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Introduction: Tacca chantrieri Andre is frequently used by traditional healers to alleviate 
pain and fever, primirily by reducing inflammation. Its rhizome extract possesses remarkable 
peripheral anti-inflammatory and antioxidant bioactivities. However, there is limited 
information available regarding its potential anti-neuroinflammation effects. This study aimes 
to assess the neuroprotective effects of T. chantrieri rhizome ethanol extract (TCE) against 
lipopolysaccharides (LPS)-induced neuroinflammation.
Methods: Rats were orally administered with TCE at doses of 50, 100, and 200 mg/kg 
continually for 9 days. On the 7th day of treatment, each rat received a single intraperitoneal 
injection of LPS (0.83 mg/kg). Cognitive performance was assessed using the Y-maze test and 
novel object recognition (NOR) test. Thereafter, the proinflammatory cytokine level in the 
hippocampus was measured by ELISA. 
Results: Systemic LPS administration induced sickness behavior, cognitive impairment, 
and neuroinflammation. TCE at doses of 100 and 200 mg/kg reversed the LPS-induced 
behavioral deficits, showing improvements in spontaneous alternation in the Y-maze test and 
discrimination index in the NOR test. Additionally, pretreatment with TCE at doses of 100 and 
200 mg/kg significantly attenuated the LPS-induced increase in protein expression of TNF-α.
Conclusion: TCE exhibited neuroprotective effects against LPS-induced cognitive deficits and 
suppressed the production of pro-inflammatory mediators in a dose-dependent manner. These 
findings indicate that TCE may hold therapeutic potential in preventing neuroinflammation-
associated cognitive impairment. However, further studies are necessary to validate the 
possible mechanisms of its neuroprotective effects.
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Neuroinflammation constitutes a common hallmark of 
pathologic changes linked to the onset of various neuro-
degenerative diseases, such as Alzheimer’s disease (AD) 

and Parkinson’s disease (PD) (Chen et al, 2016). Robust 
evidence from epidemiological studies has shown that 
inflammatory co-morbidities are significant risk factors 
for dementia (Reitz et al, 2011; Calsolaro and Edison, 
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2016). Furthermore, the treatment with non-steroidal 
anti-inflammatory drugs has been shown to reduce the 
risk of AD development (Benito-León et al, 2019). Li-
popolysaccharide (LPS), an endotoxin derived from the 
outer membrane of Gram-negative bacteria, is a widely 
used experimental model of neuroinflammation (Zakaria 
et al, 2017; Zhao et al, 2019). Peripheral administration 
of LPS effectively triggers brain glial activity (Huang et 
al, 2020), resulting in the production of proinflammato-
ry cytokines in the brain, such as tumor necrosis factor-α 
(TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-
6) (Marefati et al, 2020). Excessive induction of these 
cytokines following systemic LPS challenge is associat-
ed with hippocampal atrophy (Zakaria et al, 2017) and 
an accelerated progression of cognitive deficits (Spark-
man et al, 2005; Czerniawski et al, 2015; Yin et al, 2019; 
Zhao et al, 2019; Lopez-Rodriguez et al, 2021). 

Tacca chantrieri Andre is an herbaceous perennial 
plant native to Asia and the Pacific islands. Its rhizomes 
are used for the treatment of various diseases, such as 
colds, burns, gastric ulcers, hepatitis, and high blood 
pressure (Yokosuka et al, 2002a; Tiamjan et al, 2007). 
Saponins and glycosides are the of T. chantrieri (TCE) 
(Yokosuka et al, 2002a; Rujjanawate and Chairat, 2018), 
that show a variety of bioactivities including anti-in-
flammatory and antioxidant properties (Yokosuka et al, 
2002a; Yokosuka et al, 2002b). Notably, the neuropro-
tective effects of saponin from ginseng roots have been 
extensively explored, demonstrating their capability to 
suppress the secretion of inflammatory cytokines such 
as IL-1β and TNF-α, and inhibit inflammation-promot-
ing pathways like the nuclear factor kappa B (NF-κB) 
pathway in astrocyte and microglia cells (Wu et al, 
2007; Miao et al, 2017; Liu et al, 2020; Madhi et al, 
2021). There is a growing interest in the neuroprotec-
tive potential of herbal medicinal plants, however, only 
one study has hinted at TCE’s ability to protect neuronal 
cells and inhibit of microglial activation following LPS 
exposure (Yang et al, 2020). Therefore, the present study 
aimes to investigate whether pretreatment with TCE can 
effectively confer neuroprotection against LPS-induced 
neuroinflammation. 

Material and methods 
Preparation of Herbal Extract
The fresh rhizomes of T. chantrieri were collected 

from Chiang Rai province. After collection, the rhi-

zomes were dried and then ground into a coarse pow-
der. Ethanol was added to the coarse powder, and the 
mixture was filtered to obtain the T. chantrieri ethanol 
extract (TCE). Thereafter, the filtrate was heated in a 
rotary evaporator at 55°C and lyophilized to obtain a 
dried form. The TCE was subsequently reconstituted in 
normal saline to achieve the required concentrations for 
the experiments.

 
Animals
Male Sprague Dawley rats (6-week-old) were pur-

chased from Nomura Siam International Co., Ltd. 
(Thailand). All experimental procedures were carried 
out in accordance with the National Institutes of Health 
guidelines for the Care and Use of Laboratory Animals 
and approved by “details omitted for double-blind re-
viewing”. All animals were housed in a controlled en-
vironment at a temperature of 25±2°C under a 12 h:12 
h light:dark cycle. They were fed standard laboratory 
chow and had unlimited access to food and water.

Experimental Design
After the habituation period, the rats were randomly 

assigned to five groups (n=6). The control group (CON) 
received oral administration of normal saline (0.5 mL 
per rat) for 9 consecutive days, along with a single in-
traperitoneal (i.p.) injection of saline (0.5 mL per rat) 
on day 7. The lipopolysaccharide-treated group (LPS) 
received oral normal saline for 9 consecutive days fol-
lowed by a single i.p. injection of LPS (0.83 mg/kg) on 
day 7. The other three treatment groups (TCE50+LPS; 
TCE100+LPS; TCE200+LPS) were orally administered 
TCE at doses of 50, 100, or 200 mg/kg, respectively, 
for 9 consecutive days with LPS-induced neurotoxic-
ity (0.83 mg/kg, i.p.) on day 7. LPS (Sigma-Aldrich, 
St.Louis, MO, USA) was dissolved in 0.9% normal sa-
line solution at a concentration of 1 mg/ml before injec-
tion. The neurotoxic dose of LPS was chosen based on 
a previous report (Yin et al, 2019). TCE was dissolved 
in 0.9% normal saline and administered once daily by 
oral gavage. Behavioral assessments were conducted on 
day 8 and 9. After completion of the behavioral tests, the 
rats were sacrificed. Brain tissues were immediately re-
moved, and the hippocampus was collected and subject-
ed to ELISA testing. The experimental design schedule 
is shown in Figure 1.
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Y-Maze Test 
The Y-maze test was employed to assess Working 

memory and exploratory activity. The Y-maze apparatus 
consisted of three symmetrical arms at a 120° angle from 
each other. Each arm measured 30 cm in height, 50 cm 
in length, and 11 cm in width, with a central equilateral 
triangular area. The Y-maze procedure was performed 
according to the previously described method (Jin et al, 
2017), with some modifications. Briefly, rats were po-
sitioned in the central area and allowed to explore the 
apparatus freely for 5 min. The maze was cleaned with 
70% ethanol between tests. Entries into the arm and al-
ternations were recorded via an overhead camera. An 
alteration was counted when the rat entered the three 
different arms in overlapping triplet sets during a triad.
The spontaneous alternation behavior was defined as 
consecutive entries into each of the three arms without 
repetition. The percentage of spontaneous alternation 
behavior was calculated by the following formula: alter-
nation (%) = 100 x [(number of alternations)/(total arm 
entries - 2)]. 

Novel Object Recognition Test
The novel object recognition (NOR) test was used to 

evaluate learning and memory ability, as described pre-
viously (Yin et al, 2019). NOR trials were conducted in 
square boxes of 40 cm in length, 40 cm in width, and 35 
cm in height. A centrally positioned camera recorded the 
trials. Objects were meticulously cleaned with 70% eth-
anol between trials to remove olfactory cues. On day 8, 
rats were allowed to explore the 2 familiar objects in the 
box for 7 min to familiarize themselves. On day 9, the 
novel object trial involved replacing one familiar object 
with a novel object. Rats were reintroduced into the box 
to explore the objects for 5 min. Exploration of the novel 
object was defined as the rat touching the object with 
the nose or pointing the head within 2 cm of the object. 

Sitting or leaning against the object was not counted as 
exploration time. Discrimination index (%) was calcu-
lated using the formula: Discrimination index (%) = TN 
* 100/(TN + TF) (TN = time spent on the novel object; 
TF = time spent on the familiar object).

Enzyme-Linked Immunosorbent Assay (ELISA)
Frozen hippocampus tissue was homogenized in phos-

phate-buffered saline (PBS) containing a 1x protease in-
hibitor cocktail, resulting in a 10% tissue homogenate. 
The homogenate was then centrifuged at 5000 rpm for 
5 min at 4 °C, and the supernatant was retained. Protein 
concentration was determined by the BCA method. ELI-
SA was then conducted to quantitatively detect TNF-α 
proteins using a rat TNF-α ELISA kit (Elabscience Bio-
technology Co. Ltd., Wuhan, China).

Statistical Analysis
All data are presented as mean ± S.E.M. All statisti-

cal analyses were performed using GraphPad software 
(GraphPad Prism 6.0, San Diego, CA, USA). Data were 
analyzed with one-way analysis of variance (ANOVA) 
followed by post hoc Tukey’s test. Paired t-tests was 
used to analyze NOR data comparing the time spent 
sniffing each object during NOR phases. A P-value less 
than 0.05 was considered statistically significant.

Results
The effect of TCE pretreatment on LPS-induced body 

weight loss of rats
Following LPS injection, all rats showed sickness 

behaviors, including decreased locomotion, a hunched 
posture, and weight loss. The body weight of the rats 
was recorded at 0 (before LPS injection), 24 h (day1), 
and 48 h (day 2) following the injection. LPS injection 
resulted in a significant weight loss 9.01% over 24 h and 
8.87% over 48 h compared to the saline-treated con-

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1.FIGURE 1. Schematic timeline illustrating drug administration and behavioral assessments.
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trol group, which experienced weight gains of 1.50% 
over 24 h and 3.19% over 48 h (F4,25 = 11.44, P<0.001;      
F4,25 = 9.293, P<0.001, respectively)(Figure 2). Interest-
ingly, pretreatment with TCE at a dose of 200 mg/kg 
halted the body weight drop, resulting in a significant 
difference in the percentage weight change between the 
TCE200+LPS group and the LPS group (P<0.05). 

The effect of TCE pretreatment on LPS-induced mem-
ory impairment in the Y-maze test

The Y-maze test was performed to observe the spa-
tial working memory of rats. The number of total entries 
into the arms and the percentage of triads of arm entries, 
in which the rats sequentially visited each possible arm 
without repetition, were recorded (Figure 3A). Systemic 
LPS administration had an influence on the total number 
of arm entries in the Y-maze test (F4,25 = 7.704, P<0.001)
(Figure 3B), suggesting an effect on motor activities. 
in terms of spontaneous alternation, the LPS-injected 
group exhibited a significant decrease in the percentage 
of spontaneous alternations when compared with the 
control group (F4,25 = 5.908, P<0.01). However, TCE 
pretreatment at doses of 100 mg/kg (P<0.5) and 200 mg/
kg (P<0.5) prior to LPS injection hindered the cognitive 
dysfunction induced by LPS administration (Figure 3C). 

The effect of TCE pretreatment on LPS-induced mem-

ory impairment in the NOR test
Recognition memory was assessed using the NOR 

test. The rats were tested in an open field arena con-
taining two identical (familiarization phase) or different 
(test phase) objects (Figure 4A). Analysis of the total 
time spent exploring the objects in the open arena during 
the familiarization training phase revealed no significant 
difference in the total time exploring the old object and 
novel object between animal groups (data not shown). 
Afterward, during the test phase, the rats in the control 
and TCE pretreatment groups significantly discriminat-
ed between the familiar and novel objects (t1,11 = 4.949, 
P<0.01 to P<0.001)(Figure 4B), while the LPS-injected 
group did not. Indeed, the injection of LPS significantly 
impaired the discrimination index when compared with 
that of rats in the control group (F4,25 = 6.220, P<0.01)
(Figure 4C). TCE pretreatment at doses of 100 and 200 
mg/kg significantly prevented the LPS-induced reduc-
tion in the discrimination index during the long-term 
memory (P<0.05 to P<0.01, respectively). 

The effect of TCE pretreatment on expression levels of 
TNF-α in the rat hippocampus 

To investigate the systemic effects of LPS exposure 
on the brain, the expression levels of TNF-α were de-
termined using ELISA. Protein levels of TNF-α were 
significantly increased in the hippocampus of LPS-treat-

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2.FIGURE 2. Percentage of body weight changes following LPS injection. The initial body weight on the day of LPS injection (day 0) was con-
sidered 100%. Relative body weight was calculated as a percentage of this measurement after 24 h (day 1) and 48 h (day 2) post LPS injection. 
Data are presented as means ± SEM (n=6). Data were analyzed by one-way analysis of variance (ANOVA) followed by post hoc Tukey’s test. 
**P< 0.01 and ***P< 0.001 compared to the control group; # P < 0.05 compared to the LPS group.
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ed rats after LPS injection (F4,25 = 7.406, P<0.05) com-
pared to the control group (Figure 5). TCE pretreatment 
at doses of 100 and 200 mg/kg significantly attenuat-

ed LPS-induced increases in the levels of TNF-α in the 
hippocampus compared to the the LPS-injected group 
(P<0.01). 

 

 
 

 
 
 
 

FIGURE 3.FIGURE 3. Effects of TCE on Y-maze test in LPS-injected rats. Rat received intraperitoneal LPS injection (0.83 mg/kg). TCE was orally 
administered at the doses of 50, 100, or 200 mg/kg seven days prior to LPS injection. The Y-maze test assessed working memory activity. (A) 
Diagram depicting correct and incorrect alternations in the Y-maze test. (B) Number of arm entries and (C) spontaneous alternation behavior 
in the Y-maze test. Data are presented as mean ± SEM (n=6). Data were analyzed by one-way analysis of variance (ANOVA) followed by post 
hoc Tukey’s test. **P< 0.01 and ***P< 0.001 compared to the control group; #P< 0.05 compared to the LPS group. Figure 3A was created with 
BioRender.com.
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Discussion
Previous studies have indicated that TCE possesses 

effective neuroprotective and anti-inflammatory prop-
erties against LPS-induced inflammation in SH-SY5Y 
neuronal cells and BV-2 microglial cells (Yen et al, 2016; 
Yang et al, 2020). However, it is currently unknown 

whether TCE treatment can improve cognitive impair-
ment induced by LPS injection in rats. The purpose of 
this study was to investigate the anti-inflammatory ef-
fects of TCE in the rat brain. The results demonstrated 
that LPS-induced cognitive impairment was associated 
with deficits in learning and memory function, including 

 

 
 

 
 

 
 
 

FIGURE 4.FIGURE 4. Effects of TCE on novel object recognition (NOR) in LPS-injected rats. Rats received intraperitoneal LPS injection (0.83 mg/
kg). TCE was orally administered at doses of 50, 100, or 200 mg/kg seven days prior to LPS injection. (A) Schematic illustration of the NOR 
test evaluating recognition memory in rats. The test comprised two phases: familiarization and test. During familiarization, rats were placed 
in a box with two identical objects for 5 min. On the test phase, the rat looked over the box in the attendance of one novel object and a known 
object for 5 min. (B) Exploration time indicating time spent investigation the old and novel objects during the test phase. Data are presented 
as mean ± SEM (n=6). Data were analyzed by paired t-test. **P < 0.01 and ***P < 0.001 for the comparison between the old and novel objects. 
(C) The discrimination index indicating the exploration time difference, calculated as (novel object exploration time)/(familiar object + novel 
object exploration time) across four groups during the test phase. Data are presented as mean ± SEM (n=6). Data were analyzed by one-way 
analysis of variance (ANOVA) followed by post hoc Tukey’s test. **P < 0.01 and ***P< 0.001 compared to the the control group; ##P < 0.05 and 
##P < 0.01 compared to the LPS group. Figure 4A was created with BioRender.com. 
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both spatial working memory and recognition memory, 
as well as increased levels of proinflammatory cytokines 
in the rat hippocampus. However, pretreatment with 
TCE dose-dependently mitigated LPS-induced cogni-
tive dysfunction. Additionally, TCE treatment inhibited 
the increase of TNF-α levels in the hippocampus of rats 
exposed to LPS-induced neuroinflammation.

Systemic inflammation induced by peripheral injec-
tion of LPS has been widely used as an experimental 
model to induce acute and subacute neuroinflammation 
(Zakaria et al, 2017). The results of current study demon-
strated that LPS-treated rats exhibited pronounced sick-
ness-like behavior, including decreased body weight, 
food consumption, and exploratory behavior following 
LPS injection. Sustained inflammation induced by LPS 
led to fat loss, likely due to reduced food intake, altered 
lipid anabolism, and increased lipid catabolism (Yang, 
Zhong et al. 2022). However, treatment with a high dose 
(200 mg/kg) of TCE effectively reversed the LPS-in-
duced body weight loss. Notably, the results of the rec-
ognition test were even more pronounced at this higher 
dose, indicating better improvement following adminis-
tration. Therefore, it is plausible that the potential effect 
of TCE at this high dose (200 mg/kg BW) was sufficient 
to ameliorate both LPS-induced sickness-like behavior 
and cognition deficits, potentially through modulation 
of proinflammatory cytokines like TNF-α. 

As previously reported, peripheral immune chal-
lenges with LPS disrupt blood-brain barrier integrity 

(Banks et al, 2015). Moreover, LPS triggers excessive 
activation of microglia, shifting them from a ‘resting’ 
to an ‘activated’ phenotype through the Toll-like recep-
tor 4 (TLR4)-mediated pathway (Vargas-Caraveo et al; 
2020, Li et al, 2021). Activated TLR4 signaling affects 
NF-κB and mitogen-activated protein kinase (MAPK) 
pathways, including P38, AKT, ERK, and JNK (Li et 
al, 2021), accompanied by the release of diverse neu-
rotoxic factors such as TNF-α, IL-1β, reactive oxygen 
species (ROS), and reactive nitrogen species (RNS). Ac-
cumulation of these neurotoxic factors causes long-term 
damage to hippocampal neurons and affects complex 
CNS functions like depression, sleep, and cognition 
(Zakaria et al, 2017; Liu et al, 2018). Interestingly, clin-
ical studies have reported elevated LPS levels in brain 
samples from late-onset AD patients (increased 3-10 
times) (Zhan et al, 2016; Emery et al, 2017), suggesting 
a potential link between LPS and cognitive impairment 
in AD. The modulation of LPS-releasing gram-negative 
bacteria has emerged as a novel therapeutic strategy 
for AD (Kim et al, 2021). Therefore, this study treated 
rats with various doses of TCE before subjecting them 
to LPS to stimulate neuroinflammation associated with 
cognitive decline. 

The Y-maze test and NOR test were employed to as-
sess spatial working memory and recognition memory, 
respectively. These tests are well documented and reli-
able behavioral paradigms to assess learning and mem-
ory (Wahl et al, 2017). The Y-maze test evaluates spa-

 

 
 

 

 
 
 

 
 
 
 

FIGURE 5.FIGURE 5. Effects of TCE on the TNF-α expression level in LPS-injected rats. At the end of the behavioral test, all rats were sacrificed. Hip-
pocampus was homogenized and the expression levels of TNF-α were examined using ELISA kit. Data are presented as mean ± SEM (n=6). 
Data were analyzed by one-way analysis of variance (ANOVA) followed by post hoc Tukey’s test. *P<0.05 compared to the control group;          
## P< 0.01 compared to the LPS group.
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tial working memory associated with the hippocampus 
(Kraeuter et al, 2019). In this study, systemic LPS ad-
ministration led to spatial working memory impairment, 
consistent with previous findings (Jin et al, 2017; Yin 
et al, 2019). Spatial learning deficit was significantly 
more pronounced after exposure to LPS, as indicated by 
a significant reduction in the percentage of spontaneous 
alternations. The study revealed profound hippocampal 
deterioration after LPS injection, resulting in dimin-
ished spatial memory. However, pretreatment with TCE 
at doses of 100 and 200 mg/kg significantly improved 
spontaneous alternation compared to rats injected with 
LPS alone. These results support the notion that medium 
and high doses of TCE could prevent spatial learning 
and memory impairment. Additionally, the NOR test 
examined TCE effects on episodic memory and recog-
nition capacity. This test relies on synaptic connections 
between hippocampal neurons in CA3−CA1 (Wahl et 
al, 2017; Clarke et al, 2010). LPS injection significantly 
reduced exploration of the novel object and the discrim-
ination index. In contrast, TCE-treated rats interacted 
more with the novel object, leading to an increased the 
discrimination index. Thus, TCE pretreatment protected 
against learning and memory impairments, supporting 
the hypothesis that TCE rescued a deficit in cognitive 
functions induced by LPS.

In addition, a single systemic LPS injection induced 
a dramatic increase in hippocampal TNF-α levels in 
rats, potentially deriving persistent neuroinflammation. 
Previous reports have demonstrated that chronic TNF-α 
production contributes to the onset and progression of 
neuroinflammatory and neurodegenerative diseases 
(Belarbi et al, 2012; Baj and Seth, 2018). Smaller hip-
pocampal volume and elevated systemic TNF-α levels 
are associated with an increased risk of conversion from 
mild cognitive impairment to AD (Sudheimer et al, 
2014). Notably, TNF-blocking agents are being investi-
gated as potential therapeutic interventions for neurode-
generative diseases (Frankola et al, 2011, Belarbi et al, 
2012; Zhou et al, 2020). Thus, inflammatory reactions 
have been associated neurodegeneration and behavioral 
dysfunction (Passamonti et al, 2019; Zhao et al, 2019). 
In this study, LPS induced cognitive impairment and 
elevated proinflammatory cytokine TNF-α expression. 
However, TCE pretreatment significantly attenuated 
LPS-induced neuroinflammatory changes, suggesting 
an anti-inflammatory potential of TCE. As previously 

reported, TCE protects neuronal cells from Aβ and in-
hibits of microglial activation following LPS exposure 
(Yang et al, 2020). In AD, Aβ accumulation further ac-
tivates microglia to release pro-inflammatory cytokines, 
initiating a cascade that contributes to neuronal damage 
(Wang et al,2015). Additionally, soluble factors released 
by microglia and Aβ oligomers can induce loss of neu-
ronal synapses (Rajendran et al, 2018), leading to syn-
aptic dysfunction and hippocampal neuronal damage, 
ultimately impairing cognitive function (Passamonti 
et al,2019). Thus, TCE may inhibit inflammatory re-
sponse, protecting hippocampal neuronal cells and pro-
moting learning and memory improvement.

A potential limitationof this study is the lack of the 
identification of bioactive compounds and relevant mo-
lecular mechanisms underlying the observed effects. 
However, given the demonstrated neuroprotective ac-
tivity of TCE against neuroinflammation, further inves-
tigations are warranted to elucidate the main bioactive 
compounds and mechanisms through which TCE mod-
ulates microglial activation. Future studies should focus 
the possible role of TCE in inhibiting the NF-κB path-
way, which is a viable target for reducing the expression 
of proinflammatory mediators.

 
Conclusion

The present study demonstrated that pretreatment with 
TCE effectively ameliorated cognitive impairments in-
duced by LPS injection in rats. Moreover, TCE inhib-
ited the increase of proinflammatory cytokine TNF-α 
expression level, a robust deriver of neuroinflamma-
tion within the rat hippocampus. These results imply 
that TCE holds promising therapeutic potentials in the 
prevention of LPS-induced neuroinflammation-linked 
memory impairments. 
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