Volume 26, Issue 1 (March 2022)                   Physiol Pharmacol 2022, 26(1): 70-78 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pazhoohan S, Abbasi Feijani F, Mehrabbeigi F, Palizvan M R, Hajihashemi S. Effect of nasal airflow on respiratory pattern variability in rats. Physiol Pharmacol 2022; 26 (1) :70-78
URL: http://ppj.phypha.ir/article-1-1727-en.html
Abstract:   (1731 Views)
Introduction: The nasal airway a common route for normal breathing. Difficulty in nasal breathing due to nasal blockage is associated with abnormal respiratory pattern during sleep. The aim of this study was to investigate whether alteration in nasal airflow can change respiration pattern variability. Methods: Healthy male Wister rats were randomly divided into 4 groups including: control, saline, nasal obstruction and nasal cavity lidocaine anesthesia. The animals underwent bilateral nasal obstruction using cauterization and locally nasal cavity anesthesia using 10% lidocaine. Respiration of conscious animals recorded using whole-body plethysmography. Results: Respiratory signal analysis revealed a dramatic increase in variability of respiratory rhythm that quantified with increase in the standard deviation of inter-breath interval, inspiration time and mean of IBI, expiration and expiration to inspiration time ratio in both nasal obstruction and nasal anesthetized animals. Additionally, Power spectral density analysis showed higher variability in respiratory frequency, which characterized with broader dominant frequency and periodic respiratory pattern in nasal obstruction animals. Conclusion: These results proposed that, nasal airflow influences respiratory pattern variability. Nasal cavity flow receptors may contribute for these observations.
Full-Text [PDF 1072 kb]   (609 Downloads)    

References
1. Atkins M, Taskar V, Clayton N, Stone P, Woodcock A. Nasal resistance in obstructive sleep apnea. Chest 1994; 105: 1133-5. [DOI:10.1378/chest.105.4.1133]
2. Basner RC, Simon PM, Schwartzstein RM, Weinberger SE, Weiss JW. Breathing route influences upper airway muscle activity in awake normal adults. J Appl Physiol 1989; 66: 1766- 71. [DOI:10.1152/jappl.1989.66.4.1766]
3. Craig TJ, Teets S, Lehman EB, Chinchilli VM, Zwillich C. Nasal congestion secondary to allergic rhinitis as a cause of sleep disturbance and daytime fatigue and the response to topical nasal corticosteroids. J Allergy Clin Immunol 1998; 101: 633-7. [DOI:10.1016/S0091-6749(98)70171-X]
4. Douglas NJ, White DP, Weil JV, Zwillich CW. Effect of breathing route on ventilation and ventilatory drive. Respir Physiol 1983; 51: 209-18. [DOI:10.1016/0034-5687(83)90041-5]
5. Feldman JL, Del Negro CA, Gray PA. Understanding the rhythm of breathing: so near, yet so far. Annu Rev Physiol 2013; 75: 423-52. [DOI:10.1146/annurev-physiol-040510-130049]
6. Frey U, Brodbeck T, Majumdar A, Taylor DR, Town GI, Silverman M, et al. Risk of severe asthma episodes predicted from fluctuation analysis of airway function. Nature 2005; 438: 667- 70. [DOI:10.1038/nature04176]
7. Frey U, Maksym G, Suki B. Temporal complexity in clinical manifestations of lung disease. J Appl Physiol (1985) 2011; 110: 1723-31. [DOI:10.1152/japplphysiol.01297.2010]
8. Funaki Y, Hiranuma M, Shibata M, Kokai S, Ono T. Effects of nasal obstruction on maturation of the jaw-opening reflex in growing rats. Arch Oral Biol 2014; 59: 530-8. [DOI:10.1016/j.archoralbio.2014.02.013]
9. Grosmaitre X, Santarelli LC, Tan J, Luo M, Ma M. Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat Neurosci 2007; 10: 348-54. [DOI:10.1038/nn1856]
10. Guilleminault C, Huang YS, Chin WC, Okorie C. The nocturnal-polysomnogram and "nonhypoxic sleep-disordered-breathing" in children. Sleep Med 2019; 60: 31-44. [DOI:10.1016/j.sleep.2018.11.001]
11. Harding R, Buttress JA, Caddy DJ, Wood GA. Respiratory and upper airway responses to nasal obstruction in awake lambs and ewes. Respir Physiol 1987; 68: 177-88. [DOI:10.1016/S0034-5687(87)80004-X]
12. Jubran A, Tobin MJ. Effect of isocapnic hypoxia on variational activity of breathing. Am J Respir Crit Care Med 2000; 162: 1202-9. [DOI:10.1164/ajrccm.162.4.9907003]
13. Katz ES, Mitchell RB, D'Ambrosio CM. Obstructive sleep apnea in infants. Am J Respir Crit Care Med 2012; 185: 805-16. [DOI:10.1164/rccm.201108-1455CI]
14. Magliulo G, Iannella G, Ciofalo A, Polimeni A, De Vincentiis M, Pasquariello B, et al. Nasal pathologies in patients with obstructive sleep apnoea. Acta Otorhinolaryngol Ital 2019; 39: 250- 6. [DOI:10.14639/0392-100X-2173]
15. McNicholas WT, Coffey M, McDonnell T, O'Regan R, Fitzgerald MX. Upper airway obstruction during sleep in normal subjects after selective topical oropharyngeal anesthesia. Am Rev Respir Dis 1987; 135: 1316-9.
16. Meen EK, Chandra RK. The role of the nose in sleep-disordered breathing. Am J Rhinol Allergy 2013; 27: 213-20. [DOI:10.2500/ajra.2013.27.3876]
17. Michels Dde S, Rodrigues Ada M, Nakanishi M, Sampaio AL, Venosa AR. Nasal involvement in obstructive sleep apnea syndrome. Int J Otolaryngol 2014; 2014. [DOI:10.1155/2014/717419]
18. Mohammadkarimi N, Jafari M, Mellat A, Kazemi E, Shirali A. Evaluation of efficacy of intranasal lidocaine for headache relief in patients refer to emergency department. J Res Med Sci 2014; 19: 331-5.
19. Ogawa T, Okihara H, Kokai S, Abe Y, Karin Harumi UK, Makiguchi M, et al. Nasal obstruction during adolescence induces memory/learning impairments associated with BDNF/TrkB signaling pathway hypofunction and high corticosterone levels. J Neurosci Res 2018; 96: 1056- 65. [DOI:10.1002/jnr.24216]
20. Parsazadegan T, Salimi M, Ghazvineh S, Raoufy MR. Cognitive disorders in allergic rhinitis may be induced by decline of respiration entrained rhythm in the brain. Med Hypotheses 2018; 121: 89-90. [DOI:10.1016/j.mehy.2018.09.037]
21. Patino M, Sadhasivam S, Mahmoud M. Obstructive sleep apnoea in children: perioperative considerations. Br J Anaesth 2013; 111: 83-95. [DOI:10.1093/bja/aet371]
22. Peng CK, Mietus JE, Liu Y, Lee C, Hausdorff JM, Stanley HE, et al. Quantifying fractal dynamics of human respiration: age and gender effects. Ann Biomed Eng 2002; 30: 683-92. [DOI:10.1114/1.1481053]
23. Perez W, Tobin MJ. Separation of factors responsible for change in breathing pattern induced by instrumentation. J Appl Physiol (1985) 1985; 59: 1515-20. [DOI:10.1152/jappl.1985.59.5.1515]
24. Raoufy MR, Ghafari T, Darooei R, Nazari M, Mahdaviani SA, Eslaminejad AR, et al. Classification of Asthma Based on Nonlinear Analysis of Breathing Pattern. PLoS One 2016; 11: e0147976. [DOI:10.1371/journal.pone.0147976]
25. Rombaux P, Liistro G, Hamoir M, Bertrand B, Aubert G, Verses T, et al. Nasal obstruction and its impact on sleep-related breathing disorders. Rhinology 2005; 43: 242-50.
26. Sadeghi A, Pazhoohan S, Hajihashemi S, Palizvan MR, Valizadeh M. Anxiety-like behavior induced by allergen is associated with decreased irregularity of breathing pattern in rats. Respiratory physiology & neurobiology. 2022;298:103847. [DOI:10.1016/j.resp.2022.103847]
27. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, et al. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med Rev 2017; 34: 70-81. [DOI:10.1016/j.smrv.2016.07.002]
28. Strauss SG, Lynn AM, Bratton SL, Nespeca MK. Ventilatory response to CO2 in children with obstructive sleep apnea from adenotonsillar hypertrophy. Anesth Analg 1999; 89: 328-32. [DOI:10.1213/00000539-199908000-00015]
29. Suki B, Bates JH, Frey U. Complexity and emergent phenomena. Compr Physiol 2011; 1: 995- 1029. [DOI:10.1002/cphy.c100022]
30. Tanaka Y, Honda Y. Nasal obstruction as a cause of reduced PCO2 and disordered breathing during sleep. J Appl Physiol (1985) 1989; 67: 970-2. [DOI:10.1152/jappl.1989.67.3.970]
31. Thach BT. The Role of the upper airway in SIDS and sudden unexpected infant deaths and the importance of external airway-protective behaviors. In: Duncan JR, Byard RW, editors. SIDS sudden infant and early childhood death: the past, the present and the future. Adelaide (AU): University of Adelaide PressĀ© 2018 The Contributors, with the exception of which is by Federal United States employees and is therefore in the public domain. 2018. [DOI:10.20851/sids-23]
32. Thamrin C, Frey U. Complexity and respiratory growth: a developing story. J Appl Physiol (1985) 2009; 106: 753-4. [DOI:10.1152/japplphysiol.91588.2008]
33. White DP, Cadieux RJ, Lombard RM, Bixler EO, Kales A, Zwillich CW. The effects of nasal anesthesia on breathing during sleep. Am Rev Respir Dis 1985; 132: 972-5.
34. Yuan H, Pinto SJ, Huang J, McDonough JM, Ward MB, Lee YN, et al. Ventilatory responses to hypercapnia during wakefulness and sleep in obese adolescents with and without obstructive sleep apnea syndrome. Sleep 2012; 35: 1257-67. [DOI:10.5665/sleep.2082]
35. Zamoscik VE, Schmidt SL, Gerchen MF, Samsouris C, Timm C, Kuehner C, et al. Respiration pattern variability and related default mode network connectivity are altered in remitted depression. Psychol Med 2018; 48: 2364-74. [DOI:10.1017/S0033291717003890]
36. Zelano C, Jiang H, Zhou G, Arora N, Schuele S, Rosenow J, et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J Neurosci 2016; 36: 12448-67. [DOI:10.1523/JNEUROSCI.2586-16.2016]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.