
sponsiveness (Maruyama et al., 2008; Fransson et al., 
2010). Current challenges associated with neurotroph-
ic factors therapy is how to deliver them to the cochlea. 
Several methods such as osmotic mini-pumps, carri-
er-based delivery, or encapsulated cell targeted delivery 
have been applied. In addition, the long-term effects of 
exogenous neurotrophin delivery pose challenges due to 
a heightened risk of infection (Shinohara et al., 2002; 
Agterberg et al., 2009; Pettingill et al., 2011). 

Totally, growth factors are important factors during 
the development of the auditory system and ganglion 
cell innervation. They are also essential for maintaining 
adult SGNs, protecting neuronal populations from inju-
ry, or stimulating neuronal regeneration and repair after 
injury.

Gene Therapy 
Gene therapy, utilizing exogenous DNA delivery or 

genome editing agents to the cochlea, is another option 
to treat hearing disorders. So far, numerous vectors from 

different virus families such as adenovirus, adeno-asso-
ciated virus or lentivirus have been tested. Protective ef-
fects of adenovirus-mediated overexpression of GDNF 
against gentamicin ototoxicity have been shown by Su-
zuki et al (Suzuki et al., 2000). Nonviral vector systems, 
including plasmids and lipid-covered packages are also 
alternatives methods for gene delivery. As well, electro-
poration technology has been developed to manipulate 
gene expression in postnatal rat cochlear explants us-
ing the pCligGFPAtoh1 vector (Zheng and Gao, 2000). 
In addition, CRISPR-associated protein 9 (CRISPR/ 
Cas9) has greatly enhanced genome editing efficien-
cy in modifying mutant alleles for treating hearing loss 
in animal models. Currently, the combination of iPSC 
modeling and CRISPR / Cas9 gene editing shows great 
potential for gene and stem cell therapies in hearing loss 
tratment (Nourbakhsh et al., 2021).

The closed space of the inner ear makes gene or drug 
delivery highly efficient compared to systemic delivery, 
where large doses are often required to reach the inner 
ear. Recent advancements in inner ear gene therapy show 
increased accessibility, offering promising avenues for 
further research. Continuous efforts to improve cochle-
ar gene delivery methods hold the potential to establish 
gene therapy as a viable treatment for hearing loss.

Cell Therapy
Stem cells in several mammalian tissues has the po-

tential to self-regenerate and aid in the repair of injured 
tissue. Investigations into stem cell therapy for address-
ing hearing loss primarily concentrate on their potential 
to develop and function as HCs. Researchers are devel-
oping multiple strategies to guide exogenous and pro-
genitor cells towards the regeneration of functional HCs 
or auditory neurons within the inner ear (Niemeyer et 
al., 2011; Goers et al., 2014; Krinner and Roeder, 2014), 
(Table 1). 

Strategies to Induce Otic Cell types From Stem 
CellsEndogenous Stem Cells

HCs in the inner ears of non-mammalian vertebrates, 
including birds, amphibians, and fish, exhibit a lifelong 
ability to regenerate (Warchol et al., 1993; Goers et al., 
2014). In contrast, the adult mammalian auditory sys-
tem fails to regenerate damaged hair cells, resulting in 
permanent hearing loss. Recent studies, however, have 
demonstrated the differentiation and regeneration of 
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HCs from endogenous inner ear stem cells. During this 
regeneration process, endogenous stem cells can differ-
entiate into HCs through a combination of mitotic and 
non-mitotic mechanisms, triggered by signals sent by 
dying hair cells (Li et al., 2003a; Oshima et al., 2007). 

Research has also revealed the innate ability of adult 
mammalian vestibular HCs to self-repair following in-
jury. Notably, apart from the vestibular system, the co-
chlea of   newborn mammals also contains endogenous 
stem cells (Kelley, 2006; Brigande and Heller, 2009). 
Therefore, a promising approach to treat SNHL involves 
either activating endogenous stem cells or inducing ge-
netic modifications in the remaining hair cells. Recent 
studies have shown that inner ear stem/progenitor cells 
can be isolated from the neonatal cochlea (Oshima et al., 
2007). Moreover, the overexpression of several genes 
in adult cochlear cells suggests an inherent capacity for 
repair when stimulated by specific signals (Izumikawa 
et al., 2005). 

The presence of stem cell inside the cochlea raises the 
hope for the regeneration of inner ear cells. However, the 
loss of these stem cells postnatally correlates with a de-
cline in regenerative potential and can restrict our ability 
to stimulate regeneration. Hence, future strategies for re-
generation should carefully consider the distribution of 
endogenous stem cells in the inner ear and whether cells 
retaining regenerative potential are conserved.

Exogenous Stem Cells
Mesenchymal Stem Cells 
Mesenchymal stem cells (MSCs) are adult cells iden-

tified by their non-hematopoietic nature, multipoten-
cy, high self-renewal capacity, rapid proliferation rate, 
differentiation potential, paracrine activity, and ability 
to migrate to injury sites (Guadix et al., 2017). MSCs 
derived from sources like bone marrow, blood, adipose 
tissue, umbilical cord, and placenta which applied in 
various tissue regeneration studies (Ding et al., 2011). 
Among these, bone marrow-derived MSCs hold prom-
ise for inner ear cell replacement therapy. The differenti-
ation of MSCs into auditory HC –like cells and neuronal 
cells needs factors such as BDNF, GDNF, neurotroph-
in-3 (NT-3), and growth factors (Mahmoudian-Sani et 
al., 2017; Gonmanee et al., 2018; Young et al., 2018). In 
a study by Sang-Jun Jeon, MSCs obtained from mouse 
bone marrow were differentiated into sensory HCs. 
MSCs were first transfected with the transcription fac-

tor EGFP-Math1 and then differentiated into sensory 
progenitor cells through a two-week culture involvin-
gIGF1, EGF, bFGF, NT3, and BDNF. Overexpression 
of Math1, a key HC development inducer, augmented 
the expression of HC markers in the sensory epithelium. 
Co-culture with chick otocyst cells further increased 
the expression of HC-related markers such as myosin 
VIIa, p27Kip, Brn3c, jagged2, and Math1, suggesting 
MSCs’ differentiation to inner ear sensory cells (Jeon 
et al., 2007). It was reported that MSCs derived from 
rat bone marrow could differentiate into HCs in cul-
ture. MSCs were first differentiated into neuron-like 
cells. Neural differentiation involved culturing BMSCs 
(at passage 4) in DMEM/F12 supplemented with B27, 
bFGF, and EGF.For the HC –like cell induction, neu-
ral stem cells were cultivated in a serum-free medium 
comprising DMEM/F12, B27, bFGF (Basic fibroblast 
growth factor), EGF, and IGF-1 for 14 days, resulting 
in the detection of HC markers like Myosin VIIA via 
immunocytochemistry (ICC) assay (Qin et al., 2011; 
Niknazar et al., 2019MSCs-based therapies have been 
widely used in the treatment of various disorders (Wu 
et al., 2014). Systemic administration of MSCs in noise 
or drug-induced cochlear damage models triggers abun-
dant neurotrophin release at the injured cochlea site, 
enhancing the regeneration of auditory HCs and neu-
rons (Choi et al., 2012). In the sensorineural hearing 
loss model, MSCs transplantation has led to functional 
hearing recovery by repairing damaged spiral ligament 
fibroblasts (SLF) and damaged gap junction networks 
in the cochlear lateral wall, facilitated by the migra-
tion and proliferation of MSCs (Kamiya et al., 2007). 
In young mice cochlea   , implanted MSCs migrated and 
transformed into fibroblast-like cells without affecting 
auditory function, suggesting that MSCs transplantation 
could potentially slow or halt the early progression of 
sensorineural hearing loss (Kasagi et al., 2013). 

The application of cell therapy utilizing MSCs for 
damaged cochlear tisshues holds promise for regener-
ating HCs, SGNs, and spiral ligaments. Indeed, MSCs 
therapy contribute to slowing the progression of hearo-
ing loss.

Neural Stem Cells
Neural stem cells (NSCs) can regenerate themselves 

and differentiate into various cell types including neu-
rons, oligodendrocytes, and astrocytes (Clarke et al., 



Strategies for Cochlear Regeneration from Stem Cells Physiology and Pharmacology 27 (2023) 331-344 | 338

2000; Gage, 2000). Several studies have shown that the 
use of NSCs in the treatment of SNHL is promising by 
replacing spiral ganglion neurons or HCs within the in-
ner ear NSCs were transduced with neurogenin 2 (ngn2) 
before transplantation into both   normal and hearing-loss 
animal cochlea, resulting in notably low survival rates 
of transplanted cells in the ngn2-introduced group (Hu 
et al., 2005). Another study involved transplantation of 
adult mouse NSCs into the inner ears of mature guinea 
pigs to investigate their potential for survival and differ-
entiation into auditory neurons (Carricondo and Rome-
ro‐Gómez, 2019). Parker et al., revealed that transplant-
ed NSCs in acoustically damaged cochlea migrated 
throughout the cochlea, expressing markers for HCs and 
SGNs (Parker et al., 2007). A recent study investigat-
ed the therapeutic effect of olfactory epithelium neural 
stem cells (oeNSC) on noise-induced hearing loss in a 
rat model. Transplanted oeNSC successfully amelio-
rated deafness in rats, evidenced by improved audito-
ry brainstem response (ABR) results. SGNs incubation 
with oe-NSCs led to enhanced release of neurotrophic 
factors such as NGF and NT-3, indicating the potential 
of oe-NSCs in upregulating neurotrophic factor expres-
sion and thus aiding in recovery (Xu et al., 2016).

Multiple investigations have highlighted the promise 
of NSCs in SNHL treatment by either replacing dam-
aged inner ear cells or aiding in their repair and regen-
eration. NSCs exhibit the potential to differentiate into 
hair cells, supporting cells, and auditory neurons within 
the inner ear, offering hope for future therapeutic inter-
ventions.

Embryonic Stem Cells 
Previous study has shown that the differentiation of 

the otic progenitor cells is independent of external sig-
nals from neighboring cells for suitable differentiation 
(Oshima et al., 2010). In vitro differentiation of human 
embryonic stem cells into either HCs or sensory neurons 
is associated with the expression of several well-charac-
terized markers at each stage. However, auditory neuron 
and sensory cell culturing revealed grand challenges in 
terms of both culture media and the necessary differen-
tiation factors for alteration of progenitor cells into the 
specified cell type (Dufner-Almeida et al., 2019). Stem 
cell-derived murine progenitor cell, whether post-trans-
plant in chicken embryonic ears, within 3D aggregates, 
or within the presumptive otic progenitor cells, needed 

co-culture with mesenchymal stromal cells from the 
chicken utricle to achieve proper cell morphological 
maturation (Li et al., 2003b; Koehler et al., 2013). Se-
rum-free media containing supplements like N2 and 
B27 have shown potential in inducing neural progenitor 
cells expressing specific markers of ear placode neuro-
blasts such as Otx2, NeuroD, Brn3a, Nestin, Pax2, and 
Pax8 as a starting point for ESC differentiation (Chen et 
al., 2012) (Shi et al., 2007; Ronaghi et al., 2014). Stud-
ies investigating ESCs for the replacement of HCs and 
SGNsin inner ear regeneration have utilized various 
approaches.. In early studies, mouse ESCs labeled 
with green fluorescent protein (GFP) were introduced 
into the cochlea (Hildebrand et al., 2005). Co-culture of 
human ESCs with mouse cochlear sensory epithelium in 
the presence of bone morphogenetic protein 4 (BMP4) 
was found to be crucial for inducing the expression 
of markers like GATA3, Peripherin, Tropomyosin re-
ceptor kinase B (TrkB), TRKC and ngn1, markers of 
auditory neurons, in some cells (Ronaghi et al., 2014). 
However, only a small fraction of these cells expressed 
three more HCrelated markers, including MYO7A, 
MYO15A, ATOH1, and OTOF (Otoferlin). Progenitor 
cells derived from human ESCs, when differentiated, 
have demonstrated the ability to mature in mouse or-
gan of corti explants, expressing tubulin and synapsin 
at the junction field. Sixty days after transplantation of 
neural progenitor cells that previously differentiated 
from human ESCs into the base of a gerbil- deafferented 
cochlea, abundant new neurites protruding towards the 
apex of the cochlear nerve trunk were detected (Shi et 
al., 2007). 

The potential of ESCs to generate multiple cell types 
has prompted studies exploring their use in replacing 
HCs and SGNs for inner ear regeneration. Additional-
ly, being derived from the patient’s own cells, ESCs are 
considered autologous and do not pose the risk of im-
mune rejection.

Induced Pluripotent Stem Cells
Pluripotent stem cells (PSCs) have the ability to re-

main undifferentiated, self-replicate and differentiate 
over extended periods (Thomson et al., 1998 thesis). In-
duced pluripotent stem cells (iPSCs) are shaped through 
the compelled expression of numerous transgenes, 
generally a combination of Sox2, c-Myc, Oct3/4, and 
Klf4, which reprogram somatic cell nuclei from human, 
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monkey, rat, mouse, and canine origins (Nelson et al., 
2010). Both hESCs and iPSCs are considered pluripo-
tent. Human iPSCs have been considered as an effective 
alternative for human ESCs. Thus, the ability of these 
cells makes them as a viable option for cell-based ther-
apies (Yu and Thomson, 2014). In a study by Oshima et 
al., HC-like cells derived from murine ES and iPS cells 
responded to mechanical stimuli. The differentiation of 
HC-like cells showed no significant difference between 
ESCs and iPSCs. Both murine ESCs and iPSCs demon-
strated the ability to generate otic progenitor cells capa-
ble of differentiating into mechanosensory HCs in vitro. 
These cells expressed specific markers for HCs and re-
sponded to mechanical stimulation, similar to the trans-
duction currents of immature HCs (Oshima et al., 2010). 

Gunewardene et al., successfully established a neuro-
sensory cell line in vitro using two human foreskin-de-
rived iPSC lines. The step-by-step differentiation pro-
cess yielded electrophysiologically active sensory 
neurons, displaying activity patterns resembling those 
of auditory neurons in early postnatal mice (Gunewar-
dene et al., 2014).  In the work by Oshima et al., iP-
SCs derived from Atonal homolog 1 (Atoh1) / nGFP 
transgenic mouse fibroblasts were cultured with Smad3 
inhibitors, Wnt pathway inhibitors, and IGF1 for five 
days, followed by exposure to bFGF for three days to 
induce differentiation into ear progenitor cells (Oshima 
et al., 2010). These cells then differentiated into HCs by 
co-culture with mitotically inactivated embryonic chick-
en utricle stromal cells. However, the overall efficiency 
of HC differentiation from iPSCs was low, with approx-
imately about 12% of iPSC-derived HCs expressing 
Myosin VIIA (MYO VIIA), while only 2.6% express-
ing both MYO VIIA and ESPIN. These iPSC-derived 
HCs exhibited morphological and electrophysiological 
characteristics of immature HCs. 

Chen et al., also succeeded in obtaining HCs from 
human iPSCs (Chen et al., 2018). They utilized iPSCs 
derived from human urinary cells, subjecting them to a 
HC differentiation protocol similar to ESCs, resulting in 
the production of HC-like cells with an efficiency of up 
to 50% (Chen et al., 2012). Another study investigated 
the effect of mouse iPSCs in a SNHL model by differ-
entiating them into HCs and SGNs within the mouse 
cochlea. CM-Di1-positive iPSCs were detected in the 
modiolus and Rosenthal’s canal of the cochlea 4 weeks 
after implantation. Some of these cells expressed mark-

ers of HCs or SGNs. While the transplantation of iP-
SCs slightly improved the ABR threshold, there was no 
significant difference between pre- and post-transplant 
iPSCs. Notably, the transplanted iPSCs were able to mi-
grate and transform into HC-like and SGNs-like cells 
within the cochlea (Nishimura et al., 2009).

Overall, iPSCs have demonstrated promise in re-
generating inner ear cells across various studies (Duf-
ner-Almeida et al., 2019). However, further research is 
needed to enhance the survival and differentiation of 
iPSCs in the cochlea for more effective application in 
hearing loss therapies.

Clinical Application of Stem Cells for Inner ear
The clinical application of stem cells for hearing loss 

treatment is still in its early stages. Studies examining 
the transplantation of autologous BM-MSC in patients 
with SNHL did not yield clinically significant improve-
ments in hearing. However, a 3-year follow-up showed 
no complications or side effects (Lee et al., 2018). An-
other study by Baumgartner et al., investigated the ef-
fect of autologous umbilical cord stem cells (HUCB) in 
acquired SNHL in children. The clinical trial involved 
audiological assessments such as distortion product 
otoacoustic emissions (OAE), ABR, tympanometry, au-
diogram, and brain MRI (magnetic resonance imaging) 
before and after a single intravenous administration of 
HUCB. Encouragingly, no observed toxicity or compli-
cations were reported. Children who received a high-
er dose of cells exhibited a decline in ABR threshold, 
alongside increased white matter areas in the primary 
auditory cortex observed in fractional anisotropy of 
MRI (Baumgartner et al., 2018). 

In addition, current gene therapy research has focused 
on treating genetic deafness using patient- iPSCs (Nour-
bakhsh et al., 2021). Another study showed that hiPSC 
lines reprogrammed using non-integrated mRNA ex-
pressed ear markers PAX8, PAX2, FOXG1, and SOX2, 
and subsequently differentiated into hair cell and neu-
ronal lines. This research highlights that mRNA-repro-
grammed iPSCs can generate ear lineages similar to 
those induced by lentivirus, while being safer for poten-
tial clinical applications (Boddy et al., 2020). 

Presently, there are no Food and Drug Administration 
(FDA)- approved treatments for cell therapy usage in 
hearing loss. However, ongoing clinical trials aim to de-
termine the safety and efficacy of cell therapy in treating 



hearing loss in humans. 

Conclusion
While both endogenous and exogenous stem cell ap-

plications have shown promise in various animal mod-
els, their translation to human treatments is hindered by 
several limitations. Addressing these limitations is im-
perative before considering the implementation of these 
treatment options in clinical settings. Thus, future stud-
ies should prioritize assessing the functional integration 
of engrafted cells into the intricate hearing system of an-
imal models. Presently, targeted differentiation of stem 
cells into HCs or neurons, exploration of optimal meth-
ods for stem cell transplantation into the inner ear, and 
rigorous safety evaluations constitute the groundwork 
for advancing towards clinical cell therapy.

In addressing sensorineural hearing loss (SNHL), con-
ventional treatments such as hearing aids and cochlear 
implants have been pivotal in improving patients’ hear-
ing capabilities However, the efficacy of these interven-
tions depends on the remaining HCs and spiral neurons. 
Therefore, current research in audiology emphasizes 
the development of several approaches aimed at initi-
ating HC regeneration or replacement within the inner 
ear thereby offering potential solutions for deafness. Al-
though both endogenous and exogenous applications of 
stem cells have shown promise in several animal mod-
els, there are numerous limitations that need addressing 
before implementing these treatment options in humans. 
Therefore, further studies should focus on the efficient 
functional integration of engrafted cells into the hearing 
systems of animal models. Currently, targeted differen-
tiation of stem cells into HCs or neurons, along with re-
search on methods for stem cell transplantation into the 
inner ear and their safety, lay the foundation for clinical 
cell therapy.
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