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The significance of height in boosting self-confidence has prompted some families to seek 
medical interventions to enhance their children’s stature. One such intervention is hormone 
therapy using recombinant human growth hormone (rhGH), which has been employed in 
clinics since 1985, primarily for treating growth hormone deficiency (GHD). Over time, 
rhGH therapy has been utilized for various conditions where childhood short stature is not 
solely a result of inadequate growth hormone secretion, such as small for gestational age 
(SGA) or idiopathic short stature (ISS). 
In addition to its effects on the skeletal system, growth hormone (GH) also plays a vital role 
in regulating cardiovascular function. There is growing evidence suggesting a correlation 
between abnormal GH levels—both elevated and deficient—and increased cardiovascular 
morbidity and mortality among patients with GH disorder. Notably, cardiovascular 
complications are not limited to pathological GH levels; even slight increases within the 
normal range have been linked to increased cardiovascular disease (CVD) events in healthy 
individuals.
These findings raise concerns about the potential long-term cardiovascular effects of rhGH 
therapy, especially among children without GH disorders. In this comprehensive review, 
we summarized recent research findings to provide insights into the physiological and 
pathophysiological effects of GH on the heart. We aimed to elucidate the long-term side 
effects of GH therapy and identify associated risk factors.
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The growth hormone (GH) is a peptide consisting of 
a single chain with 191 amino acids, characterized by 
a molecular weight of 22 kilodaltons (kDa). Structural-

ly, it comprises four alpha helices, a hydrophobic core, 
and two disulfide bonds (Chen et al., 1989; De Vos et 
al., 1992). The gene encoding human growth hormone 
is situated on chromosome 17 and is expressed in the 
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somatotropic cells of the anterior pituitary gland (Hart-
man et al., 1993). The regulation of GH secretion in-
volves a negative feedback mechanism within the hypo-
thalamic-pituitary axis. Specifically, the hypothalamus 
stimulates the pituitary gland to release GH by secret-
ing growth hormone-releasing hormone (GHRH) in the 
ventromedial hypothalamic nucleus (VMN) (Fodor et 
al., 1994). Subsequently, GH promotes the synthesis and 
release of insulin-like growth factor-1 (IGF-I) in the liv-
er. Elevated levels of IGF-I provide negative feedback 
by increasing somatostatin in the arcuate nucleus of the 
hypothalamus, thereby reducing GH secretion (Ceda et 
al., 1987).

Beyond its role in regulating GH secretion, IGF-1 
mediates many of GH’s anabolic effects, such as pro-
moting linear growth and protein synthesis across var-
ious tissues (Dixit et al., 2021). IGF-1 primarily circu-
lates in plasma bound to a family of proteins known 
as IGF-binding proteins (IGFBPs) (Allard and Duan 
2018; Jehle et al., 2003). More than 90% of circulating 
IGF-1 is bound to IGFBPs, with only about 1% in free, 
unbound form. Six IGFBP types have been identified, 
each containing 200–300 amino acids. These binding 
proteins extend IGF-1’s half-life while also modulating 
its interaction with its receptor (Allard and Duan 2018).

The receptors for GH and IGF-1 belong to the tyro-
sine kinase receptor family and are widely distributed 
throughout the body, including in bone, skeletal mus-
cle, and cardiac tissue (Carter-Su et al., 2016; Giustina 
et al., 2008; Higaki et al., 1997; Obradovic et al., 2019). 
GH binding to its receptor initiates receptor dimeriza-
tion and phosphorylation, subsequently activating Janus 

kinase 2 (JAK-2) and triggering multiple signaling path-
ways involving STAT proteins, MAPK, IRS, and PI3K 
(Carter-Su et al., 2016). While the signaling pathways 
activated by IGF-1 may vary, they generally exhibit 
similarities to those activated by GH (Kenchegowda et 
al., 2018; Werner 2023). 

GH and IGF-1 effects on the heart are particularly 
complex. Under physiological conditions, GH and IGF-
1 support cardiac hypertrophy in response to physical 
stress and offer protection against arrhythmias. Con-
versely, abnormal levels of GH and IGF-1 can promote 
maladaptive cardiac remodeling and increase the risk of 
severe arrhythmias (Troncoso et al., 2014). This review 
focuses on the physiological and pathological effects of 
GH and IGF-1 on the mechanical and electrical prop-
erties of the heart. Additionally, we will highlight long-
term cardiac complications that may occur following 
recombinant GH therapy. 

Physiological Effects of GH/IGF-1 on Cardiac Elec-
trical Activity

Animal studies indicate that GH and IGF-1 exert cy-
toprotective and antiarrhythmic effects in models of 
acute myocardial infarction (MI). Pre-treatment with 
GH reduces infarct size and ventricular tachyarrhyth-
mias (VTs) in post-MI rats (Elaiopoulos et al., 2007; 
Jin et al., 2002; Råmunddal et al., 2008) (Table 1). The 
exact mechanisms behind the antiarrhythmic effects of 
GH and IGF-1 are not fully understood. Some exper-
imental studies suggest that GH pre-treatment reduces 
norepinephrine (NE) release at sympathetic nerve end-
ings, thereby lowering NE levels in both cardiac tissue 
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TABLE 1: TABLE 1: Growth Hormone, Insulin-Like Growth Factor I, Cardiovascular Diseases, Hormone Replacement Therapy

Ion Channel/Mechanism Effect of GH/IGF-1 Mechanism References

Voltage-gated Na+ 
Channels Increased expression

Enhances cardiomyocyte excitability, 
aiding in action potential initiation and 

propagation
D’Amario et al., 2011a

T-Type Ca2+ Channels Increased expression and 
phosphorylation

Phosphorylation via protein kinase 
C pathway, leading to increased Ca2+ 

influx and contractility

D’Amario et al., 2011b; Solem and 
Thomas 1998; Xu and Best 1990; 

Yang et al., 1995

L-Type Ca2+ Channels Increased expression and 
phosphorylation

Phosphorylation via protein kinase C 
pathway, enhancing Ca2+ influx and 

contractility

D’Amario et al., 2011b; Solem and 
Thomas 1998; Xu and Best 1990; 

Yang et al., 1995

I(to), IK1, IKir (Potassi-
um Currents)

Decreased currents (I(to), 
IK1, IKir)

Activation of MAPK and PI3K path-
ways leading to the reduction of these 
currents, contributing to altered heart 

rate

Ma et al., 2012; Teos et al., 2008; Xu 
and Best 1991

Norepinephrine Release Reduction in norepineph-
rine levels during acute MI

Prevent disruption in membrane poten-
tial and repolarization

Kolettis, 2013
Stamatis et al., 2020



and plasma during acute MI (Elaiopoulos et al., 2007; 
Råmunddal et al., 2008). This reduction in local nor-
epinephrine, as shown in models such as ex vivo Lan-
gendorff-perfused hearts and in vivo sympathetic de-
nervation, plays a critical role in preventing myocardial 
necrosis and reducing VT occurrence (Ravingerova et 
al., 1993; Stamatis et al., 2020). Elevated interstitial nor-
epinephrine levels have complex electrophysiological 
consequences, including increased resting membrane 
potential, delayed afterdepolarizations, and disrupted re-
polarization, all of which contribute to functional re-en-
trant circuit formation (Kolettis 2013). 

GH/IGF-1 can induce their effects via alterations in 
the expression and gating behavior of ion channels in 
cardiomyocytes (Table 1). IGF-1, for instance, boosts 
expression of voltage-gated Na+ channels in cardiomyo-
cytes which are crucial for the initiation and propagation 
of action potentials in cardiomyocytes, thereby affecting 
cardiomyocytes excitability (D’Amario et al., 2011a). 
Additionally, these hormones enhance the expression 
and phosphorylation of T and L-type Ca2+ channels in 
cardiomyocytes. Phosphorylation of the L-type Ca2+ 
channel occurs via the protein kinase C signaling path-
way resulting in increased Ca2+ influx and contractility 
in these cells (D’Amario et al., 2011b; Solem and Thom-
as 1998; Xu and Best 1990; Yang et al., 1995). 

Furthermore, GH/IGF-1 initiates activation of the 
mitogen-activated protein kinase (MAPK) and phos-
phatidylinositol 3-kinase (PI3K) pathways, leading to 
reduction of transient outward potassium current (I(to)), 
delayed rectifying potassium current (IK1), and inward 
rectifying potassium current (IKir) in ventricular myo-
cytes (Ma et al., 2012; Teos et al., 2008; Xu and Best 
1991). These alterations in potassium currents contrib-
ute to changes in heart rate and mediate GH/IGF-1 an-
ti-arrhythmic effects (Danielsson et al., 2013; Råmund-
dal et al., 2008; Salari et al., 2018). The antiarrhythmic 

properties of these hormones have been investigated in 
animal models of myocardial infarction. Intra-myocar-
dial GH administration preserves action potential shape 
and duration at infarcted borders, suggesting protection 
against post-infarction arrhythmias (Kontonika et al., 
2017). 

Physiological Effects of GH/IGF-1 on Cardiac Me-
chanical Activity

The benefits of GH/IGF-1 extend beyond their antiar-
rhythmic properties. At physiological levels, these hor-
mones support adaptive cardiac hypertrophy in response 
to physical stress (Table 2). The prolonged action poten-
tial resulting from GH increases Ca2+ influx via L-type 
Ca2+ channels, promoting cardiomyocyte hypertrophy 
(Cittadini et al., 2006; Solem and Thomas 1998; Xu 
and Best 1991). IGF-1, on the other hand, heightens the 
calcium sensitivity of myofibrils, effectively enhancing 
myocardial contractile strength (Cittadini et al., 2013; 
Cittadini et al., 2006). Disruption in the GH/IGF-1 sig-
naling pathway can impair the cardiac response to phys-
ical stress. For instance, mice lacking IGF-1 receptor 
genes fail to undergo hypertrophy in response to ex-
ercise, and inhibition of the IGF-1/PI3K/Akt pathway 
interferes with adaptive hypertrophy under stress con-
ditions (Teos et al., 2008; Xu and Best 1991) (Table-2). 

In addition to L-type Ca2+ channels on the cell mem-
brane, intracellular ion channels contribute to GH/IGF-
1-induced cardiac hypertrophy. Ion channels within the 
membranes of intracellular organelles play a critical role 
in regulating cytosolic calcium concentrations, which 
are essential for cardiac contraction and hypertrophic 
responses (Fahanik-Babaei et al., 2024; Fahanik-Babaei 
et al., 2011; Salari et al., 2011; Salari et al., 2015). IGF-1 
induces a rapid and transient increase in cytosolic calci-
um level via the IP3 signaling pathway, with the calcium 
increase initially detected in the nuclear envelope before 

Physiology and Pharmacology 29 (2025) 25-34 | 27 Bagheri et al.

TABLE 2: TABLE 2: Impact of GH/IGF-1 on Cardiac Mechanical Function

GH/IGF-1 Effect Mechanism References

Enhance Systolic Contraction Forces

Increase Ca2+ influx via L-type Ca2+ channels 
Induce Ca2+ release from nuclear envelop 

Increase Ca2+ sensitivity of myofibrils.
Stimulate the synthesis of contractile proteins

Cittadini et al., 2013;
Cittadini et al., 2006;
Troncoso et al., 2014;

Teos et al., 2008;
Lu et al., 2001;

 Hallengren et al., 2014

Accelerate Diastolic Relaxation Prompt Ca2+ reuptake into the SR and mitochondria Cittadini et al., 2006;
Sánchez-Aguilera et al., 2023



spreading to the cytosol. This effect of IGF-1 persists 
even in the absence of extracellular calcium and is un-
affected by ryanodine, suggesting its reliance on the re-
lease of calcium from intracellular reserves (Troncoso et 
al., 2014) (Table 2).

Elevated cytosolic Ca2+ levels during systole may 
impair cardiac function by hampering heart relaxation 
in the subsequent diastolic phase. Sarcoplasmic reticu-
lum calcium pumps (SERCA2) are crucial in terminat-
ing contraction during diastole. GH/IGF-1 accelerates 
calcium reuptake into the sarcoplasmic reticulum and 
promotes diastole via the Akt signaling pathway, while 
enhancing SERCA2 density(Cittadini et al., 2006). 

IGF-1 also increases mitochondrial Ca2+ uniporter 
(MCU) activity, augmenting calcium entry into mito-
chondria and strengthening oxidative metabolism and 
ATP production in cardiomyocyte mitochondria(Sán-
chez-Aguilera et al., 2023). 

In addition, GH and IGF-1 contribute to improved 
cardiac mechanical function by stimulating the synthe-
sis of contractile proteins. A transient increase in IGF-1 
levels enhances myocardial contractility by boosting the 
synthesis of heavy-chain myosin and actin in myocytes 
without affecting heart rate(Lu et al., 2001). These hor-
mones also promote the expression of genes associated 
with light chain myosin, α-actin, and troponin I in neo-
natal cardiomyocytes (Hallengren et al., 2014; Ito et al., 
1993). 

Pathological Impacts of GH/IGF-1 on Heart Electri-
cal and Mechanical Characteristics

Chronic elevation of growth hormone (GH) can lead 
to maladaptive cardiac changes collectively known as 
cardiac remodeling. This process includes cardiomyo-
cyte hypertrophy, which thickens the ventricular walls 

without expanding chamber size, limiting diastolic re-
laxation. Additionally, fibrotic alterations in the extra-
cellular matrix increase myocardial stiffness, further 
impairing cardiac function and heightening heart fail-
ure risk. These structural changes can also disrupt the 
heart’s electrical pathways, elevating the likelihood of 
arrhythmias (Mizera et al., 2018b; Wolters et al., 2020) 
(Table 3). 

Cardio-graphic studies indicate that 7–40% of pa-
tients with acromegaly may experience cardiac rhythm 
abnormalities, such as ectopic beats, paroxysmal atrial 
fibrillation, paroxysmal supraventricular tachycardia, 
sick sinus syndrome, ventricular tachycardia, and bun-
dle branch block (Ramos-Leví and Marazuela 2017). 
Ventricular arrhythmias, in particular, are more common 
than supraventricular premature complexes (Kahaly et 
al., 1992; Lombardi et al., 2002). In a case series by Dut-
ta et al., 50% of deaths among patients were attributed 
to ventricular arrhythmias linked to abnormal ventricu-
lar remodeling (Dutta et al., 2012). Another case study 
by Subramanian et al. similarly reported idiopathic pre-
mature ventricular contractions (PVCs) and ventricular 
tachycardia (VT) as cardiac complications in acromega-
ly (Subramnaian et al., 2021). 

Structural changes, including left ventricular hyper-
trophy (LVH) and fibrosis, further increase arrhythmia 
risk by promoting collagen deposition, a recognized fac-
tor in rhythm disturbances (Mizera et al., 2018b). Slow 
and uneven action potential conduction, due to myo-
fibrillar disarray and cardiomyocyte uncoupling, am-
plifies this risk (Mizera et al., 2018b). Additionally, QT 
interval variability is implicated in arrhythmogenesis in 
acromegaly. Orosz et al. demonstrated that patients with 
acromegaly exhibit increased beat-to-beat short-term 
QT variability, which may serve as a predictor for ar-
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TABLE 3:TABLE 3: Impact of GH/IGF-1 on the Heart in Pathological Conditions

High GH secretion GH deficiency

Gigantism Acromegaly Dwarfism

Ventricular hypertrophy Ventricular hypertrophy Dilated cardiomyopathy

Valvular disease Cardiomyopathy Systolic dysfunction

Diastolic dysfunction Valvular disease Arrhythmia

Systolic dysfunction Diastolic dysfunction

Arrhythmia Systolic dysfunction

Arrhythmia
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rhythmias or sudden cardiac death (Orosz et al., 2015). 
Treating excess GH secretion can be helpful in decreas-
ing the occurrence of arrhythmia (Wolters et al., 2020). 

Sex differences also correlate with cardiovascular out-
comes in GH disorders. Long-term follow-ups reveal 
higher mortality rates among women, despite their gen-
erally milder tumor characteristics and better treatment 
response (Galoiu et al., 2024; Ritvonen et al., 2016). 
Sex hormones, especially androgens and estrogens, in-
fluence GH and IGF-1 production (Birzniece and Ho 
2017; Ciresi et al., 2018). Testosterone enhances GH 
secretion and IGF-1 levels by upregulating GH receptor 
expression in liver and growth plate tissues, promoting 
muscle and bone growth. IGF-1, in turn, reduces GH 
release in the pituitary via negative feedback (Yu et al., 
1996). Estrogens stimulate GH secretion but reduce 
hepatic IGF-1 production and GH receptor sensitivity, 
resulting in higher GH levels but with limited IGF-1 ef-
fects. Moreover, estrogen lowers somatostatin receptor 
expression in the pituitary, further promoting GH secre-
tion (Djordjijevic et al., 1998). Consequently, women 
generally have higher baseline GH secretion than men 
(Ciresi et al., 2018).

Duration of GH disorder is another factor that can 
affect cardiovascular complications. Acromegaly, due 
to its longer duration, induces more severe cardiovas-
cular complications compared to gigantism (Liliya et 
al., 2018; Mizera et al., 2018a). Women tend to be di-
agnosed with acromegaly later than men, partly because 
milder symptoms may delay diagnosis, leading to ex-
tended exposure to GH excess and its systemic effects 
over time (Găloiu et al., 2024).

Importantly, long-term cardiovascular complications 
are not exclusive to pathological GH levels. Even slight 
increases in GH secretion within the normal range have 
been linked to a higher incidence of cardiovascular dis-
ease (CVD) events in healthy individuals (Hallengren et 
al., 2014).

In addition to gigantism and acromegaly, GH deficien-
cy (GHD) can also result in severe cardiovascular is-
sues, including reduced left ventricular mass, decreased 
cardiac output, dilated cardiomyopathy, and arrhyth-
mias (Isgaard et al., 2015; Lombardi et al., 2012; Vance 
and Mauras 1999). Recent studies indicate that GHD 
may alter cardiac electrophysiology, potentially raising 
arrhythmic risk. Children with GHD display prolonged 
T wave peak-to-end (Tp-e) intervals and elevated Tp-e/

QT and Tp-e/QTc ratios, reflecting increased ventricular 
repolarization heterogeneity, a precursor for arrhythmo-
genesis (Yilmaz et al., 2023). While hormone therapy 
improves heart function in GHD patients, full normal-
ization of cardiac parameters may remain elusive even 
after a year of treatment (Alkan et al., 2021; Alkan et 
al., 2023). 

Benefits and Side Effects of GH Therapy
GH therapy initially aimed at treating GHD has 

been extended to conditions like small for gestational 
age (SGA) and idiopathic short stature (ISS) (Danow-
itz and Grimberg 2022; Richmond and Rogol 2010). 
Long-term follow-up studies have shown that GH ther-
apy may result in gender- and dose-dependent cardio-
vascular complications in the patients. (van Bunderen 
and Olsson 2021; van Bunderen et al., 2011). In a 2012 
study, Carel et al. highlighted the importance of GH dos-
age in the context of cardiovascular risks. They revealed 
that GH doses over 50 μg/kg/day were associated with 
increased mortality (Carel et al., 2012). A recent study 
in a Swedish population further confirmed the impact of 
cumulative GH dose and treatment duration on cardio-
vascular outcomes. Additionally, it found a gender-de-
pendent effect, with women experiencing more cardio-
vascular events than men after GH therapy (Tidblad et 
al., 2021). As discussed, gender plays a significant role 
in GH/IGF-1 physiology, with boys generally respond-
ing more effectively to GH therapy during prepubertal 
years, showing greater height increases after two years 
of treatment (Sävendahl et al., 2012a). This gender dif-
ference is partially attributed to estrogen, which limits 
GH-induced IGF-1 release in the liver, thereby reducing 
GH’s effectiveness on growth. During puberty, females 
often require higher GH doses and longer treatment du-
rations, which heightens their risk of GH-related side 
effects (Ciresi et al., 2018; Johansson et al., 1999; Span 
et al., 2000).

However, there is some controversy regarding GH 
therapy’s cardiovascular risks (Goedegebuure et al., 
2022; Sävendahl et al., 2020; Sävendahl et al., 2012b). 
Goedegebuure et al. followed 167 adults born SGA who 
underwent 12 years of recombinant human growth hor-
mone (rhGH) treatment and found no significant dif-
ferences in metabolic or cardiovascular health profiles 
compared to adults without GH therapy (Goedegebuure 
et al., 2022; Tidblad et al., 2021). However, the popula-
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tion size in this study was small and their finding has not 
been confirmed by studies which assessed larger popu-
lations (Sävendahl et al., 2020).

Conclusion
In conclusion, this review highlights the intricate 

role of growth hormone (GH) and insulin-like growth 
factor-1 (IGF-1) in cardiac physiology and pathology. 
These hormones have profound effects on heart func-
tion, regulating cardiac excitability, contractility, and 
structural integrity. While physiological GH levels 
confer benefits, such as promoting adaptive hypertro-
phy and arrhythmia resilience, chronic dysregulation in 
GH—whether excessive or deficient—predisposes indi-
viduals to a range of adverse cardiovascular outcomes, 
including ventricular remodeling, fibrosis, and height-
ened arrhythmogenic risk.

Our review underscores the significance of gen-
der-specific responses to GH therapy, revealing that fe-
males may be more susceptible to cardiovascular side 
effects, emphasizing the need for tailored therapy based 
on gender. This aspect, along with patient-specific fac-
tors like baseline cardiovascular health and genetic pre-
dispositions, should guide GH therapy to optimize safe-
ty and effectiveness.

There’s still debate about the cardiovascular safety of 
recombinant GH (rhGH) therapy, especially in people 
without GH deficiency. Some research supports its safe-
ty, while other studies raise concerns. This makes it clear 
that we need further studies and better tools to monitor 
heart health in those receiving GH therapy. In the mean-
time, a thoughtful, individualized approach is essential, 
especially for children and adults with idiopathic short 
stature or those born small for their age, as these groups 
might carry unique risks.

Future research should aim to clarify the precise 
mechanisms through which GH and IGF-1 influence 
the heart, identify innovative methods for detecting 
early cardiac changes, and devise alternative strategies 
to reduce potential risks. By personalizing GH thera-
py to each individual’s unique profile, we can work to 
enhance the therapeutic benefits while protecting long-
term cardiac health.
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