Volume 26, Issue 3 (September 2022)                   Physiol Pharmacol 2022, 26(3): 313-321 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehrzadi S, Mombeini M A, Fatemi I, Kalantari H, Kalantar M, Goudarzi M. The effect of ellagic acid on renal injury associated with acrylamide in experimental rats. Physiol Pharmacol 2022; 26 (3) :313-321
URL: http://ppj.phypha.ir/article-1-1766-en.html
Abstract:   (1931 Views)
Introduction: Acrylamide (ACR) is a toxic substance that has renal toxicity. We aim to investigate the therapeutic activity of ellagic acid (EA) on renal injury induced by ACR in Wistar rats. Methods: Thirty-five male Wistar rats were assigned into 5 groups: the control group (5ml/kg normal saline), the ACR group (20mg/kg ACR), the ACR+EA10 group (ACR and 10mg/kg EA), the ACR+EA30 group (ACR and 30mg/kg EA) and the EA30 group (30mg/kg EA). ACR and EA were daily administered by gavage for 30 days. Renal function was assessed by measuring the sera levels of creatinine (Cr) and blood urea nitrogen (BUN). Renal oxidative and inflammatory markers including malondialdehyde (MDA), nitric oxide (NO), protein carbonyl (PC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). hematoxylin
and eosin staining was employed to assess pathological alternations of the kidney.
Results: EA (more potentially 30mg/kg) administration alleviated the ACR-induced alterations in Cr and BUN levels. Moreover, EA treatment reduced the elevated levels of MDA, NO and PC as well as TNF-α and IL-1β content in renal tissue. Furthermore, reduced activity of SOD and CAT as well as GSH content in the kidney was increased by EA treatment. EA attenuated the ACR- induced pathological alterations in kidney. Conclusion: These findings suggested that EA could mitigate ACR-induced kidney injury due to its potent antioxidant and anti-inflammatory effects.
Full-Text [PDF 877 kb]   (286 Downloads)    
Type of Manuscript: Experimental research article | Subject: Toxicology

References
1. Abdel-Daim M M, Abd Eldaim M A, Hassan A G. Trigonella foenum-graecum ameliorates acrylamide-induced toxicity in rats: Roles of oxidative stress, proinflammatory cytokines, and DNA damage. Biochemistry and Cell Biology 2014; 93: 192-198. [DOI:10.1139/bcb-2014-0122]
2. Abdel-Daim M M, El-Ela F I A, Alshahrani F K, Bin-Jumah M, Al-Zharani M, Almutairi B, et al. Protective effects of thymoquinone against acrylamide-induced liver, kidney and brain oxidative damage in rats. Environmental Science and Pollution Research 2020; 27: 37709-37717. [DOI:10.1007/s11356-020-09516-3]
3. Ahad A, Ganai A A, Mujeeb M, Siddiqui W A. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact 2014; 219: 64-75. [DOI:10.1016/j.cbi.2014.05.011]
4. Al-Hasan A K J. Effects of low-and high-level pulsed Nd: YAG laser irradiation on red blood cells and platelets indices of albino rats in vitro. Iraq Medical Journal 2017; 1: 10-19.
5. Atef H, Attia G M, Rezk H M, El-Shafey M. Effect of vitamin E on biochemical and ultrastructural changes in acrylamide-induced renal toxicity in rats. International Journal of Scientific Reports 2017; 3: 134-143. [DOI:10.18203/issn.2454-2156.IntJSciRep20171999]
6. Batoryna M, Lis M, Formicki G. Acrylamide-induced disturbance of the redox balance in the chick embryonic brain. J Environ Sci Health B 2017; 52: 600-606. [DOI:10.1080/03601234.2017.1316158]
7. Bazmandegan G, Amirteimoury M, Kaeidi A, Shamsizadeh A, Khademalhosseini M, Nematollahi M H, et al. Sumatriptan ameliorates renal injury induced by cisplatin in mice. Iranian journal of basic medical sciences 2019; 22: 563.
8. Bazmandegan G, Fatemi I, Kaeidi A, Khademalhosseini M, Fathinejad A, Amirteimoury M. Calcium dobesilate prevents cisplatin-induced nephrotoxicity by modulating oxidative and histopathological changes in mice. Naunyn-Schmiedeberg's Archives of Pharmacology 2021; 394: 515-521. [DOI:10.1007/s00210-020-01990-3]
9. Dehnamaki F, Karimi A, Pilevarian A A, Fatemi I, Hakimizadeh E, Kaeidi A, et al. Treatment with troxerutin protects against cisplatin-induced kidney injury in mice. Acta Chirurgica Belgica 2019; 119: 31-37. [DOI:10.1080/00015458.2018.1455418]
10. Dortaj H, Anvari M, Yadegari M, Hosseini Sharifabad M, Abbasi Sarcheshmeh A. Stereological Survey of the Effect of Vitamin C on Neonatal Rat Kidney Tissue Treated With Acrylamide. Modern Medical Laboratory Journal 2017; 1: 42-49. [DOI:10.30699/mmlj17.1.2.42]
11. Fatemi I, Khalili H, Mehrzadi S, Basir Z, Malayeri A, Goudarzi M. Mechanisms involved in the possible protective effect of chrysin against sodium arsenite-induced liver toxicity in rats. Life Sciences 2021; 267: 118965. [DOI:10.1016/j.lfs.2020.118965]
12. Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review. J Agric Food Chem 2003; 51: 4504-26. [DOI:10.1021/jf030204+]
13. Garcia-Nino W R, Zazueta C. Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res 2015; 97: 84-103. [DOI:10.1016/j.phrs.2015.04.008]
14. Ghorbel I, Elwej A, Fendri N, Mnif H, Jamoussi K, Boudawara T, et al. Olive oil abrogates acrylamide induced nephrotoxicity by modulating biochemical and histological changes in rats. Renal failure 2017; 39: 236-245. [DOI:10.1080/0886022X.2016.1256320]
15. Goudarzi M, Amiri S, Nesari A, Hosseinzadeh A, Mansouri E, Mehrzadi S. The possible neuroprotective effect of ellagic acid on sodium arsenate-induced neurotoxicity in rats. Life Sciences 2018a. [DOI:10.1016/j.lfs.2018.02.022]
16. Goudarzi M, Fatemi I, Siahpoosh A, Sezavar S H, Mansouri E, Mehrzadi S. Protective effect of ellagic acid against sodium arsenite-induced cardio-and hematotoxicity in rats. Cardiovascular toxicology 2018b; 18: 337-345. [DOI:10.1007/s12012-018-9446-2]
17. Goudarzi M, Khodayar M J, Hosseini Tabatabaei S M T, Ghaznavi H, Fatemi I, Mehrzadi S. Pretreatment with melatonin protects against cyclophosphamide-induced oxidative stress and renal damage in mice. Fundam Clin Pharmacol 2017; 31: 625-635. [DOI:10.1111/fcp.12303]
18. Goudarzi M, Mombeini M A, Fatemi I, Aminzadeh A, Kalantari H, Nesari A, et al. Neuroprotective effects of Ellagic acid against acrylamide-induced neurotoxicity in rats. Neurological research 2019; 41: 419-428. [DOI:10.1080/01616412.2019.1576319]
19. Goyal Y, Koul A, Ranawat P. Ellagic acid ameliorates cisplatin toxicity in chemically induced colon carcinogenesis. Mol Cell Biochem 2019; 453: 205-215. [DOI:10.1007/s11010-018-3446-1]
20. Hosseinzadeh A, Goudarzi M, Fatemi I, Khodayar M J, Mehrzadi S, Khalili H R, et al. Gemfibrozil attenuates doxorubicin induced toxicity in renal tissues of male rats by reducing the oxidative insult and inflammation. Biotechnic & Histochemistry 2020; 95: 532-539. [DOI:10.1080/10520295.2020.1730967]
21. Jamshidi K, Zahedi A. Acrylamide-induced acute nephrotoxicity in Rats. Int J Sci Res Sci Technol 2015; 1: 286-93.
22. Jin X, Coughlan M, Roberts J, Mehta R, Raju J. Dietary acrylamide exposure in male F344 rats: Dataset of systemic oxidative stress and inflammation markers. Data Brief 2016; 7: 460-7. [DOI:10.1016/j.dib.2016.02.024]
23. Kalantar M, Houshmand G, Kalantar H, Asadi M, Goudarzi M. Protective effect of hydroalcoholic extract of lavandula officinalis l. on gentamicin induced nephrotoxicity in rats. Journal of Babol University of Medical Sciences 2016; 18: 62-67.
24. Karimi M Y, Fatemi I, Kalantari H, Mombeini M A, Mehrzadi S, Goudarzi M. Ellagic acid prevents oxidative stress, inflammation, and histopathological alterations in acrylamide-induced hepatotoxicity in wistar rats. Journal of dietary supplements 2020; 17: 651-662. [DOI:10.1080/19390211.2019.1634175]
25. Levine R L, Williams J A, Stadtman E P, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods in enzymology 1994; 233: 346-357. [DOI:10.1016/S0076-6879(94)33040-9]
26. Liu Q, Liang X, Liang M, Qin R, Qin F, Wang X. Ellagic Acid Ameliorates Renal Ischemic-Reperfusion Injury Through NOX4/JAK/STAT Signaling Pathway. Inflammation 2020; 43: 298-309. [DOI:10.1007/s10753-019-01120-z]
27. Mehrzadi S, Fatemi I, Malayeri A R, Khodadadi A, Mohammadi F, Mansouri E, et al. Ellagic acid mitigates sodium arsenite-induced renal and hepatic toxicity in male Wistar rats. Pharmacol Rep 2018; 70: 712-719. [DOI:10.1016/j.pharep.2018.02.007]
28. Pan X, Wu X, Yan D, Peng C, Rao C, Yan H. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-kappaB pathways regulated by MAPKs. Toxicol Lett 2018. [DOI:10.1016/j.toxlet.2018.02.002]
29. Pan X, Zhu L, Lu H, Wang D, Lu Q, Yan H. Melatonin Attenuates Oxidative Damage Induced by Acrylamide In Vitro and In Vivo. Oxid Med Cell Longev 2015; 2015: 703709. [DOI:10.1155/2015/703709]
30. Pari L, Sivasankari R. Effect of ellagic acid on cyclosporine A-induced oxidative damage in the liver of rats. Fundam Clin Pharmacol 2008; 22: 395-401. [DOI:10.1111/j.1472-8206.2008.00609.x]
31. Rahangadale S, Kurkure N, Prajapati B, Hedaoo V, Bhandarkar A G. Neuroprotective effect of vitamin e supplementation in wistar rat treated with acrylamide. Toxicol Int 2012; 19: 1-8. [DOI:10.4103/0971-6580.94505]
32. Rizk H A, Masoud M A, Maher O W. Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats. J Biochem Mol Toxicol 2017; 31. [DOI:10.1002/jbt.21977]
33. Semla M, Goc Z, Martiniakova M, Omelka R, Formicki G. Acrylamide: a common food toxin related to physiological functions and health. Physiol Res 2017; 66: 205-217. [DOI:10.33549/physiolres.933381]
34. Soong Y-Y, Barlow P J. Quantification of gallic acid and ellagic acid from longan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chemistry 2006; 97: 524-530. [DOI:10.1016/j.foodchem.2005.05.033]
35. Tracey W R, Linden J, Peach M J, Johns R A. Comparison of spectrophotometric and biological assays for nitric oxide (NO) and endothelium-derived relaxing factor (EDRF): nonspecificity of the diazotization reaction for NO and failure to detect EDRF. Journal of Pharmacology and Experimental Therapeutics 1990; 252: 922-928.
36. Vijaya Padma V, Kalai Selvi P, Sravani S. Protective effect of ellagic acid against TCDD-induced renal oxidative stress: modulation of CYP1A1 activity and antioxidant defense mechanisms. Mol Biol Rep 2014; 41: 4223-32. [DOI:10.1007/s11033-014-3292-5]
37. Yaylayan V A, Stadler R H. Acrylamide formation in food: a mechanistic perspective. J AOAC Int 2005; 88: 262-7. [DOI:10.1093/jaoac/88.1.262]
38. Yousef M I, El-Demerdash F M. Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology 2006; 219: 133-41. [DOI:10.1016/j.tox.2005.11.008]
39. Yüce A, Ateşşahin A, Çeribaşı A O. Amelioration of Cyclosporine A‐Induced Renal, Hepatic and Cardiac Damages by Ellagic Acid in Rats. Basic Clin Pharmacol Toxicol 2008; 103: 186-191. [DOI:10.1111/j.1742-7843.2008.00284.x]
40. Yüce A, Ateşşahin A, Çeribaşı A O, Aksakal M. Ellagic Acid Prevents Cisplatin‐Induced Oxidative Stress in Liver and Heart Tissue of Rats. Basic Clin Pharmacol Toxicol 2007; 101: 345-349. [DOI:10.1111/j.1742-7843.2007.00129.x]
41. Zhou B, Li Q, Wang J, Chen P, Jiang S. Ellagic acid attenuates streptozocin induced diabetic nephropathy via the regulation of oxidative stress and inflammatory signaling. Food Chem Toxicol 2019; 123: 16-27. [DOI:10.1016/j.fct.2018.10.036]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.