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Introduction  

The hypothalamus is the central coordinating center 

for thermoregulation. Evidence shows that the 

preoptic anterior hypothalamus is the most central 

area for autonomic temperature regulation. The 

inputs to the hypothalamus come from peripheral and 

central thermoreceptors (Tansey and Johnson, 

2015). The raphe premotor neurons cause cutaneous 

vasoconstriction through excitatory glutamatergic and 

serotonergic connections to spinal preganglionic 

neurons. Cold exposure activates a direct preoptic-to-

raphe excitatory pathway (Romanovsky, 2018). 

Nucleus raphe magnus (NRM) is situated in the 

caudal pons and the most rostral part of the medulla. 

NRM that possesses the greatest percentage of cells 

responding to cutaneous temperature (Dickenson, 

1977) acts as an essential component of the 

thermoregulatory region in the central nervous 

system of rats (Asahina et al., 2003) and manages 

cutaneous blood flow (Berner et al., 1999; Korsak 

and Gilbey, 2004). Subclasses of medullary raphe-

spinal neurons appear to function as a key brain stem 

temperature control center, regulating the activity of 

the peripheral sympathetic nerves innervating brown 

fat and the tail circulation in rats (Nalivaiko and 

Blessing, 2002). Previous studies in rabbits show that 

inhibition of neuronal function in the medullary region 

entirely prevents cutaneous vasoconstriction initiated 
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Abstract 

Thermoregulation is the maintenance of the core body temperature. The 

regulation of body temperature is one of the most important functions of the 

nervous system. Nucleus raphe magnus, as a central circuit coordinates the 

homeostatic response and maintains body temperature during environmental 

temperature challenges and adjusts body temperature during the 

inflammatory response and behavioral states and in response to decreasing 

energy homeostasis. Our aim in this review is the understanding of 

thermoregulation by raphe magnus in mammals. This review summarizes the 

basic concepts of thermoregulation and subsequently assesses the 

physiological responses to cold stress, including skin blood flow control, 

sweating, sympathetic-derived cutaneous vasoconstriction and peripheral 

thermoregulatory control in brown adipose tissue. 
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by nociceptive stimulation (Blessing and Nalivaiko, 

2000). Inhibition of neuronal function in this region 

reverses cutaneous vasoconstriction induced by 

cooling the animal (Blessing, 2003). Thus, the raphe 

region contains neurons whose activation leads to 

cutaneous vasoconstriction. Evidence demonstrated 

that the central area of the raphe is needed for the 

control of rat tail blood flow (Asahina et al., 2003; 

Rathner and McAllen, 1999). Neurons in the 

medullary raphe region constitute excitatory neurons 

that could be categorized as a class of sympathetic 

premotor neurons for the regulation of body 

temperature (Nakamura et al., 2004). Bulbospinal 

presympathetic neurons in the rostral medullary 

raphe region seem to regulate cutaneous blood flow 

responses arising as part of the regulation of body 

temperature (Blessing, 2003). In hypothermia, blood 

is redirected from the skin to other organs and the 

loss of heat in rats is regulated by blood flow under 

sympathetic control, through an elaborate system of 

arteriovenous anastomoses of tail (Malakouti et al., 

2008). In addition, excitation of neurons in the raphe 

region causes vasoconstriction in the skin blood 

vessels without intensely influencing arterial pressure 

and change in the mesenteric bed flow (Blessing and 

Nalivaiko, 2000; Nalivaiko and Blessing, 2002).  

The mechanisms of thermal control for the cutaneous 

circulation have been thoroughly reviewed (Holowatz 

et al., 2010; Johnson et al., 2011). Nitric oxide (NO) 

as a major second messenger in the central and 

peripheral nervous systems contributes in 

thermoregulation. NO operates as a central activator 

of heat defense mechanisms and is synthesized in all 

mesencephalic raphe nuclei cells. In our previous 

study, we evaluated the role of NO on 

thermoregulatory action of NRM neurons (Arami et 

al., 2015). The weight of medullary raphe in 

managing the rat tail blood flow (TBF) has been 

confirmed by (i) augmentation of tail sympathetic 

nerve activity after chemically activation of raphe 

neurons through glutamate microinjections, (ii) 

revealing the sympathetic premotor neurons in 

medullar raphe nuclei after tracer injections into the 

tail artery and (iii), enhancement of the expression of 

Fos immunoreactivity, primarily in the raphe, during 

hypothermia (Malakouti et al., 2008). 

In this review, we will discuss the basic perceptions of 

thermoregulation in skin and therefore assess the 

physiological responses to hypothermia, including 

skin blood flow control, sweating and shivering. Also, 

we will discuss the effect of raphe magnus on 

cutaneous blood flow control in mammals. 

Furthermore, we will assess the role of NO in this 

thermoregulatory effect of NRM. Moreover, we will 

focus on the sympathetic-derived cutaneous 

vasoconstriction and peripheral thermoregulatory 

control in brown adipose tissue (BAT).  

 

Cutaneous blood flow control 

The sequential activities of daily life are organized in 

a manner that results in differential involvement of 

different bodily organs at any given time, with 

consequent regional variations in metabolic rate 

(Blessing, 2003). Nutrient supply is mediated via a 

corresponding patterning of the amount of blood 

flowing to particular organs at a particular time, with 

control occurring via combinations of local, hormonal 

and neural factors. In some cases, the physiological 

function of an organ requires blood flow 

independently of metabolic needs. The secretion of 

the saliva for example, requires increased blood flow 

to the salivary glands because the water in saliva is 

derived from blood. These non-metabolic 

requirements for increased blood flow are likely to 

occur in relation to environmental events that elicit 

particular behavior patterns. In such situations, neural 

control from the central nervous system is especially 

important (Blessing, 2003). 

The skin, as a bodily organ, obviously has its own 

metabolism, with its own nutrient blood flow 

requirements. However, blood flow to the skin is 

regulated in proportion to two major non-metabolic 

requirements, both demonstrating the fact that the 

skin is the margin between the individual and the 

external environment. The healthy functioning of the 

whole organism requires that the temperature of 

bodily organs, especially the brain, be maintained at 

a suitable level. Net heat transport between the 

individual and the external environment depends on 

the amount of blood flowing through the skin so that 

in most mammals’ cutaneous blood flow is regulated 

as an intrinsic component of body temperature 

control. The second non-metabolic factor affecting 

cutaneous blood flow is sympathetically-mediated 

vigorous vasoconstriction initiated when the individual 

perceives a potentially dangerous environmental 

event. Apparently, this response shows the fact that 

the skin is a region of the body particularly vulnerable 
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to injury because as the boundary between the 

individual and the external environment, it bears the 

initial brunt of any physical attack (Blessing, 2003). 

To minimize blood loss from consequential injury, 

blood must be kept away from the skin. The short-

term (over minutes) metabolic requirements of the 

skin are not vital. Thus, during the physical attack, or 

in response to a painful (“nociceptive”) stimulus, 

blood can be diverted from the cutaneous bed and 

diverted to bodily organs with more urgent metabolic 

requirements. The complexity of the central nervous 

system allows a response to revealing a stimulus 

signifying a possibility of dangerous environmental 

event (one type of “salient” event). Detection of such 

an event starts an integrated emotional response with 

both somatic and autonomic components (LeDoux, 

1995) that include noticeable constriction of the 

cutaneous vascular bed (Yu and Blessing, 1997). In 

mammals, and particularly in primates, the 

individual’s concept of a possibly dangerous event 

has extended, so that fear and anxiety resulting from 

the perception of psychosocial threats, without the 

actual experience of pain or physical attack may also 

provoke cutaneous vasoconstriction. It is only in 

recent years that specific details have emerged 

concerning the central neural pathways involved in 

sympathetically mediated regulation of cutaneous 

blood flow that occurs as part of body temperature 

control and as part of emotionally mediated 

cutaneous vasoconstriction (Blessing, 2003).  

 

Thermoregulation through the tail circulation in 

rodents  

In the rat, ~20% of total body heat-loss takes place by 

sympathetically- mediated increases in blood flow 

through its tail (Smith et al., 1998). The rat’s tail is 

well suited to function as a heat-loss organ since it 

lacks fur, is well vascularized and has a large surface 

area to volume ratio. In fact, rats can scatter their 

basal metabolic heat creation through their tails. 

Following whole body warming and exercise, an 

intense enhancement in blood flow through the tail 

happens that functions to cool the animal. This effect 

is dependent upon central pathways that block the 

sympathetic outflow to the tail artery which feeds an 

elaborate system of cutaneous arteriovenous 

anastomoses. As blood flow raises, skin temperature 

increases above the ambient temperature, permitting 

heat loss (Smith et al., 1998). 

The tail artery of the rat is directed by a simple 

peripheral sympathetic system including only 

vasoconstrictor fibers; numerous premotor cell 

groups regulate this sympathetic outflow. The inputs 

occur in local spinal neurons, sympathetic 

propriospinal neurons as well as cell groups found 

throughout the brainstem, hypothalamus and preoptic 

region (Smith et al., 1998).  

 

Sympathetic premotor neurons in medullary 

raphe regions mediating thermoregulatory 

functions    

Premotor neurons of sympathetic neurons directly 

innervate sympathetic preganglionic neurons (SPNs) 

in the intermediolateral cell column of the thoracic 

spinal cord and many of these premotor neurons are 

restricted in the medulla oblongata. The rostral 

ventrolateral medulla comprises premotor neurons 

that regulate the cardiovascular conditions, whereas 

rostral medullary raphe regions are a candidate 

source of sympathetic premotor neurons for 

thermoregulatory functions. These medullary raphe 

areas include putative glutamatergic neurons and that 

these neurons directly control thermoregulatory 

SPNs. Those neurons that express vesicular 

glutamate transporter 3 (VGLUT3) were placed in the 

rat medullary raphe regions, including the raphe 

magnus and rostral raphe pallidus nuclei, and 

generally lacked serotonin immunoreactivity. 

VGLUT3-expressing neurons in the medullary raphe 

regions comprise excitatory neurons that could be 

categorized as a novel group of sympathetic 

premotor neurons for thermoregulatory functions 

(Nakamura et al., 2004). 

SPNs, in turn, make outputs leading to the stimulation 

of peripheral effector organs. These bulbospinal 

premotor pathways are thought to mediate the 

regulation of blood circulation, body temperature, 

metabolism and other diverse homeostatic functions. 

The focus of many studies on sympathetic premotor 

control has been brought into the regulation of the 

cardiovascular system (Nakamura et al., 2004). Of 

the known cardiovascular-regulating brain regions, 

the rostral ventrolateral medulla (RVLM) is the most 

established region to contain sympathetic premotor 

neurons that play a crucial role in the control of 

arterial blood pressure. However, RVLM premotor 

activity scarcely contributes to the control of other 

effector organs, such as the pupil, nictitating 
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membrane, gut, BAT and rat tail artery (Nakamura et 

al., 2004). 

The rostral medullary raphe regions consisting of the 

rostral part of the raphe pallidus nucleus and the 

NRM have been considered as a possible 

sympathetic premotor region involved in 

thermoregulation. Stimulation of these regions raised 

the sympathetic activity of thermoregulatory effector 

organs, such as rat interscapular BAT, rat tail artery 

and rabbit ear pinna blood vessels (Blessing and 

Nalivaiko, 2000). Furthermore, neurons in these 

raphe areas were activated by cold exposure and 

central administration of prostaglandin-E2, an 

endogenous pyrogenic mediator (Nakamura et al., 

2005), and inhibition of these regions eliminated 

sympathetic BAT thermogenesis and fever triggered 

by central prostaglandin-E2 administration (Morrison, 

2003; Oka, 2004). In addition, these raphe regions 

contain intermediolateral-projecting neurons, a part of 

which were activated by cold exposure (Rathner et 

al., 2001). However, by lack of any appropriate signs 

to categorize thermoregulatory neurons in these 

raphe regions, functional neuroanatomical 

characterization of these neurons is not recognized. 

Moreover, such signs would directly confirm the 

existence of raphe sympathetic premotor neurons 

serving thermoregulatory functions (Nakamura et al., 

2004). 

Activation of NRM neurons evokes sympathoexcitatory 

alterations in blood pressure, heart rate and 

thermoregulation (Cao and Morrison, 2003; Nason Jr 

and Mason, 2004). Some serotonergic NRM cells 

project directly to preganglionic sympathetic neurons 

in the intermediolateral cell column and may influence 

sympathetic tone via this connection (Mason et al., 

2007). Within the thoracic spinal cord, serotonin 

depolarizes preganglionic sympathetic neurons while 

serotonin receptor antagonists block the pressor 

response evoked by medullary raphe stimulation 

(Mason et al., 2007). A serotonin receptor agonist 

that apparently inhibits serotonergic cells blocks 

leptin-induced activation of BAT, implying that 

serotonergic NRM cells mediate food-induced 

thermogenesis, a process that is accompanied by 

increases of blood pressure (Cao and Morrison, 

2003). Serotonergic NRM cells could control 

cardiovascular tone or thermoregulation through both 

a direct excitation of preganglionic sympathetic 

neurons and an indirect inhibitory effect mediated by 

inhibition of sympathoexcitatory cells in the 

ventrolateral medulla (Mason et al., 2007).  

 

NO-mediated skin blood flow regulation by NRM 

NO is synthesized from L-arginine by a family of 

enzymes, the NO synthases (NOS) of which three 

types have been identified: the neuronal (nNOS), the 

endothelial (eNOS) and the inducible (iNOS) forms 

(Nucci et al., 2004). Capillary blood flow per se is 

considered to be principally regulated by local factors, 

of which NO appears to be the most powerful. Nitric 

oxide, due to its short half-life of only a few seconds, 

is believed to be a severely local regulating factor 

skin blood flow (Peltonen and Pyörnilä, 2004). NO 

plays a significant role in causing the dorsal column 

stimulation-induced enhancement in rat cutaneous 

hind paw blood flow (Croom et al., 1997). It is 

reported that nitric oxide is involved in central 

cardiovascular regulation, baroreflex modulation 

(Kourosh Arami et al., 2006).  

NRM is one of the cellular groups of the brainstem 

that includes NO synthase (Nucci et al., 2004). 

Previous reports demonstrate that NRM is involved in 

thermoregulation. In support of this concept, it has 

been revealed that there is an association between 

changes in firing rates of cells in the NRM and the 

peripheral thermal stimulus. Furthermore, blockade of 

NRM electrical activity or particular inhibition of the 

NRM neurons influences both peripherally and 

centrally elicited thermoregulatory responses. NO as 

both a second messenger and neurotransmitter has 

been involved in an extremely varied range of 

physiological functions. Studies suggest that NO is 

involved in the control of breathing and 

thermoregulatory responses during hypoxia. As to 

hypoxic anapyrexia, the administration of NOS 

inhibitors produces a slight increase in basal body 

temperature (Nucci et al., 2004). NO operates as a 

central activator of heat defense mechanisms and is 

synthesized in all mesencephalic raphe nuclei cells. 

In our previous study, we found that the 

administration of NO donor into NRM effectively 

prevented thermal vasoconstriction of rat tail vessels 

in response to hypothermia. In conclusion, NO 

modulates cutaneous blood flow in the NRM in rats 

during hypothermia (Arami et al., 2015). 

We found that administration of L‐NAME into raphe 

prevented the blood flow increase by glutamate 

during hypothermia (Arami et al., 2015). During 
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postnatal development, some glutamatergic 

synapses first contain NMDA receptors (Arami et al., 

2016; Kourosh Arami et al., 2011), which mainly yield 

hyperpolarization and inhibitory effects (D'yakonova, 

2000). Synchronized application of glutamate and 

nitroprusside, which is a NO donor, however, 

established an opposite effect, as cells responded to 

glutamate with depolarization and excitation. These 

results demonstrated that NO is involved in 

transforming inhibitory responses to glutamate into 

excitatory ones and that this effect may be mediated 

by NMDA-type receptors (D'yakonova, 2000).  

 

Medullary raphe neurons facilitate BAT activation  

Recent evidence suggests that the medullary raphe is 

important to heat production during cold protection 

and fever. Placing rats in a cold environment results 

in c-fos-labeled cells scattered throughout the NRM, 

raphe pallidus and the adjacent reticular nuclei (Cano 

et al.,        art  ne  et al., 2001). Furthermore, it is 

reported that exposure of rats to cold temperatures 

leads to an augmentation in Fos expression 

immunoreactivity, which is concentrated in the raphe 

(Tanaka et al., 2002). Frequent Fos-positive cells 

were detected in many brain areas following cold 

exposure and such alterations may disclose the 

cellular adaptation of the thermogenic responsive 

neurons in the rat brain to hypothermia (Miyata et al., 

1995). It has shown that bicuculline microinjection 

into areas all over the ventral medulla including the 

raphe pallidus (RP), NRM and the lateral reticular 

nuclei activates BAT (Nason Jr and Mason, 2004). 

GABA-mediated inhibition of raphe neurons regulates 

sympathetic outflow to BAT (Morrison et al., 1999). 

Therefore, GABA through activation of sympathetic 

outflow may activate BAT. 

Medullary raphe inactivation inhibits BAT activation 

(Morrison, 2003; Morrison, 2001; Nakamura, 2011). 

NRM–RP neurons project to the intermediolateral cell 

column, where targeted cells comprise preganglionic 

sympathetic neurons, as well as to the superficial 

dorsal horn, where thermoreceptors terminate (Nason 

and Mason, 2006). Furthermore, NRM–RP neurons 

project oligosynaptically to BAT tissue (Cano et al., 

2003). BAT thermogenesis is regulated synergistically 

by the sympathetic nervous system and thyroid 

hormones (Ortiga-Carvalho et al., 2011). The 

mammal is equipped with numerous hierarchical 

thermoneutral zone comparators. In this model, the 

spinal cord is the most basic place of 

thermoregulatory integration but can only protect a 

comparatively broad (several degrees) thermoneutral 

zone and descending modulation from the brainstem 

and hypothalamus increasingly narrows the 

thermoneutral range. In fact, the spinal cord 

maintains body temperature, but within a large 

thermoneutral zone (Nason and Mason, 2006). 

Medullary raphe lesions cause changes in the 

thermoneutral zone (Nason and Mason, 2006). 

Raphe cells may adjust the excitability of 

preganglionic sympathetic neurons through 

connections to preganglionic cells, to pre-

motoneurons in the intermediate gray or to 

thermoreceptive cells in the superficial dorsal horn 

that are themselves presynaptic to preganglionic 

sympathetic neurons (Nason and Mason, 2006). 

Because electrical stimulation in the raphe modifies 

the responses of thermoreceptive neurons in the 

dorsal horn, NRM–RP may modulate BAT activation 

through effects on thermoreceptive afferents to local 

preganglionic sympathetic neurons (Nason and 

Mason, 2006). 

Disinhibition of NRM–RP cells raises BAT nerve 

activity from approximately nothing to continuous, 

near maximal activity (Nason and Mason, 2006). On 

the contrary medullary raphe inactivation blocks the 

raise of BAT activity evoked by cold or pyrogen 

administration (Morrison 2003; Morrison et al., 2008; 

Nakamura, 2011). These dramatic results may derive 

from a modulatory change, as is the case for the 

most robust examples of heat production and heat 

loss. After pyrogen administration, neutral 

temperatures are interpreted as cold. In the case of 

hot flashes, a small increase in core temperature that 

does not elicit any vasomotor reaction in 

asymptomatic women causes noteworthy cutaneous 

vasodilation, followed by sweating and the sensation 

of being hot in symptomatic women (Freedman and 

Subramanian, 2005). Consequently, a change in the 

interpretation of a steady, unchanging temperature 

can make large thermoeffector reactions. It is hence 

not surprising that the activation or inactivation of a 

modulatory control on BAT-controlling circuits can 

either produce BAT activation or block increases in 

BAT activity. 

BAT is the core site of non-shivering thermogenesis 

(Ballinger and Andrews, 2018) in hibernators. 

Hibernation as a seasonal event is preceded by a 
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reduction transition phase that body weight 

augmented (MacCannell et al., 2017) and body 

temperature diminishes (Sheriff et al., 2012). One of 

the neuropeptides that has effects on BAT and 

involves in thermoregulation is orexin (Kuwaki, 2015). 

Orexin neuropeptides that are produced in the lateral 

part of the hypothalamus area activate postsynaptic 

neurons via two G-protein coupled receptors 

(Babasafari et al., 2019; Rezaei et al., 2020). 

Administration of orexin A increases the firing rate of 

the sympathetic nerves to interscapular BAT, 

accompanied with a rise in BAT and colonic 

temperatures (Messina et al., 2014). One explanation 

for relation of orexin with thermoregulation may be 

the dense existence of orexin fibers in the raphe 

magnus (Peyron et al., 1998).  

 

The raphe magnus regulates sweat secretion  

In the human palm/sole, mental or physical stimuli 

provoke an augmentation in sweat secretion and a 

decline in skin blood flow. Though, the central 

pathways of these responses are unclear. Sweat 

secretion and skin blood flow in the cat footpad are 

measured by electrically stimulating the raphe. 

Stimulation of the rostral raphe magnus/pallidus 

caused a decline in skin blood flow without affecting 

sweat secretion. Stimulation of the mid to caudal 

raphe magnus/pallidus increased in both sweat 

secretion and skin blood flow. The raphe 

magnus/pallidus may play a crucial role in skin 

vasomotor and sudomotor responses in the cat 

footpad (Asahina et al., 2007). 

The hairless skin of the cat footpad is homologous to 

the human palm, which is innervated by three types 

of sympathetic postganglionic fibers that supply the 

blood vessels and sweat glands. Of all the human 

body skin, only the palm and sole sweat in response 

to mental or physical stimuli, such as mental 

arithmetic, deep breathing and isotonic exercise 

which decreases in skin blood flow and enhances 

sweat secretion in the palm and sole concurrently. 

These two reactions, skin vasomotor reflex and 

sympathetic sweat response reveal particular 

sympathetic innervation of the palm and sole that are 

useful for clinically evaluating skin sympathetic 

function (Asahina et al., 2007). Nevertheless, the 

central pathways that justify the skin vasomotor reflex 

and sympathetic sweat response remain unclear. 

Previous experimental studies on skin vasomotor 

function have examined the ear pinnae of rabbits and 

the tails of rats, where electrical stimulation to the 

medullary raphe magnus/pallidus provoked skin 

blood flow diminution or augmented tail sympathetic 

activity, respectively. Additionally, electrical 

stimulation of the ponto-medullary reticular formation 

in cats provoked electrodermal responses (Asahina 

et al., 2007). Skin vasomotor and sudomotor 

functions are all essential in thermoregulation and the 

raphe magnus/pallidus participates in 

thermoregulation by control of the skin blood flow and 

BAT metabolism (Asahina et al., 2007). 

Electrical stimulation of the rostral raphe 

magnus/pallidus reduced skin flow blood, while 

stimulation of the mid to caudal raphe 

magnus/pallidus caused sweat secretion and skin 

blood flow rise in the forepaw pads of decerebrate 

cats. These findings demonstrate that the raphe 

magnus/pallidus has an important role in the 

regulation of sweat secretion and skin blood flow in 

the hairless skin of forepaw pads in cats, which are 

homologous to the hairless skin of palms in humans, 

where the skin vasomotor reflex and sympathetic 

sweat response are clinically obtained. Skin blood 

flow in the cat footpad may be related to 

thermoregulation (Asahina et al., 2007). The raphe 

magnus/pallidus is an important brainstem relay 

center for thermoregulatory skin vasomotor function 

because stimulation of the raphe magnus/pallidus 

reduced skin blood flow in rat tails and rabbit ear 

pinnae (Asahina et al., 2007). Inhibition of that region 

promoted skin sympathetic (vasoconstrictor) nerve 

activity diminution in rat tails. However, palms are 

distinct from other areas of human skin, in that 

palmar blood flow responds to non-thermal stimuli, as 

observed in skin vasomotor reflex. In humans, the 

major function of sweating is the regulation of body 

temperature (thermoregulatory sweating). In cats, 

sweating, which is seen only in the hairless skin 

(footpad), does not appear to participate in 

thermoregulation. This system may be activated 

during specific behaviors (such as the defense 

reaction), and activation of sweat glands may be 

important in keeping the hairless skin flexible for 

optimal sensory discrimination and for adhesion to 

the ground. In humans, sweating on the palm/sole 

(emotional sweating) is also independent of ambient 

temperature, and it is caused by emotional stimuli, 

mental stress or physiological stimuli. Central circuitry 
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 regulating the response to cold is shown in Figure 1.  

There is a likelihood that neurons in the mid to caudal 

raphe magnus/pallidus might exert an excitatory drive 

on the skin vasodilator neurons; there has been 

considerable controversy regarding the presence or 

absence of a specific population of sympathetic 

vasodilator neurons projecting to the cutaneous 

vasculature. Another possibility is that skin 

vasodilatation might accompany sweating, because 

acetylcholine and vasodilator neuropeptides (e.g. 

calcitonin gene-related peptide, vasoactive intestinal 

peptide), which are co-localized in sudomotor fibers, 

make skin vasodilation (Asahina et al., 2007). 

In summary, this study shows that NRM is an 

important area involved in skin blood flow regulation 

to control body temperature. NRM by affecting on 

sympathetic nerves activates BAT and constricts skin 

blood vessels. 
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