Volume 26, Issue 3 (September 2022)                   Physiol Pharmacol 2022, 26(3): 272-287 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maghsoudi A, Zaringhalam J, Moosavi M, Eidi A. Carbamylated erythropoietin-Fc ameliorates Aβ25-35 induced neurotoxicity by modulating autophagy, apoptosis and necroptosis in Alzheimer’s disease model rats. Physiol Pharmacol 2022; 26 (3) :272-287
URL: http://ppj.phypha.ir/article-1-1824-en.html
Abstract:   (1708 Views)
Introduction: Alzheimer’s disease (AD) is a progressive and chronic neurodegenerative disorder in which amyloid-β (Aβ) and hyperphosphorylated-tau (P-tau) are well-established pathological hallmarks. Carbamylated erythropoietin (CEPO-Fc) is one of the erythropoietin derivatives with neuroprotective properties against neurodegenerative disorders. However, the underlying molecular mechanism of CEPO-Fc has not been fully elucidated. Therefore, we investigated the therapeutic effects of CEPO-Fc on Aβ-induced neurotoxicity in the in-vivo rat model. Methods: Adult male Wistar rats were cannulated in the dorsal hippocampus and Aβ25-35 was microinjected for four consecutive days. CEPO-Fc was administered intranasally during the next six consecutive days. Learning and memory performance were examined (days 10-13) using the Morris water maze test. Furthermore, the hippocampal levels of critical proteins involved in apoptosis (Bax, Bcl-2 and caspase-3), necroptosis (phosphorylatedreceptor-interacting serine/threonine-protein kinase 3) and autophagy (p-Beclinbeclin-1 and phosphorylated- 1A/1B-light chain 3) were assessed using immunoblotting. Results: Behavioral analysis showed that CEPO-Fc treatment significantly improved Aβ-induced learning and memory impairment. Furthermore, the hippocampus’s molecular analysis showed that CEPO-Fc induced up-regulation of the autophagic proteins, p-Beclin-1 and p-LC3-II, while decreased caspase-3, Bax/Bcl2 ratio as well as the necroptosis factor p-RIP3. Conclusion: Our results indicate that the neuroprotective properties of CEPO-Fc in animal model of AD could be mediated by autophagy activation and inhibition of apoptosis and necroptosis processes. This study introduces CEPO-Fc as a potential protective compound against AD and other neurodegenerative disorders.
Full-Text [PDF 2252 kb]   (239 Downloads)    

References
1. Atri A. The Alzheimer's disease clinical spectrum: diagnosis and management. Med Clin North Am 2019; 103(2), 263-293. [DOI:10.1016/j.mcna.2018.10.009]
2. Bayer TA, Wirths O. Review on the APP/PS1KI mouse model: intraneuronal Abeta accumulation triggers axonopathy, neuron loss and working memory impairment. Genes Brain Behav 2008; 7 Suppl 1, 6-11. [DOI:10.1111/j.1601-183X.2007.00372.x]
3. Breijyeh Z, Karaman R. Comprehensive review on Alzheimer's disease: causes and treatment. Molecules 2020; 25(24). [DOI:10.3390/molecules25245789]
4. Brines M, Grasso G, Fiordaliso F, Sfacteria A, Ghezzi P, Fratelli M, Latini R, Xie Q-w, Smart J, Su-Rick C-j. Erythropoietin mediates tissue protection through an erythropoietin and common βsubunit heteroreceptor. PNAS 2004; 101(41), 14907-14912. [DOI:10.1073/pnas.0406491101]
5. Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN. Necroptosis activation in Alzheimer's disease. Nat Neurosci 2017; 20(9), 1236. [DOI:10.1038/nn.4608]
6. CaoY, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 2007; 17(10), 839-849. [DOI:10.1038/cr.2007.78]
7. Chamorro ME, Wenker SD, Vota DM, Vittori DC, Nesse AB. Signaling pathways of cell proliferation are involved in the differential effect of erythropoietin and its carbamylated derivative. Biochim Biophys Acta Mol Cell Res 2013; 1833(8), 1960-1968. [DOI:10.1016/j.bbamcr.2013.04.006]
8. Chen GF, Xu T-h, Yan Y, Zhou Y-r, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38(9), 1205- 1235. [DOI:10.1038/aps.2017.28]
9. Chen K, Iribarren P, Hu J, Chen J, Gong W, Cho EH, Lockett S, Dunlop NM, Wang JM. Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease- associated amyloid β peptide. J Biol Chem 2006; 281(6), 3651-3659. [DOI:10.1074/jbc.M508125200]
10. Cho Y, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK-M. Phosphorylationdriven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009; 137(6), 1112-1123. [DOI:10.1016/j.cell.2009.05.037]
11. Choi J G, Moon M, Kim HG, Mook-Jung I, Chung SY, Kang TH, Kim SY, Lee EH, Oh MS. Gami-Chunghyuldan ameliorates memory impairment and neurodegeneration induced by intrahippocampal Aβ1-42 oligomer injection. Neurobiol Learn Mem 2011; 96(2), 306-314. [DOI:10.1016/j.nlm.2011.06.004]
12. Choi M, Ko SY, Lee IY, Wang SE, Lee SH, Oh DH, Kim Y-S, Son H. Carbamylated erythropoietin promotes neurite outgrowth and neuronal spine formation in association with CBP/p300. Biochem. Biophys Res Commun 2014; 446(1), 79-84. [DOI:10.1016/j.bbrc.2014.02.066]
13. Christensen R, Marcussen A, Wörtwein G, Knudsen G, Aznar S. Aβ (1-42) injection causes memory impairment, lowered cortical and serum BDNF levels, and decreased hippocampal 5- HT2A levels. Exp Neurol 2008; 210(1), 164-171. [DOI:10.1016/j.expneurol.2007.10.009]
14. Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomallysosomal pathways: Roles in pathogenesis of down syndrome and Alzheimer's disease. Free Radic Biol Med 2018; 114, 40-51. [DOI:10.1016/j.freeradbiomed.2017.10.001]
15. Coleman TR, Westenfelder C, Tögel FE, Yang Y, Hu Z, Swenson L, Leuvenink HG, Ploeg RJ, d'Uscio LV, Katusic ZS. Cytoprotective doses of erythropoietin or carbamylated erythropoietin have markedly different procoagulant and vasoactive activities. PNAS 2006; 103(15), 5965- 5970. [DOI:10.1073/pnas.0601377103]
16. Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 2018; 15(1), 199. [DOI:10.1186/s12974-018-1235-0]
17. Duyckaerts C, Delatour B, Potier M-C. Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009; 118(1), 5-36. [DOI:10.1007/s00401-009-0532-1]
18. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin 2004; 16(6), 663-669. [DOI:10.1016/j.ceb.2004.09.011]
19. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35(4), 495-516. [DOI:10.1080/01926230701320337]
20. Erbayraktar S, de Lanerolle N, de Lotbinière A, Knisely JP, Erbayraktar Z, Yilmaz O, Cerami A, Coleman TR, Brines M. Carbamylated erythropoietin reduces radiosurgically-induced brain injury. Mol Med 2006; 12(4-6), 74-80. [DOI:10.2119/2006-00042.]
21. Erbayraktar Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R, Pinkas-Kramarski R. Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 2007; 3(6), 561-568. [DOI:10.4161/auto.4713]
22. Fantacci M, Bianciardi P, Caretti A, Coleman TR, Cerami A, Brines M, Samaja M. Carbamylated erythropoietin ameliorates the metabolic stress induced in vivo by severe chronic hypoxia. PNAS 2006; 103(46), 17531-17536. [DOI:10.1073/pnas.0608814103]
23. Fletcher L, Kohli S, Sprague SM, Scranton RA, Lipton SA, Parra A, Jimenez DF, Digicaylioglu M. Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. J Neurosurg 2009; 111(1), 164-170. [DOI:10.3171/2009.2.JNS081199]
24. Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol 2010; 20(6), 355-362. [DOI:10.1016/j.tcb.2010.03.002]
25. Genc S, Zadeoglulari Z, Oner MG, Genc K, Digicaylioglu M. Intranasal erythropoietin therapy in nervous system disorders. Expert Opin Drug Deliv 2011; 8(1), 19-32. [DOI:10.1517/17425247.2011.540236]
26. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; 221(1), 3-12. [DOI:10.1002/path.2697]
27. Guglielmotto M, Giliberto L, Tamagno E, Tabaton M. Oxidative stress mediates the pathogenic effect of different Alzheimer's disease risk factors. Front Aging Neurosci 2010; 2, 3. [DOI:10.3389/neuro.24.003.2010]
28. Guglielmotto M, Monteleone D, Piras A, Valsecchi V, Tropiano M, Ariano S, Fornaro M, Vercelli A, Puyal J, Arancio O. Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosis. Autophagy 2014; 10(10), 1827-1843. [DOI:10.4161/auto.30001]
29. He C, Levine B. The beclin 1 interactome. Curr Opin Cell Biol 2010; 22(2), 140-149. [DOI:10.1016/j.ceb.2010.01.001]
30. Hemani S, Lane O, Agarwal S, Yu SP, Woodbury A. Systematic Review of Erythropoietin (EPO) for Neuroprotection in Human Studies. Neurochem Res 2021; 1-8. [DOI:10.1007/s11064-021-03242-z]
31. Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T.-C. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature. 2013; 493(7434), 674-678. [DOI:10.1038/nature11729]
32. Hooshmandi E, Moosavi M, Katinger H, Sardab S, Ghasemi R, Maghsoudi N. CEPO (carbamylated erythropoietin)-Fc protects hippocampal cells in culture against beta amyloidinduced apoptosis: considering Akt/GSK-3β and ERK signaling pathways. Mol Biol Rep 2020; 47(3), 2097-2108. [DOI:10.1007/s11033-020-05309-6]
33. Hooshmandi E, Motamedi F, Moosavi M, Katinger H, Zakeri Z, Zaringhalam J, Maghsoudi A, Ghasemi R, Maghsoudi N. CEPO-Fc (an EPO derivative) protects hippocampus against Aβinduced memory deterioration: a behavioral and molecular study in a rat model of Aβ toxicity. J Neurosci 2018; 388, 405-417. [DOI:10.1016/j.neuroscience.2018.08.001]
34. Huang S-W, Wang W, Zhang M-Y, Liu Q-B, Luo S-Y, Peng Y, Sun B, Wu D-L, Song S-J. The effect of ethyl acetate extract from persimmon leaves on Alzheimer's disease and its underlying mechanism. Phytomed 2016; 23(7), 694-704. [DOI:10.1016/j.phymed.2016.03.009]
35. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, Schwartz S, Albasset S, McManus RM, Tejera D. NLRP3 inflammasome activation drives tau pathology Nature 2019; 575(7784), 669-673. [DOI:10.1038/s41586-019-1769-z]
36. Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3- kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol Cell 2008; 19(12), 5360- 5372. [DOI:10.1091/mbc.e08-01-0080]
37. Ivins KJ, Thornton PL, Rohn TT, Cotman CW. Neuronal apoptosis induced by β-amyloid is mediated by caspase-8. Neurobiol Dis 1999; 6(5), 440-449. [DOI:10.1006/nbdi.1999.0268]
38. Jha SK, Jha NK, Kumar D, Sharma ., Shrivastava A, Ambasta RK, Kumar P. Stress-induced synaptic dysfunction and neurotransmitter release in Alzheimer's disease: can neurotransmitters and neuromodulators be potential therapeutic targets? J Alzheimer's Dis 2017; 57(4), 1017-1039. [DOI:10.3233/JAD-160623]
39. Joe E, Ringman JM. Cognitive symptoms of Alzheimer's disease: clinical management and prevention. Bmj 2019; 367, l6217. [DOI:10.1136/bmj.l6217]
40. Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013; 501(7465), 45-51. [DOI:10.1038/nature12481]
41. Kim H-S, Suh Y-H. Minocycline and neurodegenerative diseases. Behav Brain Res 2009; 196(2), 168-179. [DOI:10.1016/j.bbr.2008.09.040]
42. King V, Averill S, Hewazy D, Priestley J, Torup L, Michael‐Titus A. Erythropoietin and carbamylated erythropoietin are neuroprotective following spinal cord hemisection in the rat. Eur J Neurosci 2007; 26(1), 90-100. [DOI:10.1111/j.1460-9568.2007.05635.x]
43. Lapchak PA, Kirkeby A, Zivin JA, Sager TN. Therapeutic window for nonerythropoietic carbamylated-erythropoietin to improve motor function following multiple infarct ischemic strokes in New Zealand white rabbits. Brain Res J 2008; 1238, 208-214. [DOI:10.1016/j.brainres.2008.08.017]
44. Lee S, Youn K, Kim DH, Ahn M-R, Yoon E, Kim O-Y, Jun M. Anti-neuroinflammatory property of phlorotannins from Ecklonia cava on Aβ25-35-induced damage in PC12 cells. Mar drugs 2019; 17(1), 7. [DOI:10.3390/md17010007]
45. Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, Savino C, Bianchi M, Nielsen J, Gerwien J. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 2004; 305(5681), 239-242. [DOI:10.1126/science.1098313]
46. Li G, Ma R, Huang C, Tang Q, Fu Q, Liu H, Hu B, Xiang J. Protective effect of erythropoietin on β-amyloid-induced PC12 cell death through antioxidant mechanisms. Neurosci Lett 2008; 442(2), 143-147. [DOI:10.1016/j.neulet.2008.07.007]
47. Li Q, Liu Y, Sun M. Autophagy and Alzheimer's disease. Cell Mol Neurobio 2017; 37(3), 377- 388. [DOI:10.1007/s10571-016-0386-8]
48. Li Y, Yang X, Ma C, Qiao J, Zhang C. Necroptosis contributes to the NMDA-induced excitotoxicity in rat's cultured cortical neurons. Neurosci Lett 2008; 447(2-3), 120-123. [DOI:10.1016/j.neulet.2008.08.037]
49. Liu P-P, Xie Y, Meng X-Y, Kang J-S. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct. Target Ther 2019; 4(1), 1-22. [DOI:10.1038/s41392-019-0063-8]
50. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M. ABAD directly links Aß to mitochondrial toxicity in Alzheimer's Disease. Science 2004; 304(5669), 448-452. [DOI:10.1126/science.1091230]
51. Ma L-Y, Lv Y-L, Huo K, Liu J, Shang S-H, Fei Y-L, Li Y-B, Zhao B-Y, Wei M, Deng Y-N. Autophagy-lysosome dysfunction is involved in Aβ deposition in STZ-induced diabetic rats. Behav Brain Res 2017; 320, 484-493. [DOI:10.1016/j.bbr.2016.10.031]
52. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007; 8(9), 741-752. [DOI:10.1038/nrm2239]
53. Maurice T, Mustafa M-H, Desrumaux C, Keller E, Naert G, Garcia-Barcelo MC, Rodriguez Cruz Y, Garcia Rodriguez JC. Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Aβ25-35 non-transgenic mouse model of Alzheimer's disease. J psychopharm 2013; 27(11), 1044-1057. [DOI:10.1177/0269881113494939]
54. McKnight NC, Yue Z. Beclin 1, an essential component and master regulator of PI3K-III in health and disease. Curr Pathobiol Rep 2013; 1(4), 231-238. [DOI:10.1007/s40139-013- 0028-5]
55. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 2010; 140(3), 313-326. [DOI:10.1016/j.cell.2010.01.028]
56. Montero M, Poulsen FR, Noraberg J, Kirkeby A, van Beek J, Leist M, Zimmer J. Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures. Exp Neurol 2007; 204(1), 106-117. [DOI:10.1016/j.expneurol.2006.09.026]
57. Morselli E, Galluzzi L, Kepp O, Vicencio J-M, Criollo A, Maiuri MC, Kroemer G. Anti-and protumor functions of autophagy. Biochim Biophys Acta Mol Cell Res 2009; 1793(9), 1524-1532. [DOI:10.1016/j.bbamcr.2009.01.006]
58. Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC. Aβ secretion and plaque formation depend on autophagy. Cell Rep 2013; 5(1), 61- 69. [DOI:10.1016/j.celrep.2013.08.042]
59. Nilsson P, Saido TC. Dual roles for autophagy: degradation and secretion of Alzheimer's disease Aβ peptide. Bioessays 2014; 36(6), 570-578. [DOI:10.1002/bies.201400002]
60. Ofengeim D, Mazzitelli S, Ito Y, DeWitt JP, Mifflin L, Zou C, Das S, Adiconis X, Chen H, Zhu H. RIPK1 mediates a disease-associated microglial response in Alzheimer's disease. PNAS 2017, 114(41), 8788-8797. [DOI:10.1073/pnas.1714175114]
61. Orhon I, Reggiori F. Assays to monitor autophagy progression in cell cultures. Cells 2017; 6(3), 20. [DOI:10.3390/cells6030020]
62. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal 2014; 20(3), 460-473. [DOI:10.1089/ars.2013.5371]
63. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Elsevier. 2007.
64. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Investig 2008; 118(6), 2190-2199. [DOI:10.1172/JCI33585]
65. Pourhamzeh M, Joghataei MT, Mehrabi S, Ahadi R, Hojjati SMM, Fazli N, Nabavi SM, Pakdaman H, Shahpasand K. The interplay of tau protein and β-amyloid: while tauopathy spreads more profoundly than amyloidopathy, both processes are almost equally pathogenic. Cell Mol Neurobiol 2020; 1-16. [DOI:10.1007/s10571-020-00906-2]
66. Armstrong RA. Risk factors for Alzheimer's disease. Folia Neuropathol. 2019; 57(2), 87-105. [DOI:10.5114/fn.2019.85929]
67. Ravikumar B, Berger Z, Vacher C, O'Kane CJ, Rubinsztein DC. Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 2006; 15(7), 1209-1216. [DOI:10.1093/hmg/ddl036]
68. Robert G, Gastaldi C, Puissant A, Hamouda A, Jacquel A, Dufies M, Belhacene N, Colosetti P, Reed JC, Auberger P. The anti-apoptotic Bcl-B protein inhibits BECN1-dependent autophagic cell death. Autophagy 2012; 8(4), 637-649. [DOI:10.4161/auto.19084]
69. Rohn TT. The role of caspases in Alzheimer's disease; potential novel therapeutic opportunities. Apoptosis 2010; 15(11), 1403-1409. [DOI:10.1007/s10495-010-0463-2]
70. Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E, Vandenabeele P. Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer's disease brain. Neurobiol Dis 2011; 43(1), 68-78. [DOI:10.1016/j.nbd.2010.11.003]
71. Schriebl K, Trummer E, Lattenmayer C, Weik R, Kunert R, Mueller D, Katinger H, Vorauer-Uh K. Biochemical characterization of rhEpo-Fc fusion protein expressed in CHO cells. Protein Expr Purif 2006; 49(2), 265-275. [DOI:10.1016/j.pep.2006.05.018]
72. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 2012; 148(1-2), 213-227. [DOI:10.1016/j.cell.2011.11.031]
73. Suresh S, Rajvanshi PK, Noguchi CT. The many facets of erythropoietin physiologic and metabolic response. Front Physiol 2020; 10, 1534. [DOI:10.3389/fphys.2019.01534]
74. Tan R, Tian H, Yang B, Zhang B, Dai C, Han Z, Wang M, Li Y, Wei L, Chen D. Autophagy and Akt in the protective effect of erythropoietin helix B surface peptide against hepatic ischaemia/reperfusion injury in mice. Sci Rep 2018; 8(1), 1-9. [DOI:10.1038/s41598- 018-33028-3]
75. Tayra JT, Kameda M, Yasuhara T, Agari T, Kadota T, Wang F, Kikuchi Y, Liang H, Shinko A, Wakamori T. Vcelar B. The neuroprotective and neurorescue effects of carbamylated erythropoietin Fc fusion protein (CEPO-Fc) in a rat model of Parkinson's disease. Brain Res 2013; 1502, 55-70. [DOI:10.1016/j.brainres.2013.01.042]
76. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14, 5541. [DOI:10.2147/IJN.S200490]
77. Walker LC, LeVine H. The cerebral proteopathies. Mol Neurobiol 2000; 21(1-2), 83-95. [DOI:10.1385/MN:21:1-2:083]
78. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004; 35(7), 1732-1737. [DOI:10.1161/01.STR.0000132196.49028.a4]
79. Wang Y, Zhang Z, Rhodes K, Renzi M, Zhang R, Kapke A, Lu M, Pool C, Heavner G, Chopp M. Post‐ischemic treatment with erythropoietin or carbamylated erythropoietin reduces infarction and improves neurological outcome in a rat model of focal cerebral ischemia. British J Pharmacol 2007; 151(8), 1377-1384. [DOI:10.1038/sj.bjp.0707285]
80. Wilkinson DS, Jariwala JS, Anderson E, Mitra K, Meisenhelder J, Chang JT, Ideker T, Hunter T, Nizet V, Dillin A. Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol Cell 2015; 57(1), 55-68. [DOI:10.1016/j.molcel.2014.11.019]
81. Wirawan E, Walle LV, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W. Caspase-mediated cleavage of Beclin-1 inactivates Beclin1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell death Dis 2010; 1(1), 18. [DOI:10.1038/cddis.2009.16]
82. Wu CL, Chen SD, Yin JH, Hwang CS, Yang DI. Erythropoietin and sonic hedgehog mediate the neuroprotective effects of brain-derived neurotrophic factor against mitochondrial inhibition. Neurobiol Dis 2010; 40(1), 146-154. [DOI:10.1016/j.nbd.2010.05.019]
83. Wu Q, Tang ZH, Peng J, Liao L, Pan LH, Wu CY, Jiang ZS, Wang GX, Liu LS. The dual behavior of PCSK9 in the regulation of apoptosis is crucial in Alzheimer's disease progression. Biomed Rep 2014; 2(2), 167-171. [DOI:10.3892/br.2013.213]
84. Wu Y-T, Tan H-L, Huang Q, Kim Y-S, Pan N, Ong W-Y, Liu Z, Ong C-N, Shen H-M. Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 2008. 4(4), 457-466. [DOI:10.4161/auto.5662]
85. Xilouri, M., Stefanis, L. Autophagy in the central nervous system: implications for neurodegenerative disorders. CNS Neurol. Disord. Drug. Targets. 2010; 9(6), 701-719. [DOI:10.2174/187152710793237421]
86. Xiong Y, Mahmood A, Zhang Y, Meng Y, Zhang ZG, Qu C, Sager TN, Chopp M. Effects of posttraumatic carbamylated erythropoietin therapy on reducing lesion volume and hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome in rats following traumatic brain injury. J Neurosurg 2011; 114(2), 549-559. [DOI:10.3171/2010.10.JNS10925]
87. Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy RC, Chua BH. Necrostatin‐1 protects against glutamate‐induced glutathione depletion and caspase‐independent cell death in HT‐22 cells. J Neurochem 2007; 103(5), 2004-2014. [DOI:10.1111/j.1471- 4159.2007.04884.x]
88. Yu Y-P, Xu Q-Q, Zhang Q, Zhang W-P, Zhang L-H, Wei E-Q. Intranasal recombinant human erythropoietin protects rats against focal cerebral ischemia. Neurosci Lett 2005; 387(1), 5-10. [DOI:10.1016/j.neulet.2005.07.008]
89. Zhang H, Zheng Y. βAmyloid Hypothesis in Alzheimer's Disease:Pathogenesis,Prevention,and Management. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2019; 41(5), 702-708.
90. Zhang S, Tang M-b, Luo H-y, Shi C-h, Xu Y-m. Necroptosis in neurodegenerative diseases: a potential therapeutic target. Cell death Dis 2017; 8(6), e2905-e2905. [DOI:10.1038/cddis.2017.286]
91. Zheng L, Terman A, Hallbeck M, Dehvari N, Cowburn RF, Benedikz E, Kågedal K, CedazoMinguez A, Marcusson J. Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells. Autophagy 2011; 7(12), 1528-1545. [DOI:10.4161/auto.7.12.18051]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.