Volume 26, Issue 4 (December 2022)                   Physiol Pharmacol 2022, 26(4): 412-423 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

khani F, Radahmadi M, Alaei H. The Impact of Crocin and Chronic Isolation Stress on Passive Avoidance Memory and Brain Electrical Activity in Male Rats. Physiol Pharmacol 2022; 26 (4) :412-423
URL: http://ppj.phypha.ir/article-1-1804-en.html
Abstract:   (1621 Views)
Introduction: Crocin and stress affect different aspects of brain functions. Chronic isolation stress is prevalent in today’s world. Therefore, this study investigated the impact of crocin and chronic isolation stress on learning, memory, and different brain waves in male rats. Methods: Forty male Wistar rats were allocated to five groups: control, sham, chronic isolation stress (CIS), two stress groups receiving different doses of crocin (CIS-Cr30 and CIS-Cr60). Both chronic isolation stress (6h/day) and crocin administration were induced for 21 days. The passive avoidance test evaluated initial and step-through latencies (IL and STL, respectively), as well as total dark compartment, and stay time. Also, different brain waves were measured by EEG recording. Results: The STL declined in the CIS and CIS-Cr30 groups while it significantly increased in only the CIS-Cr60 group. Also, the total dark compartment stay time increased in the CIS group, whereas it decreased by crocin (30 and 60 mg/kg) in the CIS group. The percentages of beta and alpha waves decreased whereas theta waves significantly increased in the CIS group. While the percentage of the beta and alpha waves increased as well as the percentage of the theta and delta waves decreased by crocin at a dose of 60 mg/kg in the CIS group. Conclusion: Cronic isolation stress was so destructive and it impaired learning, memory as well as alpha, beta, and theta waves in the brain. Only a dose of 60 mg/Kg of crocin reversed memory deficit and affected all brain waves in subjects under chronic isolation stress. Therefore, the doses of 60 and 30 mg/kg of crocin had different effects on electrophysiological and behavioral brain functions under chronic isolation conditions.
Full-Text [PDF 1062 kb]   (232 Downloads)    
Type of Manuscript: Experimental research article | Subject: Others

References
1. Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res 2000; 14: 149-152. [DOI:10.1002/(sici)1099-1573(200005)14:3<149::aid-ptr665>3.0.co;2-5]
2. Aftanas L I, Reva N V, Varlamov A A, Pavlov S V, Makhnev V P. Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neuroscience and behavioral physiology 2004; 34: 859-867. [DOI:10.1023/B:NEAB.0000038139.39812.eb]
3. Ahmadi M, Rajaei Z, Hadjzadeh M, Nemati H, Hosseini M. Crocin improves spatial learning and memory deficits in the Morris water maze via attenuating cortical oxidative damage in diabetic rats. Neuroscience Letters 2017; 642: 1-6. [DOI:10.1016/j.neulet.2017.01.049]
4. Alavizadeh S H, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food and Chemical Toxicology 2014; 64: 65-80. [DOI:10.1016/j.fct.2013.11.016]
5. Alfarez D N, Joëls M, Krugers H J. Chronic unpredictable stress impairs long‐term potentiation in rat hippocampal CA1 area and dentate gyrus in vitro. European Journal of Neuroscience 2003; 17: 1928-1934. [DOI:10.1046/j.1460-9568.2003.02622.x]
6. Azimi L, Pourmotabbed A, Ghadami M R, Nedaei S E, Pourmotabbed T. Effects of peripheral and intra-hippocampal administration of sodium salicylate on spatial learning and memory of rats. Iranian journal of basic medical sciences 2012; 15: 709.
7. Bandegi A R, Rashidy-Pour A, Vafaei A A, Ghadrdoost B. Protective effects of Crocus sativus L. extract and crocin against chronic-stress induced oxidative damage of brain, liver and kidneys in rats. Advanced pharmaceutical bulletin 2014; 4: 493-499.
8. Bathaie S Z, Mousavi S Z. New applications and mechanisms of action of saffron and its important ingredients. Critical reviews in food science and nutrition 2010; 50: 761-786. [DOI:10.1080/10408390902773003]
9. Behravanfar N, Abnous K, Razavi B M, Hosseinzadeh H. Effects of crocin on spatial memory impairment induced by hyoscine and its effects on bdnf, creb, and p-creb protein and mrna levels in rat hippocampus. Jundishapur Journal of Natural Pharmaceutical Products 2017; 12: e64315-64325. [DOI:10.5812/jjnpp.64315]
10. Brunson K L, Kramár E, Lin B, Chen Y, Colgin L L, Yanagihara T K, et al. Mechanisms of late-onset cognitive decline after early-life stress. Journal of Neuroscience 2005; 25: 9328-9338. [DOI:10.1523/JNEUROSCI.2281-05.2005]
11. Dastgerdi A H, Radahmadi M, Pourshanazari A A, Dastgerdi H H. Effects of crocin on learning and memory in rats under chronic restraint stress with special focus on the hippocampal and frontal cortex corticosterone levels. Advanced biomedical research 2017; 6: 157-163. [DOI:10.4103/abr.abr_107_17]
12. Dastgerdi H H, Radahmadi M, Reisi P, Dastgerdi A H. Effect of Crocin, Exercise, and Crocin-accompanied Exercise on Learning and Memory in Rats under Chronic Unpredictable Stress. Adv Biomed Res 2018; 7: 137-147. [DOI:10.4103/abr.abr_153_18]
13. Dharmshaktu P, Tayal V, Kalra B S. Efficacy of antidepressants as analgesics: a review. The Journal of Clinical Pharmacology 2012; 52: 6-17. [DOI:10.1177/0091270010394852]
14. Dringenberg H C, Rubenstein M L, Solty H, Tomaszek S, Bruce A. Electroencephalographic activation by tacrine, deprenyl, and quipazine: cholinergic vs. non-cholinergic contributions. European journal of pharmacology 2002; 447: 43-50. [DOI:10.1016/S0014-2999(02)01829-0]
15. Ettehadi H, Mojabi S N, Ranjbaran M, Shams J, Sahraei H, Hedayati M, et al. Aqueous extract of saffron (Crocus sativus) increases brain dopamine and glutamate concentrations in rats. Journal of Behavioral and Brain Science 2013; 3: 315-319 [DOI:10.4236/jbbs.2013.33031]
16. Fone K C, Porkess M V. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neuroscience & Biobehavioral Reviews 2008; 32: 1087-1102. [DOI:10.1016/j.neubiorev.2008.03.003]
17. Georgiadou G, Grivas V, Tarantilis P A, Pitsikas N. Crocins, the active constituents of Crocus Sativus L., counteracted ketamine-induced behavioural deficits in rats. Psychopharmacology (Berl) 2014; 231: 717-26. [DOI:10.1007/s00213-013-3293-4]
18. Ghadami M R, Pourmotabbed A. The effect of Crocin on scopolamine induced spatial learning and memory deficits in rats. Physiology and Pharmacology 2009; 12: 287-295.
19. Ghadrdoost B, Vafaei A A, Rashidy-Pour A, Hajisoltani R, Bandegi A R, Motamedi F, et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. European journal of pharmacology 2011; 667: 222-229. [DOI:10.1016/j.ejphar.2011.05.012]
20. Ghotbeddin Z, Tabandeh M R, Pourmahdi Borujeni M, Fahimi Truski F, Zalaki Ghorbani Pour M R, Tabrizian L. Crocin mitigated cognitive impairment and brain molecular alterations induced by different intensities of prenatal hypoxia in neonatal rats. Brain and Behavior 2021: e02078. [DOI:10.1002/brb3.2078]
21. Heim C, Nemeroff C B. Neurobiology of early life stress: clinical studies. Journal 2002; 7: 147-159. [DOI:10.1053/scnp.2002.33127]
22. Hosseini N, Alaei H, Reisi P, Radahmadi M. The effects of NBM- lesion on synaptic plasticity in rats. Brain Res 2017; 1655: 122-127. [DOI:10.1016/j.brainres.2016.11.013]
23. Hosseinzadeh H, Sadeghnia H R, Ghaeni F A, Motamedshariaty V S, Mohajeri S A. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytotherapy Research 2012; 26: 381-386. [DOI:10.1002/ptr.3566]
24. Hosseinzadeh H, Shamsaie F, Mehri S. Antioxidant activity of aqueous and ethanolic extracts of Crocus sativus L. stigma and its bioactive constituents, crocin and safranal. Pharmacognosy Magazine 2009; 5: 419.
25. Hosseinzadeh H, Shariaty V M, Sameni A K, Vahabzadeh M. Acute and sub-acute toxicity of crocin, a Constituent of crocus sativus L. (saffron), in Mice and Rats. Pharmacologyonline 2010 2 943-951
26. Hosseinzadeh H, Ziaei T. Effects of Crocus sativus stigma extract and its constituents, crocin and safranal, on intact memory and scopolamine-induced learning deficits in rats performing the Morris water maze task. Journal of Medicinal Plants 2006; 3: 40-50.
27. Jena S K. Examination stress and its effect on EEG. Int J Med Sci Pub Health 2015; 11: 1493-7. [DOI:10.5455/ijmsph.2015.23042015308]
28. Joëls M, Baram T Z. The neuro-symphony of stress. Nature reviews neuroscience 2009; 10: 459-466. [DOI:10.1038/nrn2632]
29. Kafa I M, Bakirci S, Uysal M, Kurt M A. Alterations in the brain electrical activity in a rat model of sepsis-associated encephalopathy. Brain Res 2010; 1354: 217-226. [DOI:10.1016/j.brainres.2010.07.049]
30. Khalili M, Hamzeh F. Effects of active constituents of Crocus sativus L., crocin on streptozocin-induced model of sporadic Alzheimer's disease in male rats. Iranian biomedical journal 2010; 14: 59.
31. Khani F, Radahmadi M, Alaei H, Jafari E. Effects of crocin on cognitive and spatial memories in rats under chronic isolation stress. Physiology and Pharmacology 2018; 22: 254-268.
32. Khosravan V. Anticonvulsant effects of aqueous and ethanolic extracts of Crocus sativus L. stigmas in mice. Archives of Iranian Medicine 2002; 5: 44.
33. Kim J J, Diamond D M. The stressed hippocampus, synaptic plasticity and lost memories. Nature Reviews Neuroscience 2002; 3: 453. [DOI:10.1038/nrn849]
34. Kirk I J, Spriggs M J, Sumner R L. Human EEG and the mechanisms of memory: investigating long-term potentiation (LTP) in sensory-evoked potentials. Journal of the Royal Society of New Zealand 2020: 1-17. [DOI:10.1080/03036758.2020.1780274]
35. Knyazev G G, Savostyanov A N, Levin E A. Alpha synchronization and anxiety: implications for inhibition vs. alertness hypotheses. International Journal of Psychophysiology 2006; 59: 151-158. [DOI:10.1016/j.ijpsycho.2005.03.025]
36. Kumar J S, Bhuvaneswari P. Analysis of Electroencephalography (EEG) signals and its categorization-a study. Procedia engineering 2012; 38: 2525-2536. [DOI:10.1016/j.proeng.2012.06.298]
37. Lagopoulos J, Xu J, Rasmussen I, Vik A, Malhi G S, Eliassen C F, et al. Increased theta and alpha EEG activity during nondirective meditation. The Journal of Alternative and Complementary Medicine 2009; 15: 1187-1192. [DOI:10.1089/acm.2009.0113]
38. Loganathan S, Rathinasamy S. Alteration in memory and electroencephalogram waves with sub-acute noise stress in albino rats and safeguarded by scoparia dulcis. Pharmacognosy magazine 2016; 12: S7. [DOI:10.4103/0973-1296.176119]
39. Lv B, Huo F, Zhu Z, Xu Z, Dang X, Chen T, et al. Crocin upregulates CX3CR1 expression by suppressing NF-κB/YY1 signaling and inhibiting lipopolysaccharide-induced microglial activation. Neurochemical research 2016; 41: 1949-1957. [DOI:10.1007/s11064-016-1905-1]
40. Maoka T. Carotenoids as natural functional pigments. Journal of natural medicines 2020; 74: 1-16. [DOI:10.1007/s11418-019-01364-x]
41. Masaki M, Aritake K, Tanaka H, Shoyama Y, Huang Z L, Urade Y. Crocin promotes non‐rapid eye movement sleep in mice. Molecular nutrition & food research 2012; 56: 304-308. [DOI:10.1002/mnfr.201100181]
42. McEwen B S. The ever‐changing brain: Cellular and molecular mechanisms for the effects of stressful experiences. Developmental neurobiology 2012; 72: 878-890. [DOI:10.1002/dneu.20968]
43. McEwen B S, Gianaros P J. Stress-and allostasis-induced brain plasticity. Annual review of medicine 2011; 62: 431-445. [DOI:10.1146/annurev-med-052209-100430]
44. McEwen B S, Nasca C, Gray J D. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 2016; 41: 3-23. [DOI:10.1038/npp.2015.171]
45. McLaughlin K J, Gomez J L, Baran S E, Conrad C D. The effects of chronic stress on hippocampal morphology and function: an evaluation of chronic restraint paradigms. Brain research 2007; 1161: 56-64. [DOI:10.1016/j.brainres.2007.05.042]
46. Miki Stein A, Munive V, Fernandez A M, Nuñez A, Torres Aleman I. Acute exercise does not modify brain activity and memory performance in APP/PS1 mice. PLoS One 2017; 12: e0178247. [DOI:10.1371/journal.pone.0178247]
47. Mrdalj J, Pallesen S, Milde A M, Jellestad F K, Murison R, Ursin R, et al. Early and later life stress alter brain activity and sleep in rats. PloS one 2013; 8: e69923. [DOI:10.1371/journal.pone.0069923]
48. Murao S, Yoto A, Yokogoshi H. Effect of smelling green tea on mental status and EEG activity. International Journal of Affective Engineering 2013; 12: 37-43. [DOI:10.5057/ijae.12.37]
49. Naghizadeh B, Mansouri M T, Ghorbanzadeh B, Farbood Y, Sarkaki A. Protective effects of oral crocin against intracerebroventricular streptozotocin-induced spatial memory deficit and oxidative stress in rats. Phytomedicine 2013; 20: 537-542. [DOI:10.1016/j.phymed.2012.12.019]
50. Ndaro N Z, Wang S-Y. Effects of Fatigue Based on Electroencephalography Signal during Laparoscopic Surgical Simulation. Minimally invasive surgery 2018; 2018. [DOI:10.1155/2018/2389158]
51. Papandreou M A, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari F N, Margarity M. Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behavioural Brain Research 2011; 219: 197-204. [DOI:10.1016/j.bbr.2011.01.007]
52. Paul C-M, Magda G, Abel S. Spatial memory: Theoretical basis and comparative review on experimental methods in rodents. Behavioural brain research 2009; 203: 151-164. [DOI:10.1016/j.bbr.2009.05.022]
53. Pitsikas N, Sakellaridis N. Crocus sativus L. extracts antagonize memory impairments in different behavioural tasks in the rat. Behavioural brain research 2006; 173: 112-115. [DOI:10.1016/j.bbr.2006.06.005]
54. Pitsikas N, Zisopoulou S, Tarantilis P A, Kanakis C D, Polissiou M G, Sakellaridis N. Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats' memory. Behavioural Brain Research 2007; 183: 141-146. [DOI:10.1016/j.bbr.2007.06.001]
55. Radahmadi M, Alaei H, Sharifi M R, Hosseini N. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats. J Bodyw Mov Ther 2015; 19: 238-45. [DOI:10.1016/j.jbmt.2014.04.007]
56. Radahmadi M, Hosseini Dastgerdi A, Fallah N, Alaei H. The effects of acute, sub-chronic and chronic psychical stress on the brain electrical activity in male rats. Physiology and Pharmacology 2017; 21: 185-192.
57. Radahmadi M, Hosseini Dastgerdi A, Pourshanazari A A. Effects of crocin on locomotor activity as well as novel object recognition and object location memories in chronic restraint stressed rats. Physiology and Pharmacology 2020; 24: 123-132. [DOI:10.32598/ppj.24.2.80]
58. Rahimi S, Alaei H, Reisi P, Zarrin B, Siahmard Z, Pourshanazari A A. Hydroalcoholic tarooneh extract (Spathe of Phoenix Dactylifera) increased sedative-hypnotic effects and modulated electroencephalography brain waves in anesthetized rats. Advanced biomedical research 2019; 8. [DOI:10.4103/abr.abr_58_16]
59. Rajkishor P, Fumitoshi M, Bakardjia H, Vialatte F, Cichocki A. EEG changes after Bhramari Pranayama. Journal 2006: 390-395.
60. Ramesh V, Gozal D. Sleep fragmentation differentially modifies EEG delta power during slow wave sleep in socially isolated and paired mice. Sleep Science 2009; 2: 64-75.
61. Ranjbar H, Radahmadi M, Alaei H, Reisi P, Karimi S. The effect of basolateral amygdala nucleus lesion on memory under acute, mid and chronic stress in male rats. Turkish Journal of Medical Sciences 2016; 46: 1915-1925. [DOI:10.3906/sag-1507-7]
62. Roustazade R, Radahmadi M, Yazdani Y. Therapeutic effects of saffron extract on different memory types, anxiety, and hippocampal BDNF and TNF-α gene expressions in sub-chronically stressed rats. Nutritional Neuroscience 2021: 1-15. [DOI:10.1080/1028415X.2021.1943138]
63. Schacter D L. EEG theta waves and psychological phenomena: A review and analysis. Biological psychology 1977; 5: 47-82. [DOI:10.1016/0301-0511(77)90028-X]
64. Schwabe L, Joëls M, Roozendaal B, Wolf O T, Oitzl M S. Stress effects on memory: an update and integration. Neuroscience & Biobehavioral Reviews 2012; 36: 1740-1749. [DOI:10.1016/j.neubiorev.2011.07.002]
65. Seo S-H, Lee J-T, Crisan M. Stress and EEG. Convergence and hybrid information technologies 2010; 1: 413-424. [DOI:10.5772/9651]
66. Soeda S, Ochiai T, Shimeno H, Saito H, Abe K, Tanaka H, et al. Pharmacological activities of crocin in saffron. Journal of Natural Medicines 2007; 61: 102-111. [DOI:10.1007/s11418-006-0120-9]
67. Sugiura M, Shoyama Y, Saito H, Abe K. Crocin (crocetin di-gentiobiose ester) prevents the inhibitory effect of ethanol on long-term potentiation in the dentate gyrus in vivo. Journal of Pharmacology and Experimental Therapeutics 1994; 271: 703-707.
68. Tamaddonfard E, Gooshchi N H, Seiednejad-Yamchi S. Central effect of crocin on penicillin-induced epileptiform activity in rats. Pharmacological Reports 2012; 64: 94-101. [DOI:10.1016/S1734-1140(12)70735-1]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.