Accepted Manuscripts                   Back to the articles list | Back to browse issues page

XML Print

Abstract:   (613 Views)
Background: Depression impairs cognitive brain functions and memory processing. On the other hand, escitalopram (as an antidepressant drug) and exercise (as a life style) affect brain functions in depression. Therefore, this study investigated the comparative therapeutic effects of exercise, different dose of escitalopram and escitalopram-accompanied exercise on different aspects of cognitive functions in rats under depression.
Materials and Methods: Male rats were randomly allocated to different groups as following Control, Sham, Depression, Depression-Rest, Depression-Exercise, Depression-Escitalopram 10mg/kg, Depression-Escitalopram 20­mg/kg, Depression-Escitalopram10-Exercise, Depression-Escitalopram20-Exercise. For inducing of depression, chronic restraint stress (6h/day/14 days) was used. In addition, both injection of escitalopram and running on treadmill (1 h/day) were performed for 14­ days after stress-induced depression. Passive avoidance test was used for evaluating of different aspect of brain functions.
Results: results showed that the learning and memory decreased by depression. Whereas, exercise alone and exercise‑accompanied escitalopram 20 significantly improved them. There was significant enhancement of memory in administration of escitalopram­20 alone than escitalopram10 in depressive rats. In addition, there was a significant improvement on memory consolidation in the exercise and escitalopram20-accompanied exercise. However, the locomotor activity decreased according in these both groups.
Conclusion: The data indicated that depression severity destructed brain functions. It was found that escitalopram­20 alone had a better effect than escitalopram10 on improvement of memory deficit in depressive subjects. Furthermore, exercise improved memory better than escitalopram in depression. Finally, the synergistic effect of exercise and escitalopram20 improved memory deficit as the best treatment protocol. 

1. Arida RM, Scorza CA, da Silva AV, Scorza FA, Cavalheiro EA. Differential effects of spontaneous versus forced exercise in rats on the staining of parvalbumin-positive neurons in the hippocampal formation. Neurosci Lett 2004; 364: 135-8. [DOI:10.1016/j.neulet.2004.03.086]
2. Benatti C, Alboni S, Blom JMC, Mendlewicz J, Tascedda F, Brunello N. Molecular changes associated with escitalopram response in a stress-based model of depression. Psychoneuroendocrinology 2018; 87: 74-82. [DOI:10.1016/j.psyneuen.2017.10.011]
3. Bhagya V, Srikumar BN, Raju TR, Rao BS. Chronic escitalopram treatment restores spatial learning, monoamine levels, and hippocampal long-term potentiation in an animal model of depression. Psychopharmacology (Berl) 2011; 214: 477-94. [DOI:10.1007/s00213-010-2054-x]
4. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep (Washington, D.C. : 1974) 1985; 100: 126-31.
5. Chang YK, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res 2012; 1453: 87-101. [DOI:10.1016/j.brainres.2012.02.068]
6. Chen HI, Lin LC, Yu L, Liu YF, Kuo YM, Huang AM, et al. Treadmill exercise enhances passive avoidance learning in rats: the role of down-regulated serotonin system in the limbic system. Neurobiol Learn Mem 2008; 89: 489-96. [DOI:10.1016/j.nlm.2007.08.004]
7. Chennaoui M, Grimaldi B, Fillion MP, Bonnin A, Drogou C, Fillion G, et al. Effects of physical training on functional activity of 5-HT1B receptors in rat central nervous system: role of 5-HT-moduline. Naunyn Schmiedebergs Arch Pharmacol 2000; 361: 600-4. [DOI:10.1007/s002100000242]
8. Couto FS, Batalha VL, Valadas JS, Data-Franca J, Ribeiro JA, Lopes LV. Escitalopram improves memory deficits induced by maternal separation in the rat. Eur J Pharmacol 2012; 695: 71-5. [DOI:10.1016/j.ejphar.2012.08.020]
9. Cowen P, Sherwood AC. The role of serotonin in cognitive function: evidence from recent studies and implications for understanding depression. J Psychopharmacol 2013; 27: 575-83. [DOI:10.1177/0269881113482531]
10. Cox EP, O'Dwyer N, Cook R, Vetter M, Cheng HL, Rooney K, et al. Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review. J Sci Med Sport 2016; 19: 616-28. [DOI:10.1016/j.jsams.2015.09.003]
11. Cui L, Hofer T, Rani A, Leeuwenburgh C, Foster TC. Comparison of lifelong and late life exercise on oxidative stress in the cerebellum. Neurobiol Aging 2009; 30: 903-9. [DOI:10.1016/j.neurobiolaging.2007.09.005]
12. Daut RA, Fonken LK. Circadian regulation of depression: A role for serotonin. Frontiers in Neuroendocrinology 2019; 54: 100746. [DOI:10.1016/j.yfrne.2019.04.003]
13. Dillon DG, Pizzagalli DA. Mechanisms of memory disruption in depression. Trends Neurosci 2018; 41: 137-49. [DOI:10.1016/j.tins.2017.12.006]
14. Ding Q, Vaynman S, Souda P, Whitelegge JP, Gomez-Pinilla F. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci 2006; 24: 1265-76. [DOI:10.1111/j.1460-9568.2006.05026.x]
15. Dremencov E, Csatlósová K, Durišová B, Moravcíková L, Lacinová L, Ježová D. Effect of physical exercise and acute escitalopram on the excitability of brain monoamine neurons: in vivo electrophysiological study in rats. Int J Neuropsychopharmacol 2017; 20: 585-92. [DOI:10.1093/ijnp/pyx024]
16. Dremencov E, El Mansari M, Blier P. Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area. J Psychiatry Neurosci 2009; 34: 223-9.
17. Dremencov E, Lapinova L, Lacinova L, Jezova D. Effect of physical exercise on the firing activity of serotonin neurons in rats. Eur Neuropsychopharmacol 2015; 25: 181-9. [DOI:10.1016/S0924-977X(15)30171-1 El]
18. Mansari M, Sánchez C, Chouvet G, Renaud B, Haddjeri N. Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: an in vivo electrophysiological study in rat brain. Neuropsychopharmacology 2005; 30: 1269-77. [DOI:10.1038/sj.npp.1300686]
19. Finsterwald C, Alberini CM. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: From adaptive responses to psychopathologies. Neurobiol Learn Mem 2014; 112: 17-29. [DOI:10.1016/j.nlm.2013.09.017]
20. Foley TE, Fleshner M. Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med 2008; 10: 67-80. [DOI:10.1007/s12017-008-8032-3]
21. García-Rojo G, Fresno C, Vilches N, Díaz-Véliz G, Mora S, Aguayo F, et al. The ROCK inhibitor fasudil prevents chronic restraint stress-induced depressive-like behaviors and dendritic spine loss in rat hippocampus. Int J Neuropsychopharmacol 2017; 20: 336-45. [DOI:10.1093/ijnp/pyw108]
22. Greenwood BN, Foley TE, Day HE, Burhans D, Brooks L, Campeau S, et al. Wheel running alters serotonin (5-HT) transporter, 5-HT1A, 5-HT1B, and alpha 1b-adrenergic receptor mRNA in the rat raphe nuclei. Biol Psychiatry 2005; 57: 559-68. [DOI:10.1016/j.biopsych.2004.11.025]
23. Henn L, Zanta NC, Girardi CEN, Suchecki D. Chronic escitalopram treatment does not alter the effects of neonatal stress on hippocampal BDNF levels, 5-HT(1A) expression and emotional behaviour of male and female adolescent rats. Mol Neurobiol 2021; 58: 926-43. [DOI:10.1007/s12035-020-02164-1]
24. Jacobsen JP, Mørk A. The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res 2004; 1024: 183-92. [DOI:10.1016/j.brainres.2004.07.065]
25. Jastrzębska J, Frankowska M, Suder A, Wydra K, Nowak E, Filip M, et al. Effects of escitalopram and imipramine on cocaine reinforcement and drug-seeking behaviors in a rat model of depression. Brain Res 2017; 1673: 30-41. [DOI:10.1016/j.brainres.2017.07.016]
26. Josefsson T, Lindwall M, Archer T. Physical exercise intervention in depressive disorders: Meta‐analysis and systematic review. Scand J Med Sci Sports 2014; 24: 259-72. [DOI:10.1111/sms.12050]
27. Kalantarzadeh E, Radahmadi M, Reisi P. Effects of different dark chocolate diets on memory functions and brain corticosterone levels in rats under chronic stress. Physiology and Pharmacology 2020; 24: 185-96. [DOI:10.32598/ppj.24.3.40]
28. Kamińska K, Górska A, Noworyta-Sokołowska K, Wojtas A, Rogóż Z, Gołembiowska K. The effect of chronic co-treatment with risperidone and novel antidepressant drugs on the dopamine and serotonin levels in the rats frontal cortex. Pharmacol Rep 2018; 70: 1023-31. [DOI:10.1016/j.pharep.2018.04.009]
29. Kraus C, Castrén E, Kasper S, Lanzenberger R. Serotonin and neuroplasticity - Links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev 2017; 77: 317-26. [DOI:10.1016/j.neubiorev.2017.03.007]
30. Lapmanee S, Charoenphandhu J, Charoenphandhu N. Beneficial effects of fluoxetine, reboxetine, venlafaxine, and voluntary running exercise in stressed male rats with anxietyand depression-like behaviors. Behav Brain Res 2013; 250: 316-25. [DOI:10.1016/j.bbr.2013.05.018]
31. Leasure JL, Jones M. Forced and voluntary exercise differentially affect brain and behavior. Neuroscience 2008; 156: 456-65. [DOI:10.1016/j.neuroscience.2008.07.041]
32. Li XL, Yuan YG, Xu H, Wu D, Gong WG, Geng LY, et al. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats. Int J Neuropsychopharmacol 2015; 18: pyv046. [DOI:10.1093/ijnp/pyv046]
33. Lin TW, Kuo YM. Exercise benefits brain function: the monoamine connection. Brain Sci 2013; 3: 39-53. [DOI:10.3390/brainsci3010039]
34. Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front Neurosci 2018 ; 12: 52. [DOI:10.3389/fnins.2018.00052]
35. Liu W, Ge T, Leng Y, Pan Z, Fan J, Yang W, et al. The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast 2017; 2017: 6871089. [DOI:10.1155/2017/6871089]
36. Mahar I, Bambico FR, Mechawar N, Nobrega JN. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 2014; 38: 173-92. [DOI:10.1016/j.neubiorev.2013.11.009]
37. Maniam J, Morris MJ. Voluntary exercise and palatable high-fat diet both improve behavioural profile and stress responses in male rats exposed to early life stress: role of hippocampus. Psychoneuroendocrinology 2010; 35: 1553-64. [DOI:10.1016/j.psyneuen.2010.05.012]
38. Marsman A, Mandl RCW, Klomp DWJ, Cahn W, Kahn RS, Luijten PR, et al. Intelligence and brain efficiency: investigating the association between working memory performance, glutamate, and GABA. Front Psychiatry 2017; 8: 154. [DOI:10.3389/fpsyt.2017.00154]
39. Martıń -Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, et al. Control of Serotonergic Function in Medial Prefrontal Cortex by Serotonin-2A Receptors through a Glutamate-Dependent Mechanism. J Neurosci 2001; 21: 9856-66 [DOI:10.1523/JNEUROSCI.21-24-09856.2001]
40. Motaghinejad M, Motevalian M, Larijani SF, Khajehamedi Z. Protective effects of forced exercise against methylphenidate-induced anxiety, depression and cognition impairment in rat. Adv Biomed Res 2015; 4: 134-34. [DOI:10.4103/2277-9175.161528]
41. Myhrer T. Neurotransmitter systems involved in learning and memory in the rat: a metaanalysis based on studies of four behavioral tasks. Brain Res Rev 2003; 41: 268-87. [DOI:10.1016/S0165-0173(02)00268-0]
42. Napolitano M, Marfia GA, Vacca A, Centonze D, Bellavia D, Di Marcotullio L, et al. Modulation of gene expression following long-term synaptic depression in the striatum. Mol Brain Res 1999; 72: 89-96. [DOI:10.1016/S0169-328X(99)00213-2]
43. Nemeroff CB. Recent advances in the neurobiology of depression. Psychopharmacol Bull 2002; 36: 6-23.
44. Nemeroff CB, Owens MJ. Pharmacologic Differences among the SSRIs: focus on monoamine transporters and the HPA axis. CNS Spectr 2004: 9: 23-31. [DOI:10.1017/S1092852900025475]
45. Neves BH, Menezes J, Souza MA, Mello-Carpes PB. Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation. Physiol Behav 2015; 152: 99-105. [DOI:10.1016/j.physbeh.2015.09.019]
46. Piñeyro G, Blier P. Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev 1999; 51: 533-91.
47. Radahmadi M, Alaei H, Sharifi MR, Hosseini N. Effect of forced exercise and exercise withdrawal on memory, serum and hippocampal corticosterone levels in rats. Exp Brain Res 2015; 233: 2789-99. [DOI:10.1007/s00221-015-4349-y]
48. Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA. Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 2002; 7: 609-16. [DOI:10.1038/]
49. Roozendaal B. Stress and memory: opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol Learn Mem 2002; 78: 578-95. [DOI:10.1006/nlme.2002.4080]
50. Rush AJ, Warden D, Wisniewski SR, Fava M, Trivedi MH, Gaynes BN, et al. STAR*D: revising conventional wisdom. CNS Drugs 2009; 23: 627-47.
51. Sağlam E, Kayir H, Çelik T, Uzbay T. Effects of escitalopram on ethanol withdrawal syndrome in rats. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 1027-32. [DOI:10.1016/j.pnpbp.2006.03.028]
52. Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F. Expression of Serotonin1A and Serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 2004; 14: 1100-9. [DOI:10.1093/cercor/bhh070]
53. Schindler CW, Carmona GN. Effects of dopamine agonists and antagonists on locomotor activity in male and female rats. Pharmacol Biochem Behav 2002; 72: 857-63. [DOI:10.1016/S0091-3057(02)00770-0]
54. Schulte-Herbrüggen O, Fuchs E, Abumaria N, Ziegler A, Danker-Hopfe H, Hiemke C, et al. Effects of escitalopram on the regulation of brain-derived neurotrophic factor and nerve growth factor protein levels in a rat model of chronic stress. J Neurosci Res 2009; 87: 2551- 60. [DOI:10.1002/jnr.22080]
55. Soczynska JK, Ravindran LN, Styra R, McIntyre RS, Cyriac A, Manierka MS, et al. The effect of bupropion XL and escitalopram on memory and functional outcomes in adults with major depressive disorder: Results from a randomized controlled trial. Psychiatry Res 2014; 220: 245-250. [DOI:10.1016/j.psychres.2014.06.053]
56. Sun XP, Li SD, Shi Z, Li TF, Pan RL, Chang Q, et al. Antidepressant-like effects and memory enhancement of a herbal formula in mice exposed to chronic mild stress. Neurosci Bull 2013; 29: 737-744. [DOI:10.1007/s12264-013-1378-z]
57. Thachil AF, Mohan R, Bhugra D. The evidence base of complementary and alternative therapies in depression. J Affect Disord 2007; 97: 23-35. [DOI:10.1016/j.jad.2006.06.021]
58. Van Praag H. Neurogenesis and exercise: past and future directions. Neuromolecular Med 2008; 10: 128-140. [DOI:10.1007/s12017-008-8028-z]
59. Vivar C, Potter MC, van Praag H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci 2012: 189-210. [DOI:10.1007/7854_2012_220]
60. World Health Organization 2016. World health statistics 2016: monitoring health for the SDGs sustainable development goals: World Health Organization, 2016. Adapted from:
61. Yilmaz N, Demirdas A, Yilmaz M, Sutcu R, Kirbas A, Cure MC, et al. Effects of venlafaxine and escitalopram treatments on NMDA receptors in the rat depression model. J Membr Biol 2011; 242: 145-51. [DOI:10.1007/s00232-011-9385-3]
62. Zhong H, Haddjeri N, Sánchez C. Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter-a review of current understanding of its mechanism of action. Psychopharmacology 2012; 219: 1-13. [DOI:10.1007/s00213-011-2463-5]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.