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Introduction: Nowadays, the prevalence of nicotine abuse among women has increased 
dramatically. In the current study, we aimed to investigate the effect of nicotine exposure on 
breast MCF-7 and ovarian OVCAR-3 cell lines for assessing the toxicity of nicotine in the 
cells of these organs.
Methods: The MCF-7 and OVCAR-3 cells were treated with increasing nicotine 
concentrations ranging from 0 (control), 10-11, 10-8 and 10-6 M for 24h. Effect of nicotine 
treatments on major antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), 
glutathione reductase (GR), cellular levels of glutathione (GSH) and malondialdehyde 
(MDA) were monitored. 
Results: We showed that the CAT activity in MCF-7 cells increased only at 10-6 M dose of 
nicotine. The GPx and GR activity was decreased at 10-8 and 10-6 M of nicotine in MCF-7 
cells, but in OVCAR-3 cells, this decrease was significant only at 10-6 M dose of nicotine. 
Reduced GSH decrease was statistically significant only at 10-8 and 10-6 M of nicotine in 
MCF-7 cells; otherwise, in OVCAR-3 cells, this decline was significant only at 10-6 M of 
nicotine. Nicotine at 10-8 and 10-6 M concentration caused a significant increase in MDA 
levels in MCF-7 cells. 
Conclusion: This study showed that breast MCF-7 cells are more vulnerable than ovarian 
OVCAR-3 cells against nicotine-induced oxidative toxicity.
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Introduction
Nicotine, the substantial toxic constituent of cigarette 

smoke, has various side effects on our body’s cellular 
functions (Delijewski et al., 2014; Zal et al., 2020). It 
has been shown that nicotine through induction of reac-
tive oxygen species (ROS) shows its toxicity in human 
cells (Yarahmadi et al., 2017). These ROS initiate and 
promote oxidative damage to cells in the form of lipid 

peroxidation, changes in antioxidant enzyme status and 
finally, cell death (Muthukumaran et al., 2008; Yarah-
madi et al., 2018). The human body’s defense against 
ROS harmful effects are mediated through enzymatic 
and non-enzymatic antioxidants. The enzymatic antiox-
idant defenses in human cells consist of superoxide dis-
mutase (SOD), catalase (CAT), glutathione peroxidase 
(GPx) and glutathione reductase (GR) (Aghagolzadeh et 
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al., 2017; Hasanpour et al., 2018). Non-enzymatic anti-
oxidants, including glutathione (GSH), antioxidant vita-
mins such as A, E and C, are other defense mechanisms 
for protecting cells against the harmful effect of ROS 
(Alamdari et al., 2020a; Birben et al., 2012). 

Previous in vitro and in vivo experiments proved that 
nicotine administration resulted in a prooxidant-an-
tioxidant imbalance in cellular and animal models 
(Sudheer et al., 2005; Sudheer et al., 2007). Increased 
oxidative stress and consequent lipid peroxidation has 
been linked to have a significant role in nicotine relat-
ed diseases like cancer (Bartsch and Nair, 2006; Hecht, 
2002). It has been demonstrated that smoking is asso-
ciated with an increased risk of cancers such as lung, 
breast, ovary, bladder and so on (Dasgupta et al., 2009; 
Djordjevic et al., 2000). It is estimated that nearly 250 
million women worldwide smoke cigarettes and more 
than a million uses smokeless tobacco products contain-
ing nicotine (Sieminska and Jassem, 2014). Because of 
the increasing use of cigarettes among women globally, 
we decide to examine the adverse effects of nicotine on 
breast MCF-7 and ovarian OVCAR-3 cells for assessing 
the toxicity of nicotine in the cells of this organ. The 
purpose of the current study was to evaluate the effect 
of nicotine on enzymatic antioxidant defenses and also 
malondialdehyde (MDA) as lipid peroxidation maker in 
human MCF-7 and OVCAR-3 cells in an in vitro model. 

Material and methods
Materials
Nicotine was obtained from Sigma Chemical Co 

(Poole, Dorset, UK); cell culture material including 
RPMI-1640, fetal bovine serum (FBS), penicillin, strep-
tomycin were from Gibco-BRL (Paisley, UK). BSA total 
protein assay kit was purchased from Bio-Rad (Hercu-
les, California, USA). Nicotinamide adenine dinucleo-
tide phosphate (NADPH), ethylenediaminetetraacetic 
acid (EDTA) and other material were from sigma unless 
mentioned.

 
Cell culture procedure and treatment 
The MCF-7 and OVCAR-3 cell lines were obtained 

from the cell bank of Pasteur Institute of Iran. The cells 
were cultured in the following condition: RPMI-1640 
medium, 10% (v/v) heat-inactivated FBS, 1% (v/v) pen-
icillin-streptomycin and then put in 5% CO2 humidified 
incubator at 37°C. All experiments were done only at 

cells with a minimum of 70% confluences. Then 5×105 
cells were seeded in a culture flask (25cm2) and incubat-
ed with increasing nicotine concentrations ranging from 
10-11 to 10-6 M for 24h.

Cell viability assay
To assess the viability of MCF-7 and OVCAR-3 cells 

treated with different nicotine concentrations, an assay 
was carried out using 3-(4, 5-dimethylthiazol- 2-yl)-2, 5 
diphenyltetrazolium bromide (MTT) as previously de-
scribed by Mosmann (1983). The MTT assay is a col-
orimetric assay that relies on the conversion of yellow 
tetrazolium bromide (MTT) to purple formazan deriv-
ative by mitochondrial succinate dehydrogenase in vi-
able cells. First, cells in a 96-well plate were incubated 
with 0, 10-12, 10-10, 10-8, 10-6, 10-4 and 10-2 M nicotine 
for 24h at 37°C. Then, cells were incubated with MTT 
(0.5mg/ml) dissolved in serum-free medium. After 3.5h 
incubation, 100μl DMSO was added to dissolve the for-
mazan crystals and then, absorbance was determined at 
570/650nm wavelength using an ELISA reader (Bio-
Rad, USA). Cell viability was determined as the ratio of 
absorbance of treated cells to that of untreated cells that 
served as a control.

Measurement of CAT activity
For the determination of CAT activity, we used a 

method previously described by Aebi (1984). In this 
method, we spectrophotometrically assessed the decom-
position of H2O2 to H2O and O2. Then, enzyme activity 
was shown as mmol H2O2 consumed/min per mg MCF-
7 and OVCAR-3 cell lysate protein by a molar absorp-
tivity of 43.6 mol L -1 per cm. 

Measurement of GPx activity
The GPx activity has been evaluated by the method 

described by Fecondo and Augusteyn based on moni-
toring continuous substitution of GSH from its oxidized 
form G-S-S-G in the presence of enzyme GR (Fecondo 
and Augusteyn, 1983). We also used Na2 salt of NADPH 
to assess GPx activity according to a previous publica-
tion (Mostafavi-Pour et al., 2008). Furthermore, the GPx 
enzyme activity in the MCF-7 and OVCAR-3 cell ly-
sate was showed as μmol of NADPH oxidized/min/mg 
of cell protein using a molar absorptivity of 6.22×106 
M-1cm-1 for NADPH. One unit of GPx is determined as 
U/mg of cell protein.
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Measurement of GR activity
The enzyme GR activities were estimated through a 

method formerly reported by Racker and Carlberg with 
little changes (Carlberg and Mannervik, 1985; Racker, 
1955). For determination of GR activity, 60μM buffer, 
5mM EDTA with pH 8.0, 0.033M GS-SG, 2mM NA-
DPH and a sample of MCF-7 and OVCAR-3 cell lysate 
in a final volume of 1000μl were used. The reduction 
in absorbance shows the oxidation of NADPH through-
out the reduction of GS-SG by enzyme GR activity in 
the MCF-7 and OVCAR-3 cell lysate, which has been 
monitored for 3min at 340nm by a Shimadzu Spectro-
photometer. Finally, the results were reported through 
a molar absorptivity of 6.22×106M-1cm-1 for NADPH. 
One unit of GR is defined as U/mg cell protein.

Determination of GSH
Assessment of GSH with 5, 5-dithio-bis (2- nitroben-

zoic) acid (DTNB) was performed according to stan-
dard Ellman’s method (Mashhoody et al., 2014; Zal et 
al., 2014). We used 1mM solutions of reduced GSH to 
draw a Standard curve. The GSH amount was assayed 
in MCF-7 and OVCAR-3 cell lysate.  For measurement 
of GSH level, 2.3ml potassium phosphate buffer 0.2M 
with PH 7.6 was added to 500μl of DTNB (0.001M) 
solution and then mixed with 200μl of MCF-7 and OV-
CAR-3 cell lysate. Finally, the above solution’s absor-
bance was read after 5min by a Shimadzu Spectropho-
tometer at 412nm.

Determination of MDA
The MDA was measured according to a colorimetric 

procedure. First, a mixture of the following solution was 
prepared: 2ml TBA0.37%, 15% trichloroacetic acid, 
0.25 mol/l HCL and 500μl MCF-7 or OVCAR-3 cell 
lysate. Then, the above mixture was put in a water bath 
at 95°C for 30min and after rapid cooling, it was cen-
trifuged at 8000g for 15min. After centrifugation, the 
supernatant’s absorbance was measured by a spectro-
photometer at 532nm. The MDA level was calculated 
based on tetraethoxypropane as standard and expressed 
as nmol/mg cell protein.

Measurement of total protein
After 24h treatment with nicotine, MCF-7 and OV-

CAR-3 cells were washed with PBS four times and 
lysed with the lysis buffer containing 50mM Tris-

HCl (pH 7.4), 0.1% sodium deoxycholate, 0.1% SDS, 
0.1mM EDTA, 1.0% Triton X-100 and 50mM sodium 
fluoride. Lysates were incubated at 4°C for 20min and 
centrifuged at 20000g for 10min. Then, supernatants 
were collected in Eppendorf tubes for protein and en-
zymatic measurements. Protein content was determined 
using BSA as a standard with Bio-Rad total protein as-
say kit according to manufacture protocols (Bio-Rad, 
Hercules, CA, USA). 

Statistical analysis
GraphPad Prism version 6.01 (GraphPad Software, 

San Diego, CA, USA) and SPSS18   software (SPSS, 
Chicago, IL, USA) were used for group comparison. 
The data presented here were analyzed by the Krus-
kal-Wallis test, followed by Dunn’s multiple compari-
sons test and a difference with P-value ≤0.05 was used 
as the level of significance.

Results
In the current study, to determine the toxic effect of 

nicotine exposure on antioxidant defense systems in 
both MCF-7 and OVCAR-3 cell lines, the cellular ac-
tivities of CAT, GPx, GR and also the level of reduced 
GSH and MDA were assayed after 24h of treatment. 
MCF-7 and OVCAR-3 cell lines were exposed to nico-
tine doses ranging from 10-11, 10-8, and 10-6 M for 24 h, 
respectively.

Effect of nicotine treatment on the viability of MCF-7 
and OVCAR-3 cells

The viability of cultured MCF-7 and OVCAR-3 cells 
exposed to different nicotine concentrations are present-
ed in Figure 1. As shown in Figure 1, all the nicotine 
concentrations below 10-4 M are safe for in vitro uses 
compared with the control group. 

Effect of nicotine on CAT activity in MCF-7 and OV-
CAR-3 cells

It has been demonstrated that the activity of CAT in 
the MCF-7 cell line increased with rising concentrations 
of nicotine. The treatment of MCF-7cells with 10-11, 10-8 
and 10-6 M concentrations of nicotine made an increase 
in CAT activity by 34%, 30.77% and 44.46% respect-
ably as compared to controls, which was significant only 
at 10-6 M dose of nicotine (Figure 2A). The CAT activity 
in OVCAR-3 cells after exposure to doses 10-11, 10-8 and 
10-6 M of nicotine was increased by 9.71%, 21.99% and 
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FIGURE 1.FIGURE 1. Effect of nicotine on the viability of A- MCF-7 and B- OVCAR-3 cells after 24h treatment using the MTT assay. Data are pre-
sented as mean±SD (n=4). All data are presented as a percentage with respect to control (100% cell viability). *Shows a significant difference 
compared to the respective control group (P<0.05).

FIGURE 2.FIGURE 2. Effect of nicotine on CAT activity in A- MCF-7 and B- OVCAR-3 cells. Sample size (n=3). *P<0.05 for significant changes 
compared to the control (no treatment). CAT: Catalase.

FIGURE 3.FIGURE 3. Effect of nicotine on GPx activity in A- MCF-7 and B- OVCAR-3 cells. Sample size (n=3). *P<0.05 for significant changes com-
pared to the control (no treatment). GPx: Glutathione peroxidase.



30.17%, respectably, but this increase was not statisti-
cally significant (Figure 2B).

Effect of nicotine on GPx activity in MCF-7 and OV-
CAR-3 cells 

In MCF-7  cells, the intracellular GPx activity de-
creased by 15.31%, 30.32% and 31.48 % for cells treat-
ed with 10-11, 10-8 and 10-6 M nicotine concentrations, 
respectively (Figure 3A). This decrease was significant 
only at 10-8 and 10-6 M nicotine concentrations compared 
to the control group (P<0.05). In the case of OVCAR-3 
cells, treatment of this cell with the doses 10-11, 10-8 and 
10-6 M of nicotine resulted in a decline in GPx activity 
by 12.37%, 16.47% and 22.25%, respectively. How-
ever, these decreases were not significant in all groups 

compared to the control group (Figure 3B).

Effect of nicotine on GR activity in MCF-7 and OV-
CAR-3 cells

As demonstrated in Figure 4A, GR enzymes’ activities 
in the MCF-7 cell line were significantly decreased in 
cells treated with 10-8 and 10-6 M of nicotine by 37.34% 
and 42.36%, respectively, in comparison with the con-
trol group. In OVCAR-3 cells, treatment with 10-11, 10-8 
and 10-6 M concentration of nicotine decreased the ac-
tivity of GR by 7.36%, 6.27% and 17.37%, respective-
ly, as compared with the control (no treatment), but this 
decrease was significant only at 10-6 M dose of nicotine 
(P<0.05, Figure 4B).
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FIGURE 4.FIGURE 4. Effect of nicotine on GR activity in A- MCF-7 and B- OVCAR-3 cells. Sample size (n=3). *P<0.05 for significant changes com-
pared to the control (no treatment). GR: Glutathione reductase.

FIGURE 5.FIGURE 5. Effect of nicotine on GSH level in A- MCF-7 and B- OVCAR-3 cells. Sample size (n=3). *P<0.05 for significant changes com-
pared to the control (no treatment). GSH: Glutathione.
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Effect of nicotine on GSH level in MCF-7 and OV-
CAR-3 cells

The GSH level in the MCF-7 cells after 24h of treat-
ment with 10-11, 10-8 and 10-6 M nicotine showed a re-
duction by 12.32%, 18.85%  and 20.84%, respectively 
in comparison to the control group, but this decrease 
was significant only at 10-8 and 10-6 M nicotine concen-
tration (Figure 5A). Similarly, in OVCAR-3 cells, the 
GSH level in cells after 24h of treatment with 10-11, 10-8 
and 10-6 M of nicotine showed a decline by 6.9%, 16.1% 
and 26.44% as compared with the control group, but 
these declines were significant only at 10-6 M nicotine 
concentration (Figure 5B). 

Effect of nicotine on MDA level in MCF-7 and OV-
CAR-3 cells

As shown in Figure 6A in MCF-7 cells, nicotine at 
10-8 and 10-6 M concentration provoked a significant in-
crease in MDA level by 42.02% and 45.56%, respec-
tively, compared to the control group (P<0.05). Compa-
rably, in OVCAR-3 cells, nicotine increased MDA level 
by 11.07%, 11.86%, 18.72 % in compression with the 
control group, but these increases were not significant in 
all three groups (Figure 6B).  

Discussion
The purpose of the current study was to evaluate the 

toxic effects of nicotine on breast MCF-7 and ovary 
OVCAR-3 cells in an in vitro experimental model sys-
tem as a means to understand the toxicity of nicotine in 
these cells. We showed that nicotine at doses below 10-4 
M is safe for MCF-7 and OVCAR-3 cells, which is con-

sistent with our previous studies on nicotine effects on 
human HepG2 and endometrial stromal cells (Totonchi 
et al., 2016; Yarahmadi et al., 2017). Hence, we used 
10-11, 10-8 and 10-6 M nicotine to treat MCF-7 and OV-
CAR-3 cells to assess nicotine effects on the antioxidant 
enzyme status. The ROS are byproducts of normal cell 
metabolism and rise in many drug exposure. Depending 
on their cellular concentration, these free radicals could 
have beneficial or harmful effects on human cells and 
tissues (Circu and Aw, 2010). At limited quantities, ROS 
function like redox messengers in many signaling and 
regulatory pathways in cells. Nevertheless, the over-pro-
duction of ROS induces oxidative toxicity and severe 
damages to basic macromolecules in the cells, such as 
DNA, proteins and lipids, which destroys normal pro-
teins and lipids function and leads to cell death (Deli-
jewski et al., 2014; Hwang et al., 2008). Many studies 
also showed that the over-production of ROS disturbers 
cellular signaling and finally, leads to cancer occurrence 
(Pelicano et al., 2004). Normal cell function depends on 
a balance between the production and destruction of free 
radicals, known as oxidant-antioxidant balance (Alam-
dari et al., 2020b; Halliwell, 2007). Human body cells 
consist of a complex antioxidant defense system include 
enzymatic defense CAT, SOD, GPx and GR and non-en-
zymatic antioxidant GSH, vitamin C and E. This system 
is responsible for protecting the destructive effects of 
ROS (Circu and Aw, 2010). The enzyme SOD functions 
as the primary cellular defense against the destructive 
effects of free oxygen radicals by the dismutation of su-
peroxide anion (O2

2-) to hydrogen peroxide (H2O2) and 
molecular oxygen (O2). Then, sufficient activity of en-

FIGURE 6.FIGURE 6. Effect of nicotine on MDA level in A- MCF-7 and B- OVCAR-3 cells. Sample size (n=3). *P<0.05 for significant changes com-
pared to the control (no treatment). MDA: Malondialdehyde.



zymes CAT and GPx are necessary to degrade H2O2 to 
H2O and O2. The function of enzyme GR is needed to 
maintain the GSH level sufficient for the activity of GPx 
(Matés et al., 1999).  

In our study, as shown in Figure 2, the activity of the 
enzyme CAT increased in both MCF-7 and OVCAR-3 
cells after treatment with different nicotine concentra-
tions. However, this increase was significant at 10-6 M 
nicotine concentration in MCF-7 cells, which is consis-
tent with our previous study on the effects of nicotine 
on the antioxidant enzyme status in HepG-2 cells. Sim-
ilarly, Delijewski et al. (2014) showed that CAT activity 
in melanocytes significantly increased after 24h incuba-
tion with different nicotine concentrations. In contrast, 
Muthukumaran et al. (2008) showed that nicotine induc-
es antioxidant imbalance and reduces CAT activity in 
the circulation and lung of Wistar rats after 22 weeks 
of nicotine treatment. This controversy in CAT activi-
ty could be explained by the fact that in acute nicotine 
exposure, cellular CAT activity increases to mitigate 
nicotine oxidative damages, but in chronic nicotine ex-
posure, depletion in the activity of CAT may be due to 
decreased synthesis of enzymes or oxidative inactiva-
tion of enzyme protein. In Muthukumaran et al.’s study, 
decreased CAT activity was associated with decreased 
antioxidant status after chronic nicotine exposure that 
can be related to insufficient antioxidant potential.  

As demonstrated in Figure 3, GPx activity decreased 
after treatment with all nicotine doses in both MCF-7 
and OVCAR-3 cells. However, it was significant only 
at 10-8 and 10-6 M in MCF-7 cells, which is consistent 
with Mahapatra et al. (2009) study on nicotine effects in 
mice peritoneal macrophages in an in vitro model. This 
decrease in GPx activity along with an increase in CAT 
activity may show that both pathways of H2O2 degrada-
tion by enzymes CAT and GPx are involved in the de-
struction of H2O2 during the high concentration of free 
radicals induced by nicotine toxication in these cells.

The function of enzyme GR is the preservation of GSH 
content in its reduced form, which is necessary for the 
activity of GPx. In our study, the activity of GR was sig-
nificantly decreased in high dose nicotine treated groups 
in both MCF-7 and OVCAR-3 cells, which was compat-
ible with the results of Erat et al. (2007) that showed nic-
otine treatment reduces GR activity in the liver, lungs, 
heart, stomach, kidney and testicles of rats in an in vivo 
and in vitro models and also showed that application of 

vitamin E could restore the activity of GR. 
GSH level is crucial for the preservation of cellular 

oxidant-antioxidant balance. In in our experiment, the 
level of reduced GSH significantly decreased after treat-
ment with nicotine at doses 10-8 and 10-6 M in MCF-7 
cells and at 10-6 M nicotine concentration in OVCAR-3 
cells, which is compatible with Balakrishnan and Menon 
(2007) study that showed nicotine decreased reduced 
GSH in lung, liver and kidney of rats and hesperidin a 
polyphenolic compounds which are mainly available in 
citrus fruits restored GSH level. 

Similar to our results, Sener et al. (2005) showed that 
nicotine-induced oxidative damage results in GSH de-
pletion in the bladder and kidney of rats compared to 
control and amino acids taurine could significantly en-
hance reduced GSH in these rats. MDA, an indicator of 
lipid peroxidation, showed a marked increase in both 
MCF-7 and OVCAR-3 cells. However, it was signifi-
cant only in MCF-7 cells at 10-8, and 10-6 M  nicotine 
concentration, which is compatible with the results of 
Al-Malki and Moselhy (2013) that indicated nicotine 
administration to rats makes a significant elevation in 
MDA level.  

Conclusion
In conclusion, the results of this study showed that the 

breast MCF-7 cells are more vulnerable than ovarian 
OVCAR-3 cells to nicotine-induced oxidative toxicity 
in an in vitro model. Further studies are needed to assess 
different nicotine toxicity patterns in cells in the in vitro 
and in vivo models. 
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