Volume 27, Issue 1 (March 2023)                   Physiol Pharmacol 2023, 27(1): 64-71 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kiani M, Alipanah H, Mazloomi S M, Nejati R, Nematollahi A, Sayadi M. Evidence for tissue-specific toxicity of malathion by biochemical biomarkers and histopathological indexin two weeks-treated Wistar rats. Physiol Pharmacol 2023; 27 (1) :64-71
URL: http://ppj.phypha.ir/article-1-1875-en.html
Abstract:   (1598 Views)
Introduction: Malathion (MAL), a kind of organophosphate pesticide (OPs), is one of the oldest phosphoric pesticides used for both domestic and commercial agricultural purposes. However, it possesses adverse effects and organ-specific toxicity for the heart, kidney, and other vertebrate organs. The exact effects of the short-term toxicity of MAL on lipid peroxidation, antioxidant activity, and pro-inflammatory cytokines have not been sufficiently elucidated yet.
Methods: We evaluated lipid peroxidation (MDA level), antioxidant activity [superoxide dismutase (SOD) and catalase (CAT)], tumor necrosis factor alpha (TNF-α), and Interleukin-1 beta (IL-1β) in different tissues of MAL-treated Wistar rats, at doses of 50, 100, and 200 mg/kg.
Results: After 14 days of exposure, CAT and SOD activities and MDA level increased in most tissues. Based on the histopathological results, the liver, kidney, and heart were the most affected, while the testes and lungs showed no damage. Also, increased TNF-α was measured as an inflammatory cytokine compared to untreated rats. IL-1β levels showed a dual response to the toxic effects of MAL, such as an increase in testis, kidney, and lung tissues and reduced in liver, heart, and blood tissues.
Conclusion: The present findings reinforce the concept that MAL can cause tissue-specific damage while enhancing the activity of antioxidant enzymes and reducing cytokine levels.
Full-Text [PDF 3780 kb]   (272 Downloads)    
Type of Manuscript: Experimental research article | Subject: Toxicology

References
1. Aebi H. Catalase in vitro. Methods in enzymology. Vol 105: Elsevier, 1984: 121-6. [DOI:10.1016/S0076-6879(84)05016-3]
2. Ahmed RS, Seth V, Pasha S, Banerjee B. Influence of dietary ginger (Zingiber officinales Rosc) on oxidative stress induced by malathion in rats. Food Chem Toxicol 2000; 38: 443-50. [DOI:10.1016/S0278-6915(00)00019-3]
3. Akhgari M, Abdollahi M, Kebryaeezadeh A, Hosseini R, Sabzevari O. Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum Exp Toxicol 2003; 22: 205-11. [DOI:10.1191/0960327103ht346oa]
4. Alluwaimi AM, Hussein Y. Diazinon immunotoxicity in mice: modulation of cytokines level and their gene expression. Toxicology 2007; 236: 123-31. [DOI:10.1016/j.tox.2007.04.004]
5. Anbarkeh FR, Nikravesh MR, Jalali M, Sadeghnia HR, Sargazi Z, Mohammdzadeh L. Single dose effect of diazinon on biochemical parameters in testis tissue of adult rats and the protective effect of vitamin E. Iran J Reprod Med 2014; 12: 731.
6. Ayub S, Verma J, Das N. Effect of endosulfan and malathion on lipid peroxidation, nitrite and TNF-α release by rat peritoneal macrophages. Int Immunopharmacol 2003; 3: 1819-28. [DOI:10.1016/j.intimp.2003.08.006]
7. Badr AM. Organophosphate toxicity: Updates of malathion potential toxic effects in mammals and potential treatments. Environ Sci Pollut Res 2020; 27: 26036-57. [DOI:10.1007/s11356-020-08937-4]
8. Bradford N. A rapid and sensitive method for the quantitation microgram quantities of a protein isolated from red cell membranes. Anal Biochem 1976; 72: e254. [DOI:10.1016/0003-2697(76)90527-3]
9. Brocardo PS, Assini F, Franco JL, Pandolfo P, Müller YM, Takahashi RN, et al. Zinc attenuates malathion-induced depressant-like behavior and confers neuroprotection in the rat brain. Toxicol Sci 2007; 97: 140-8. [DOI:10.1093/toxsci/kfm024]
10. Coban FK, Ince S, Kucukkurt I, Demirel HH, Hazman O. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug Chem Toxicol 2015; 38: 391-9. [DOI:10.3109/01480545.2014.974109]
11. Durak D, Uzun FG, Kalender S, Ogutcu A, Uzunhisarcikli M, Kalender Y. Malathion-induced oxidative stress in human erythrocytes and the protective effect of vitamins C and E in vitro. Environmental Toxicology: Int J 2009; 24: 235-42. [DOI:10.1002/tox.20423]
12. Eddleston M, Buckley NA, Eyer P, Dawson AH. Management of acute organophosphorus pesticide poisoning. Lancet 2008; 371: 597-607. [DOI:10.1016/S0140-6736(08)60948-4]
13. Edwards FL, Yedjou CG, Tchounwou PB. Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG2) cells. Environ Toxicol 2013; 28: 342-8. [DOI:10.1002/tox.20725]
14. Flehi-Slim I, Chargui I, Boughattas S, El Mabrouk A, Belaïd-Nouira Y, Neffati F, et al. Malathion-induced hepatotoxicity in male Wistar rats: biochemical and histopathological studies. Environ Sci Pollut Res 2015; 22: 17828-38. [DOI:10.1007/s11356-015-5014-5]
15. Fortunato JJ, Feier G, Vitali AM, Petronilho FC, Dal-Pizzol F, Quevedo J. Malathion-induced oxidative stress in rat brain regions. Neurochem Res 2006; 31: 671-8. [DOI:10.1007/s11064-006-9065-3]
16. Gupta VK, Siddiqi NJ, Ojha AK, Sharma B. Hepatoprotective effect of Aloe vera against cartap-and malathion-induced toxicity in Wistar rats. J Cell.Physiol 2019; 234: 18329-43. [DOI:10.1002/jcp.28466]
17. Hariri AT, Moallem SA, Mahmoudi M, Memar B, Hosseinzadeh H. Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: protective effects of crocin and safranal. Food Chem Toxicol 2010; 48: 2803-8. [DOI:10.1016/j.fct.2010.07.010]
18. Heshmati A, Nili-Ahmadabadi A, Rahimi A, Vahidinia A, Taheri M. Dissipation behavior and risk assessment of fungicide and insecticide residues in grape under open-field, storage and washing conditions. J Clean Prod 2020; 270: 122287. [DOI:10.1016/j.jclepro.2020.122287]
19. Ince S, Arslan-Acaroz D, Demirel HH, Varol N, Ozyurek HA, Zemheri F, et al. Taurine alleviates malathion induced lipid peroxidation, oxidative stress, and proinflammatory cytokine gene expressions in rats. Biomed Pharmacother 2017; 96: 263-8. [DOI:10.1016/j.biopha.2017.09.141]
20. Jalili C, Farzaei MH, Roshankhah S, Salahshoor MR. Resveratrol attenuates malathion-induced liver damage by reducing oxidative stress. J Lab Physicians 2019; 11: 212-9. [DOI:10.4103/JLP.JLP_43_19]
21. Kruger NJ. The Bradford method for protein quantitation. The protein protocols handbook 2009: 17-24. [DOI:10.1007/978-1-59745-198-7_4]
22. Lasram MM, Annabi AB, El Elj N, Selmi S, Kamoun A, El-Fazaa S, et al. Metabolic disorders of acute exposure to malathion in adult Wistar rats. J Hazard Mater 2009; 163: 1052-5. [DOI:10.1016/j.jhazmat.2008.07.059]
23. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47: 469-74. [DOI:10.1111/j.1432-1033.1974.tb03714.x]
24. Mohammadzadeh L, Hosseinzadeh H, Abnous K, Razavi BM. Neuroprotective potential of crocin against malathion-induced motor deficit and neurochemical alterations in rats. Environ Sci Pollut Res 2018; 25: 4904-14. [DOI:10.1007/s11356-017-0842-0]
25. Moser VC, Stewart N, Freeborn DL, Crooks J, MacMillan DK, Hedge JM, et al. Assessment of serum biomarkers in rats after exposure to pesticides of different chemical classes. Toxicol Appl Pharmacol 2015; 282: 161-74. [DOI:10.1016/j.taap.2014.11.016]
26. Mostafalou S, Eghbal MA, Nili-Ahmadabadi A, Baeeri M, Abdollahi M. Biochemical evidence on the potential role of organophosphates in hepatic glucose metabolism toward insulin resistance through inflammatory signaling and free radical pathways. Toxicol Ind Health 2012; 28: 840-51. [DOI:10.1177/0748233711425073]
27. Ohkawa H, Ohishi W, Yagi K. Colorimetric method for determination of MDA activity. Biochemistry 1979; 95: 351. [DOI:10.1016/0003-2697(79)90738-3]
28. Pober J, Min W. Endothelial cell dysfunction, injury and death. Handb Exp Pharmacol 2006: 135-56. [DOI:10.1007/3-540-36028-X_5]
29. Possamai F, Fortunato J, Feier G, Agostinho F, Quevedo J, Wilhelm Filho D, et al. Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. Environ Toxicol Pharmacol 2007; 23: 198-204. [DOI:10.1016/j.etap.2006.09.003]
30. Rahimi A, Heshmati A, Nili-Ahmadabadi A. Changes in pesticide residues in field-treated fresh grapes during raisin production by different methods of drying. Dry Technol 2022; 40: 1715-28. [DOI:10.1080/07373937.2021.1919140]
31. Tan M-S, Yu J-T, Jiang T, Zhu X-C, Tan L. The NLRP3 inflammasome in Alzheimer’s disease. Mol Neurobiol 2013; 48: 875-82. [DOI:10.1007/s12035-013-8475-x]
32. Yarsan E, Tanyuksel M, Celik S, Aydin A. Effects of aldicarb and malathion on lipid peroxidation. Bull Environ Contam Toxicol 1999; 63: 575-81. [DOI:10.1007/s001289901019]
33. Zabrodskii P, Maslyakov V, Gromov M. Changes in the function of lymphocytes and cytokine concentration in blood caused by the action of atropine under conditions of acute malathion intoxication. Eksp Klin Farmakol 2015; 78: 20-3.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.