Volume 27, Issue 2 (July 2023)                   Physiol Pharmacol 2023, 27(2): 116-131 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mokhtari I, Harnaf M, Amrani S, Milenkovic D, Harnaf H. Caftaric acid-rich extract from Ocimum basilicum L. modulates lipid profile and prevents lipoprotein oxidation in hyperlipidemic mice. Physiol Pharmacol 2023; 27 (2) :116-131
URL: http://ppj.phypha.ir/article-1-1973-en.html
Abstract:   (733 Views)

Introduction: The present study aimed to investigate the hypolipidemic and lipoprotein protective effects of a phenolic extract from sweet basil.
Methods: The antihyperlipidemic activity was evaluated using Triton WR-1339 and a high-fat diet (HFD) induced hyperlipidemic mouse models. In the Triton model, plasma lipids were measured after 24h of treatment, whereas in the HFD model, body weight, food intake, plasma and fecal lipids were determined biweekly. After 45 days of treatment, the livers and abdominal adipose tissues were weighed and lipid measurements for each group were performed.
Results: In both models, the phenolic extract at 100 and 200mg/kg significantly reduced plasma total cholesterol (TC), LDL-cholesterol (LDL-C), triglycerides, atherogenic index and LDL-C/HDL-C ratio and increased HDL-C. Besides, the phenolic extract significantly repressed the gain in body, liver and adipose tissue weights while the food intake was not significantly hindered. Moreover, phenolic extract decreases TC and triglycerides in the liver and adipose tissue and increases their fecal excretion. The phenolic extract exhibited a protective effect against plasma lipoprotein oxidation (IC50=4.64±0.42 µg/ml) and neutralized DPPH free radical (IC50=2.83±0.05 µg/ml) in a manner relatively similar to that exerted by butylated hydroxyanisole (synthetic antioxidant). Total phenolics in the extract represent 234.45±0.84 mg/g and HPLC analysis reveals that the extract includes four main phenolics, with caftaric acid being particularly abundant.
Conclusion: This data suggests that sweet basil is an interesting plant food rich in phenolic compounds that might significantly reduce hyperlipidemia and prevent atherosclerosis and related cardiovascular complications.

Full-Text [PDF 2387 kb]   (288 Downloads)    

1. Ackerman D, Tumanov S, Qiu B, Michalopoulou E, Spata M, Azzam A, Kamphorst JJ. Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation. Cell reports 2018; 24:2596-2605. [DOI:10.1016/j.celrep.2018.08.015]
2. Ahmed D, Khan MM, Saeed R. Comparative analysis of phenolics, favonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extract from adiantum caudatum leaves. Antioxidants 2015; 4:394–409. [DOI:10.3390/antiox4020394]
3. Amiya E. Interaction of hyperlipidemia and reactive oxygen species: Insights from the lipid-raft platform. World J Cardiol 2016; 8:689-694. [DOI:10.4330/wjc.v8.i12.689]
4. Bandeali S, Farmer J. High-density lipoprotein and atherosclerosis: the role of antioxidant activity. Curr Atheroscler Rep 2012; 14:101-107. [DOI:10.1007/s11883-012-0235-2]
5. Barradas V, Antoniassi MP, Intasqui P, Nichi M, Bertolla RP, Spaine DM. Evaluation of oxidative stress in seminal plasma of adolescents with varicocele. J Reprod Fertil 2021; 2:141-150. [DOI:10.1530/RAF-20-0048]
6. Bin-Jumah MN. Monolluma quadrangula Protects against Oxidative Stress and Modulates LDL Receptor and Fatty Acid Synthase Gene Expression in Hypercholesterolemic Rats. Oxid Med Cell Longev 2018; 2018:1-10. [DOI:10.1155/2018/3914384]
7. Bouaziz M, Jemai H, Khabou W, Sayadi S. Oil content, phenolic profiling and antioxidant potential of Tunisian olive drupes. J Sci Food Agric 2010; 90:1750–1758. [DOI:10.1002/jsfa.4013]
8. Chang YY, Yang DJ, Chiu CH, Lin YL, Chen JW, Chen YC. Antioxidative and anti-inflammatory effects of polyphenol-rich litchi (Litchi chinensis Sonn.)-flower-water-extract on livers of high-fat-diet fed hamsters. J Funct Foods 2013; 5:44-52. [DOI:10.1016/j.jff.2012.08.002]
9. Hall KD. Ultra-processed diets cause excess calorie intake and weight gain: A one-month inpatient randomized controlled trial of ad libitum food intake. Cell Matab 2019; 30:1–10. [DOI:10.1016/j.cmet.2019.05.008]
10. Harnafi H, Bouanani Nel H, Aziz M, Serghini Caid H, Ghalim N, Amrani S. The hypolipidaemic activity of aqueous Erica multiflora flowers extract in Triton 22 WR-1339 induced hyperlipidaemic rats: a comparison with Fenofibrate. J Ethnopharmacol 2007 ; 109:156–160. [DOI:10.1016/j.jep.2006.09.017]
11. Harnafi H, Ramchoun M, Tits, M, Wauters JN, Frederich M, Angenot L, Aziz M, Alem C, Amrani S. Phenolic acid-rich extract of sweet basil restores cholesterol and triglycerides metabolism in high-fat diet-fed mice: A comparison with Fenofibrate. Biomed Prev Nutr 2013; 3:393–397. [DOI:10.1016/j.bionut.2013.03.005]
12. Hashem MA, Abd-Allah NA, Mahmoud EA, Amer SA, Alkafafy M. A Preliminary Study on the Effect of Psyllium Husk Ethanolic Extract on Hyperlipidemia, Hyperglycemia, and Oxidative Stress Induced by Triton X-100 Injection in Rats. Biology 2021; 10:335-347. [DOI:10.3390/biology10040335]
13. Hui CK, Majid NI, Yusof HM, Zainol KM, Mohamad H, Zin ZM. Catechin profile and hypolipidemic activity of Morinda citrifolia leaf water extract. Heliyon 2020; 6:e04337. [DOI:10.1016/j.heliyon.2020;e04337]
14. Huynh NT, Nguyen DNT, Tran MH. Hypolipidemic Effect of Ethanolic Extract from Pandanus Amaryllifolius Leaves on Triton WR-1339-Induced Hyperlipidemia in Mice. Int J of Pharmc Res 2018; 8:131-136.
15. Iñiguez M, Pérez-Matute P, Villanueva-Millán MJ, Recio-Fernández E, Roncero-Ramos I, Pérez-Clavijo M, et al. Agaricus bisporus supplementation reduces high-fat diet-induced body weight gain and fatty liver development. J Physiol Bochem 2018;74(4):635-646. [DOI:10.1007/s13105-018-0649-6]
16. Jawed A, Singh G, Kohli S, Sumera A, Haque S, Prasad R, Paul D. Therapeutic role of lipases and lipase inhibitors derived from natural resources for remedies against metabolic disorders and lifestyle diseases. South African J Bot 2019; 120:25–32. [DOI:10.1016/j.sajb.2018.04.004]
17. Kadriye A, Hayaloglu AA, Safiye ND. Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat mass Transfer 2019; 55:2173-2184. [DOI:10.1007/s00231-019-02570-9]
18. Kamoun J, Rahier R, Sellami M, Koubaa I, Mansuelle P, Lebrun R, Berlioz-Barbier A, Fiore M, Alvarez K, Abousalham A, Carrière F, Aloulou A. Identification of a new natural gastric lipase inhibitor from star anise. Food Funct 2019; 10:469–478. [DOI:10.1039/c8fo02009d]
19. Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 2013; 5:3779-3827. [DOI:10.3390/nu5103779]
20. Kim GT, Cho KH, Sharma A, Devi S, Park TS. Annona muricata leaf extract attenuates hepatic lipogenesis and adipogenesis. Food Funct 2021; 12(10):4621-4629. [DOI:10.1039/d1fo00509j]
21. Kraus D, Yang Q, Kahn BB. Lipid Extraction from Mouse Feces. Bio Protoc 2015; 5(1):e1375. [DOI:10.21769/bioprotoc.1375]
22. Liu Q, Liu F, Zhang L, Niu Y, Liu Z, Liu X. Comparison of chicoric acid, and its metabolites caffeic acid and caftaric acid: In vitro protection of biological macromolecules and inflammatory responses in BV2 microglial cells. Food Sci Hum Wellness 2017; 6:155–166. [DOI:10.1016/j.fshw.2017.09.001]
23. Makri O, Kintzios S. Ocimum Sp. (Basil): Botany, Cultivation, Pharmaceutical Properties, and Biotechnology. J Herbs Spices Med Plants 2008; 13:123–150. [DOI:10.1300/J044v13n03_10]
24. Martinez-Gomez A, Caballero I, Blanco CA. Phenols and melanoidins as natural antioxidants in beer. structure, reactivity and antioxidant activity. Biomolecules 2020;10:400-419. [DOI:10.3390/biom10030400]
25. Marwat SK, Khan MS, Ghulam S, Anwar N, Mustafa G, Usman K. Phytochemical constituents and pharmacological activities of sweet Basil-Ocimum basilicum L. (Lamiaceae). Asian j chem 2011; 23:3773-3782. [DOI:10.1155/2019/2628747]
26. Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 2013; 40:195-211. [DOI:10.1016/j.pop.2012.11.003]
27. Neuschwander-Tetri B A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010; 52(2):774–788. [DOI:10.1002/hep.23719]
28. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int j prev Med. 2014. 5:927-946. Rodríguez-Sureda V, Peinado-Onsurbe J. A procedure for measuring triacylglyceride and cholesterol content using a small amount of tissue. Anal Biochem 2005; 343(2):277-282. [DOI:10.1016/j.ab.2005.05.009]
29. Tacherfiout M, Petrov PD, Mattonai M, Ribechini E, Ribot J, Bonet ML, Khettal B. Antihyperlipidemic effect of a Rhamnus alaternus leaf extract in Triton-induced hyperlipidemic rats and human HepG2 cells. Biomed. Pharmacother 2018; 101: 501-509. [DOI:10.1016/j.biopha.2018.02.106]
30. Uslu AU, Kucuk A, Icli A, Cure E, Sakiz D, Arslan S, Baykara RA. Plasma atherogenic index is an independent indicator of subclinical atherosclerosis in systemic lupus erythematosus. Eurasian J Med 2017; 49:193-197. [DOI:10.5152/eurasianjmed.2017.17143]
31. Villaseñor JL. Checklist of the native vascular plants of Mexico. Rev Mex Biodivers 2016; 87:559–902. [DOI:10.1016/j.rmb.2016.06.017]
32. Wadhera RK, Steen DL, Khan I, Giugliano RP, Foody JM. A review of low-density lipoprotein cholesterol, treatment strategies, and its impact on cardiovascular disease morbidity and mortality. J Clin Lipidol 2016; 10:472-489. [DOI:10.1016/j.jacl.2015.11.010]
33. Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, Bell ML. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the global burden of disease study 2015. Lancet 2016; 388:1459-1544. [DOI:10.1016/S0140-6736(16)31012-1]
34. Wilkins JT, Ning H, Stone NJ, Criqui MH, Zhao L, Greenland P, Lloyd‐Jones D M. Coronary heart disease risks associated with high levels of HDL cholesterol. J Am Heart Assoc 2014; 3:e000519. [DOI:10.1161/JAHA.113.000519]
35. Xiao C. Pharmacological targeting of the atherogenic dyslipidemia complex: the next frontier in CVD prevention beyond lowering LDL cholesterol. Diabetes 2016; 65: 1767–1778. [DOI:10.2337/db16-0046]
36. Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, Shang H. Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Front Physiol 2017; 8:600-616. [DOI:10.3389/fphys.2017.00600]
37. Yang XJ, Dang B, Fan M T. Free and bound phenolic compound content and antioxidant activity of different cultivated blue highland barley varieties from the Qinghai-Tibet Plateau. Molecules 2018; 23:879-899. [DOI:10.3390/molecules23040879]
38. Zhong Z, Hou J, Zhang Q, Zhong W, Li B, Li C, Zhao P. Assessment of the LDL-C/HDL-C ratio as a predictor of one-year clinical outcomes in patients with acute coronary syndromes after percutaneous coronary intervention and drug-eluting stent implantation. Lipids Health Dis 2019; 18:40-48. [DOI:10.1186/s12944-019-0979-6]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.