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Introduction: It is now accepted that scrotal heat stress could adversely affect 
spermatogenesis. This high thermal condition can cause a reduced male fertility potential. 
Nowadays, insufficient research exists on the impact of transient scrotal hyperthermia on 
heat shock proteins 70 and 90 in murine subjects. In the current study, we investigated 
the effects of scrotal hyperthermia on the expression of heat shock proteins, stereological 
parameters, and semen quality in mice.
Methods: In this examination, a total of 18 healthy adult male NMRI mice were divided 
equally into two groups: control and scrotal hyperthermia. Scrotal heat stress was induced 
by placing the lower parts of mice bodies into the water bath for three consecutive days 
(43°C, 20 min/day) . Then, epididymis and testicular samples were collected for evaluation 
of sperm parameters, stereological study, mRNA, and protein expression of HSP70 and 
HSP90.
Results: Our results revealed that scrotal hyperthermia could strikingly increase the level of 
mRNA and protein expression of HSP70 and HSP90 in the samples. In addition, stereological 
parameters and semen quality significantly decreased in transient scrotal hyperthermia-
induced mice compared to the control group.
Conclusion: Our research indicates that transient hyperthermia on the scrotum can lead to 
increased expression of HSP70 and HSP90 at both mRNA and protein levels, subsequently 
affecting male fertility.
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Infertility is one of the biggest challenges facing med-
ical science and almost 15% of couples suffer from this 
problem (Abd El-Emam et al., 2023). Based on recent 
reports, male-related factors are responsible for 20 
to 70% of infertility cases (Agarwal et al., 2014). It is 
well-documented that male infertility is a multifactorial 
disorder that various systems, such as endocrine, ner-
vous, blood, and immune systems,  may affect (Ghuman 
and Ramalingam 2018; Hasani et al., 2020). It has been 
proven in multiple studies that elevated testicular tem-
perature can adversely affect the normal functioning of 
testicular cells such as Sertoli cells, Leydig cells, and 
spermatogonia, which ultimately could lead to disrupt-
ing the spermatogenesis process and decrease semen 
quality (Bedford 2015; Li et al., 2013; Qiao et al., 2021). 
Hence, to protect testicular cells from high temperatures, 
they are located in the scrotum, outside the body cavi-
ty (roughly 2-8 °C below core body temperature) (Hess 
and De Franca 2009; Ilkha ni et al., 2020).

A bulk of investigations have revealed job or life-
style-related factors that could increase scrotal tempera-
tures, such as driving, sitting, or cycling for a long time, 
sauna use, and wearing tight clothes that could induce 
adverse effects on male fertility (Aldahhan and Stanton 
2021; Khorsandi et al., 2013; Setchell 2018). Further-
more, several studies have also reported the destructive 
impacts of thermal stress on normal spermatogenesis 
following various pathophysiological situations, includ-
ing Varicocele, Cryptorchidism, and Fever (Aldahhan 
and Stanton 2021; Durairajanayagam et al., 2014).

The process of transforming spermatogonia into sper-
matid is called spermatogenesis (Sharma and Agarwal 
2011). This process is highly complex, regulated, and 
temperature-dependent and occurs in the mammalian 
species’ testes after puberty (Hou et al., 2015; Pangga-
lih et al., 2021). There is growing evidence illustrating 
that high scrotal temperatures can adversely affect var-
ious stages of spermatogenesis (Aldahhan and Stanton 
2021). Consistent with the results of previous studies, 
the researchers suggested that scrotal hyperthermia 
could cause various histological and molecular changes 
in testicular cells (germ cells, Leydig cells, Sertoli cells), 
including increased germ cell apoptosis, blood-testis 
barrier disruption, sperm DNA damage, ROS produc-
tion, autophagy-related genes, and mitochondrial dys-
function (Asadi et al., 2017; Bozhedomov et al., 2013; 

Panggalih et al., 2021). In addition, experimental stud-
ies have shown that sperm quality and quantity decrease 
after scrotal heat stress (Jerng et al., 2014; Zhu et al., 
2004). Therefore, the researchers proposed that hyper-
thermia of the scrotum is one of the most critical factors 
in male infertility (Abd El-Emam et al., 2023). 

Chaperons and co-chaperons are a group of pro-
teins that assist  other proteins in folding into the cor-
rect three-dimensional structure, which is essential for 
normal cell  functions. They are expressed in  different 
stressful environmental situations, such as  inflamma-
tion, oxidative stress, infection, starvation,  and heat 
stress (Bohush et al., 2019; Shen et al., 2019).  A body of 
literature now shows that heat shock factor-1 and heat 
shock proteins (HSP70,  HSP90) are known as chaperon 
proteins. They act similarly to chaperons and are upreg-
ulated in response to heat stress, which can inhibit  pro-
tein denaturation in various cells (Bohush et al., 2019; 
Jha et al., 2013). Hence, investigators proposed that the 
expression of these factors could reduce the destructive 
effects of heat stress on normal cell functions by sup-
pressing P-53 activity as one of the critical regulators of 
apoptosis (Gu et al., 2015; Rizzoto et al., 2020). Besides, 
based on recent studies, researchers indicated that HSP 
families play an essential role in regulating testis-specif-
ic serine/threonine kinases (TSSKs) in germ cells, one 
of the crucial factors in male fertility, by affecting their 
stability and activity (Jha et al., 2013). In addition, an-
other paper illustrated evidence that HSPs have an es-
sential role in the meiotic division of male germ cells 
(Grad et al., 2010). Nowadays, there is limited data re-
garding the effect of transient scrotal hyperthermia on 
HSP 70 and 90 in mice. In this study, we investigated 
the effects of scrotal hyperthermia on the expression of 
heat shock proteins, stereological parameters, and se-
men quality in mice. 

Material and Methods
Animals
In this investigation, we utilized 18 healthy male 

NMRI mice with equal weight (15-20g) and 3 weeks of 
age. All experimental animals were purchased from the 
Pasteur Institute (laboratory animal center) in Tehran, 
Iran. Throughout the entire study process, animals were 
sustained in individual cages, provided with unrestricted 
access to water and food, and maintained under stan-
dard laboratory conditions. Then, healthy animals were 
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randomly and equally divided into control and scrotal 
hyperthermia. All experimental procedures in this study 
were assessed and approved by the Ethics Committee 
(IR.SBMU.MSP.REC.1400.1169).

Transient scrotal hyperthermia model
In the scrotal hyperthermia group, to induction heat 

stress, firstly, animals were anesthetized with ketamine 
(100 mg/kg) and xylazine (5 mg/kg) administration 
(i.p). The lower body regions of the mice, including 
the scrotum and hind legs, were immersed in a water 
bath for three days in a row (43°C, 20 min/day). After 
that, the animals were dried and reverted to their cag-
es. Additionally, the animals in the control group were 
administered anesthesia and were maintained at room 
temperature(Khosravi et al., 2021).

sperm Analysis 
To collect sperm samples, epididymal tails were 

scraped and placed in 1 mL of Ham’s F-10 medium 
(Sigma-Aldrich Product No. N6635). A 20-minute in-
cubation period was then conducted at 37°C. Next, 10 μ 
of the sample was placed on a slide and examined under 
an inverted microscope for sperm motility. In this study, 
approximately 100 sperm were tallied in each counting 
chamber. The evaluation of sperm motility adhered to 
the criteria outlined by WHO (1999; 2010), encompass-
ing a) progressive motility b) non-progressive motility, 
and c) no observable movement. A counting chamber 
was used to measure the sperm count. To assess sperm 
viability and morphology, sperm samples were stained 
with Eosin Nigrosine (Aghajanpour et al., 2024).

Sampling and Tissue Preparation
At the study’s endpoint, all animals were deeply anes-

thetized by administration of ketamine and xylazine. 
Then, both testicles were extracted for histological (left 
testis) and molecular (right testis) examinations. For 
the histological goal, all samples were fixed by Bouin’s 
solution for 48 h. After that, the routine histological pas-
sage was carried out, and paraffin blocks were obtained. 
Serial sections (5 µm thickness) were made by using a 
microtome and were placed on the poly-l-lysine coat-
ed slides. The right testis was immediately transferred 
to RNA protecting solution (RNA-later) and stored 
at -80°C for molecular evaluations(Tabatabaee et al., 
2024).

Counting of Testicular Cells 
The quantity of testicular cells was determined using 

the optical dissector method equation(Gundersen et al., 
1988; Howard et al., 1992). The formula employed for 
this calculation was Nv = ∑Q / ∑P × h × a/f × t × BA, 
where ΣQ represents the quantity of testicular cells, h 
denotes a microcator connected to the microscope stage 
for measuring dissector height, ΣP is the total number 
of fields counted, a_f is the probe area divided by the 
magnification, BA is the thickness of the tissue section, 
and t represents the actual thickness of the tissue section. 
N (total) = Nv × V (final).

Immunofluorescence Assay
We utilized immunofluorescence (IF) staining to eval-

uate the distribution of HSP70 and HSP90 proteins in 
testicular specimens. To achieve this purpose, briefly, all 
slides were dewaxed, rehydrated, and endogenous per-
oxidase blocked. Subsequently, testicular sections were 
incubated with the primary antibodies against HSP70 
(SC-80607, Santa Cruz Biotechnology) and HSP90 
(orb67311, Biorbyt) for 30 min at room temperature. 
After that, slides were washed with Tris-buffered saline 
(TBS; 0.1 M Tris-HCl, pH 7.4 and 0.9 NaCl) and then 
incubated again with secondary antibodies (HSP70: 
orb688925, HSP90: orb688924, Biorbyt) at room tem-
perature for 2 hours. Finally, we used 40,6-diamidi-
no-2-phenylindole dihydrochloride hydrate (DAPI) for 
nuclear counterstained, then all sections were mounted 
(Im et al., 2019).

Molecular assessment
To explore HSP70 and HSP90 gene expression Re-

al-time PCR technique was performed based on the 
method explained formerly. In summary, after total 
RNA extraction from collected testicular samples, to 
eliminate genomic contamination, DNase I (Roche, Ba-
sel, Switzerland) was used. After that, cDNA was syn-
thesized by the commercial kits (Fermentas, Lithuania) 
according to the manufacturer’s instructions. Real-time 
PCR (TaqMan) was conducted following the protocol 
of the QuantiTect SYBR Green RT-PCR kit (Takara Bio 
Inc., Japan) for the quantification of relative gene ex-
pression. Primer sets (both forward and reverse) were 
designed using the exon-exon junction method with se-
quences sourced from the NCBI database, utilizing the 
Primer 3 Plus software. The specificity of the primers 
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was validated through the Primer-Blast tool, accessible 
on the website www.ncbi.nlm.nih.gov/tools/primerblast 
(Table. 1) (He et al., 2016).

Statistical analysis
In this research, we utilized GraphPad Prism Version 

9 for all statistical analysis. All data were expressed as 
means ± standard deviation (Mean±SD), and an Un-
paired t-test was performed. Significant differences 
were determined at P ≤ 0.05.

Results
Changes in Sperm Parameters Induced by Heat Stress
The total sperm quantity was remarkably lower in the 

hyperthermia group compared to the control group (P 
< 0.001; Figure 1). Moreover, the percentage of sperm 
viability was also significantly lower in the hyperther-
mia group compared to the control group (P< 0.001; 

Figure 1). However, there was no significant difference 
in sperm motility and sperm morphology between the 
study groups (Figure 1).

Changes in Stereological Parameters Induced by 
Heat Stress

As indicated by stereology results, the quantity of tes-
ticular cells exhibited a significant reduction in the hy-
perthermia group compared to the control group (Figure 
1B). Mice in the control group displayed intact germinal 
epithelium, whereas the hyperthermia group showed de-
generative alterations in the seminiferous tubules, lead-
ing to impaired spermatogenesis (Figure 1C and D).

Increased in HSP70 and HSP90 Protein Expression 
Induced by Heat Stress

We performed IF staining to evaluate the amount of 
HSP70 and HSP90 protein expression in testicular sam-

FIGURE 1.FIGURE 1. (A) Mean ± SD of the total sperm count, sperm motility, sperm viability, and sperm normal morphology in the all-experimental 
groups .p values < 0.05 (*), p values < 0.01 (**), and p values < 0.001 (***), p values < 0.0001 (****)
(B) Mean ± SD of the total number of Spermatogonia, primary Spermatocytes, Spermatids, and Sertoli and Leydig cells in the all-experimental 
groups. p values < 0.05 (*), p values < 0.01 (**), and p values < 0.001 (***), p values < 0.0001 (****). 
(C,D) Photomicrograph of the testis stained with H&E, × 40. SG (spermatogonia), PS (primary spermatocyte), ST (round spermatid), SC (Ser-
toli cell), LC (Leydig cell). Scale bar = 10 μm.
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ples. According to our findings, there was a dramatic el-
evation in the protein expression of HSP70 in the hyper-

thermia group compared to the control groups (p<0.001) 
(Figures 2 and 3). In addition, as illustrated, similar to 

FIGURE 2.FIGURE 2. (A) Immunofluorescence staining against HSP70 proteins in the all-experimental groups. Scale bare: 100 µm. (n= 9, in each 
group). (B) The effects of heat stress on HSP70 proteins in testicular samples. (Mean ± SD). p values < 0.05 (*), p values < 0.01 (**), and p 
values < 0.001 (***), p values < 0.0001 (****).

FIGURE 3.FIGURE 3. (A) Immunofluorescence staining against HSP90 proteins in the all-experimental groups. Scale bare: 100 µm. (n= 9, in each 
group) (B) The effects of heat stress on HSP90 proteins in testicular samples. (Mean ± SD). p values < 0.05 (*), p values < 0.01 (**), and p 
values < 0.001 (***), p values < 0.0001 (****).
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HSP70, the level of HSP90 protein expression  also 
showed a considerable increase in animals that received 
heat stress compared to the control group (p<0.001) 
(Figures 2 and 3) .

Increased in HSP70 and HSP90 mRNA Expression In-
duced by Heat Stress

The effect of heat stress on testicular mRNA levels of 
HSP70 and HSP90 was assessed. As depicted in Fig 4, 
the level of both HSP70 and HSP90 mRNA expression 
substantially increased in the hyperthermia group com-
pared to the control group (p<0.001).

Discussion
It is now well-documented that spermatogenesis is 

a tightly regulated process strongly sensitive to heat 
stress(Hirano et al., 2022; Kong et al., 2000). There-
fore, the male gonads are located in the scrotum, which 
provides an appropriate temperature to ensure normal 
spermatogenesis (Einer-Jensen and Hunter 2005). The 
results of several studies have confirmed that heat stress 
has various negative impacts on spermatogenesis, in-
cluding structural and molecular changes in testicular 
tissue and cells that can lead to impaired male fertili-
ty (Abd El-Emam et al., 2023; Aldahhan and Stanton 
2021; Gu et al., 2015; Hasani et al., 2020; Ilkhani et al., 
2020). Therefore, to mitigate the harmful effects of tem-
perature increase on spermatogenesis, understanding the 
mechanisms by which heat stress affects normal testes 

functions is essential.
This study aimed to investigate the impact of scrotal 

hyperthermia on various aspects of male reproductive 
function, including sperm parameters, histopatholog-
ical patterns, and the expression levels of HSP70 and 
HSP90 genes and proteins. Our findings revealed signif-
icant reductions in sperm quantity, sperm viability, and 
the number of testicular cells. Additionally, scrotal heat 
stress significantly increased the expression of mRNA 
and protein levels of HSP70 and HSP90. These findings 
strongly suggest that scrotal hyperthermia has detrimen-
tal effects on male reproductive health, affecting both 
sperm quality and the expression of crucial heat shock 
proteins.

Recent studies have described the effects of scrotal 
heat stress on structural and cellular changes in the tes-
ticles(Aldahhan and Stanton 2021; Setchell 2018). For 
instance, Ilkhani et al. (2020) assessed structural alter-
ations in the testes using an animal hyperthermia model 
and found that scrotal hyperthermia not only causes a 
dramatic reduction in the total volume of testicles and 
interstitial tissue but also significantly diminishes the 
number of germ cells and somatic cells. Other studies 
have reported that the length and lumen diameter of 
seminiferous tubules showed a marked decrease due 
to scrotal hyperthermia (Hasani et al., 2020). Addition-
ally, it is well-documented that sperm parameters and 
serum testosterone levels significantly dwindle in mice 
subjected to scrotal heat stress (Khosravi et al., 2021; 

FIGURE 4.FIGURE 4. Graphs illustrate effects of hyperthermia on mRNA level of HSP70 and HSP90 in both experimental groups (n= 9, in each group). 
(Mean ± SD). p values < 0.05 (*), p values < 0.01 (**), and p values < 0.001 (***), p values < 0.0001 (****).
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Moscatelli et al., 2019; Setchell 2018).
Previous studies have also illustrated that following 

hyperthermia, blood-testis barrier (BTB) integrity and 
the spatial arrangement of Leydig and Sertoli cells are 
disrupted, leading to inadequate support for germ cells 
and causing cell death and impairment in the normal 
spermatogenesis process (Hu et al., 2021; Ilkhani et 
al., 2020). Furthermore, transient scrotal hyperthermia 
can induce mitochondrial dysfunction, which leads to 
a significant elevation in the synthesis of reactive oxy-
gen species (ROS) in the scrotal cells (Gundersen et al., 
1988; Hasani et al., 2020; Qiao et al., 2021). Oxidative 
stress is suggested to promote apoptosis and DNA dam-
age of testicular cells, which has destructive effects on 
spermatogenesis (Aldahhan and Stanton 2021; Gu et al., 
2015; Kanter et al., 2013).

The molecular mechanisms underlying testicular heat 
stress involve several pathways. Heat stress activates the 
hypothalamic-pituitary-gonadal axis, leading to altered 
hormonal levels and impaired spermatogenesis (Durai-
rajanayagam et al., 2014).

 Specifically, heat stress reduces luteinizing hormone 
(LH) and follicle-stimulating hormone (FSH) levels, 
which are crucial for the stimulation of testosterone pro-
duction and spermatogenesis, respectively. Additional-
ly, androgen receptors are affected by heat stress. Shen 
et al. (2019) found that heat stress markedly elevates 
mRNA and protein levels of androgen receptors and 
HSP70 in boars’ testes. HSP70 may enhance androgen 
receptor inhibition, disrupting normal spermatogenesis, 
reducing sperm quality, and decreasing androgen sensi-
tivity of testicular cells.

HSP70 and HSP90 are expressed in response to 
heat stress in various cells and can act as chaperone 
proteins(Bohush et al., 2019; Jha et al., 2013). These 
proteins help prevent protein denaturation during heat 
stress(Chen et al., 2008; Shen et al., 2019; Zhao et al., 
2010) and play pivotal roles in cell cycling and meio-
sis in testicular germ cells. Gu et al. (2015) found that 
increased HSP70 due to heat stress could suppress pro-
grammed cell death by affecting the TrP53 gene. Pei et 
al. (2012) indicated that heat stress increased the ex-
pression levels of HSP60, HSP70, and HSP90 in rab-
bits, although the localization patterns did not change. 
Similar to previous studies, our results also exhibited a 
significant elevation in the mRNA and protein expres-
sion levels of HSP70 and HSP90 due to transient scrotal 

hyperthermia.
In the context of stereological parameters, heat shock 

proteins such as HSP70 and HSP90 have been shown to 
play a role in maintaining the structural integrity of tes-
ticular tissue. Their increased expression in response to 
heat stress helps in stabilizing and refolding denatured 
proteins, thus protecting the cells from stress-induced 
damage. This protective mechanism, however, is not en-
tirely sufficient to prevent the reduction in the volume 
and number of testicular cells observed in our study 
and others. The disruption of the BTB and the spatial 
arrangement of Leydig and Sertoli cells further exacer-
bates the detrimental effects, leading to compromised 
spermatogenesis and reduced semen quality.

There are several limitations to our study that must 
be acknowledged. First, our study was conducted on a 
mouse model, which may not fully replicate the com-
plexities of human reproductive physiology. Second, 
the duration and intensity of heat exposure in our ex-
perimental design were chosen based on preliminary 
studies; different parameters might yield varying re-
sults. Third, while we measured the expression levels 
of HSP70 and HSP90, other heat shock proteins and 
molecular markers may also play significant roles and 
were not investigated in this study. Lastly, the long-term 
effects of transient scrotal hyperthermia on reproductive 
health were not assessed, which could be crucial for un-
derstanding the full impact of heat stress.

Conclusions
Given the importance of infertility issues in men and 

the significant changes in lifestyles and working condi-
tions, the possibility of disrupting sperm production due 
to scrotal hyperthermia is a growing concern. Extensive 
research is being conducted in this field. The results of 
our study showed that transient increases in scrotal tem-
perature in mice significantly increased the production 
of heat shock factors, including HSP70 and HSP90. 
This increase likely represents a defense mechanism of 
the male reproductive system against transient scrotal 
hyperthermia. However, the upregulation of these heat 
shock proteins, while protective to some extent, is insuf-
ficient to fully mitigate the adverse effects on spermato-
genesis and semen quality. Understanding the precise 
molecular mechanisms, including the role of androgen 
receptors and the detailed pathways by which HSP70 
and HSP90 exert their effects, is crucial for develop-
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ing targeted interventions to protect male reproductive 
health from the effects of heat stress.
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