Volume 27, Issue 3 (September 2023)                   Physiol Pharmacol 2023, 27(3): 296-306 | Back to browse issues page


XML Print


Abstract:   (1007 Views)

Introduction: Tacca chantrieri Andre is frequently used by traditional healers to alleviate pain and fever, primirily by reducing inflammation. Its rhizome extract possesses remarkable peripheral anti-inflammatory and antioxidant bioactivities. However, there is limited information available regarding its potential anti-neuroinflammation effects. This study aimes to assess the neuroprotective effects of T. chantrieri rhizome ethanol extract (TCE) against lipopolysaccharides (LPS)-induced neuroinflammation.
Methods: Rats were orally administered with TCE at doses of 50, 100, and 200 mg/kg continually for 9 days. On the 7th day of treatment, each rat received a single intraperitoneal injection of LPS (0.83 mg/kg). Cognitive performance was assessed using the Y-maze test and novel object recognition (NOR) test. Thereafter, the proinflammatory cytokine level in the hippocampus was measured by ELISA.
Results: Systemic LPS administration induced sickness behavior, cognitive impairment, and neuroinflammation. TCE at doses of 100 and 200 mg/kg reversed the LPS-induced behavioral deficits, showing improvements in spontaneous alternation in the Y-maze test and discrimination index in the NOR test. Additionally, pretreatment with TCE at doses of 100 and 200 mg/kg significantly attenuated the LPS-induced increase in protein expression of TNF-α.
Conclusion: TCE exhibited neuroprotective effects against LPS-induced cognitive deficits and suppressed the production of pro-inflammatory mediators in a dose-dependent manner. These findings indicate that TCE may hold therapeutic potential in preventing neuroinflammation associated cognitive impairment. However, further studies are necessary to validate the possible mechanisms of its neuroprotective effects.

Full-Text [PDF 1331 kb]   (323 Downloads)    

References
1. Baj T, Seth R. Role of Curcumin in Regulation of TNF-α Mediated Brain Inflammatory Responses. Recent Pat Inflamm Allergy Drug Discov. 2018; 12(1):69-77. [DOI:10.2174/1872213X12666180703163824]
2. Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N, Meabon JS, Wing EE, Morofuji Y, Cook DG, Reed MJ. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflam. 2015; 25: 12: 223. [DOI:10.1186/s12974-015-0434-1]
3. Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, Rosi S. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflam 2012; 25: 9-23. [DOI:10.1186/1742-2094-9-23]
4. Benito-León J, Contador I, Vega S, Villarejo-Galende A, Bermejo-Pareja F. Non-steroidal anti-inflammatory drugs use in older adults decreases risk of Alzheimer’s disease mortality. PLoS One 2019; 17: 14(9): e0222505. [DOI:10.1371/journal.pone.0222505]
5. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement 2016; 12(6): 719-32. [DOI:10.1016/j.jalz.2016.02.010]
6. Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 2016; 13(4):3391-6. [DOI:10.3892/mmr.2016.4948]
7. Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-García JM. Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci USA. 2010 Feb 9; 107(6):2652-7. [DOI:10.1073/pnas.0915059107]
8. Czerniawski J, Miyashita T, Lewandowski G, Guzowski JF. Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: Evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. Brain Behav Immun 2015; 44: 159-66. [DOI:10.1016/j.bbi.2014.09.014]
9. Emery DC, Shoemark DK, Batstone TE, Waterfall CM, Coghill JA, Cerajewska TL, Davies M, West NX, Allen SJ. 16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer’s Post-Mortem Brain. Front Aging Neurosci 2017; 20; 9: 195. [DOI:10.3389/fnagi.2017.00195]
10. Frankola KA, Greig NH, Luo W, Tweedie D. Targeting TNF-α to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol Disord Drug Targets 2011; 10(3): 391-403. [DOI:10.2174/187152711794653751]
11. Huang HT, Kuo YM, Tzeng SF. Intermittent peripheral exposure to lipopolysaccharide induces exploratory behavior in mice and regulates brain glial activity in obese mice. J Neuroinflam 2020; 17(1): 163. [DOI:10.1186/s12974-020-01837-x]
12. Jin Y, Peng J, Wang X, Zhang D, Wang T. Ameliorative Effect of Ginsenoside Rg1 on Lipopolysaccharide-Induced Cognitive Impairment: Role of Cholinergic System. Neurochem Res 2017; 42(5): 1299-1307. [DOI:10.1007/s11064-016-2171-y]
13. Kim HS, Kim S, Shin SJ, Park YH, Nam Y, Kim CW, Lee KW, Kim SM, Jung ID, Yang HD, Park YM, Moon M. Gram-negative bacteria and their lipopolysaccharides in Alzheimer’s disease: pathologic roles and therapeutic implications. Transl Neurodegener 2021; 10(1): 49. [DOI:10.1186/s40035-021-00273-y]
14. Kraeuter AK, Guest PC, Sarnyai Z. The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods Mol Biol 2019; 1916: 105-111. [DOI:10.1007/978-1-4939-8994-2_10]
15. Lee JW, Nam H, Kim LE, Jeon Y, Min H, Ha S, Lee Y, Kim SY, Lee SJ, Kim EK, Yu SW. TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia. Autophagy 2019; 15(5): 753-770. [DOI:10.1080/15548627.2018.1556946]
16. Li W, Ali T, He K, Liu Z, Shah FA, Ren Q, Liu Y, Jiang A, Li S. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav Immun 2021; 92: 10-24. [DOI:10.1016/j.bbi.2020.11.008]
17. Liu JQ, Zhao M, Zhang Z, Cui LY, Zhou X, Zhang W, Chu SF, Zhang DY, Chen NH. Rg1 improves LPS-induced Parkinsonian symptoms in mice via inhibition of NF-κB signaling and modulation of M1/M2 polarization. Acta Pharmacol Sin 2020; 41(4): 523-534. [DOI:10.1038/s41401-020-0358-x]
18. Liu Y, Zhang Y, Zheng X, Fang T, Yang X, Luo X, Guo A, Newell KA, Huang XF, Yu Y. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J Neuroinflam 2018; 18; 15(1): 112. [DOI:10.1186/s12974-018-1141-5]
19. Lopez-Rodriguez AB, Hennessy E, Murray CL, Nazmi A, Delaney HJ, Healy D, Fagan SG, Rooney M, Stewart E, Lewis A, de Barra N, Scarry P, Riggs-Miller L, Boche D, Cunningham MO, Cunningham C. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement 2021; 17(10): 1735-1755. [DOI:10.1002/alz.12341]
20. Madhi I, Kim JH, Shin JE, Kim Y. Ginsenoside Re exhibits neuroprotective effects by inhibiting neuroinflammation via CAMK/MAPK/NF‑κB signaling in microglia. Mol Med Rep 2021; 24(4): 698. [DOI:10.3892/mmr.2021.12337]
21. Miao HH, Zhang Y, Ding GN, Hong FX, Dong P, Tian M. Ginsenoside Rb1 attenuates isoflurane/surgery-induced cognitive dysfunction via inhibiting neuroinflammation and oxidative stress. Biomed Environ Sci 2017, 30(5): 363-372. [DOI:10.3967/bes2017.047]
22. Marefati N, Beheshti F, Memarpour S, Bayat R, Naser Shafei M, Sadeghnia HR, Ghazavi H, Hosseini M. The effects of acetyl-11-keto-β-boswellic acid on brain cytokines and memory impairment induced by lipopolysaccharide in rats. Cytokine 2020; 131: 155107. [DOI:10.1016/j.cyto.2020.155107]
23. Passamonti L, Tsvetanov KA, Jones PS, Bevan-Jones WR, Arnold R, Borchert RJ, Mak E, Su L, O’Brien JT, Rowe JB. Neuroinflammation and Functional Connectivity in Alzheimer’s Disease: Interactive Influences on Cognitive Performance. J Neurosci 2019; 4; 39(36):7218-7226. [DOI:10.1523/JNEUROSCI.2574-18.2019]
24. Rajendran L, Paolicelli RC. Microglia-Mediated Synapse Loss in Alzheimer’s Disease. J Neurosci. 2018;38(12):2911-2919. [DOI:10.1523/JNEUROSCI.1136-17.2017]
25. Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 2011; 7(3):137-52. [DOI:10.1038/nrneurol.2011.2]
26. Rujjanawate C, Chairat N. Use of bat flower’s rhizome powder to relieve muscle inflammation.” J Community Develop Life Qual 2018; 1(1): 91-96.
27. Sparkman NL, Martin LA, Calvert WS, Boehm GW. Effects of intraperitoneal lipopolysaccharide on morris maze performance in year-old and 2-month-old female C57BL/6J mice. Behav Brain Res 2005; 159(1): 145-51. [DOI:10.1016/j.bbr.2004.10.011]
28. Sudheimer KD, O’Hara R, Spiegel D, Powers B, Kraemer HC, Neri E, Weiner M, Hardan A, Hallmayer J, Dhabhar FS. Cortisol, cytokines, and hippocampal volume interactions in the elderly. Front Aging Neurosci 2014; 3; 6:153. [DOI:10.3389/fnagi.2014.00153]
29. Tiamjan R, Panthong A, Taesotikul T, Rujjanawate C, Taylor WC, Kanjanapothi D. Hypotensive activity of Tacca chantrieri. and its hypotensive principles. Pharma Biol 2007; 45(6): 481-485. [DOI:10.1080/13880200701389375]
30. Vargas-Caraveo A, Sayd A, Robledo-Montaña J, Caso JR, Madrigal JLM, García-Bueno B, Leza JC. Toll-like receptor 4 agonist and antagonist lipopolysaccharides modify innate immune response in rat brain circumventricular organs. J Neuroinflam 2020; 17(1): 6.
31. Wahl D, Coogan SC, Solon-Biet SM, de Cabo R, Haran JB, Raubenheimer D, Cogger VC, Mattson MP, Simpson SJ, Le Couteur DG. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging 2017; 8; 12: 1419-1428. [DOI:10.2147/CIA.S145247]
32. Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015; 3(10): 136. [DOI:10.3978/j.issn.2305-5839.2015.03.49]
33. Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X. Differential effects of ginsenosides on NO and TNF-alpha production by LPS-activated N9 microglia. Int Immunopharmacol. 2007; 7(3): 313-320. [DOI:10.1016/j.intimp.2006.04.021]
34. Yang Y, Gong Q, Wang W, Mao YL, Wang XR, Yao S, Zhang HY, Tang C, Ye Y. Neuroprotective and anti-inflammatory ditetrahydrofuran-containing diarylheptanoids from Tacca chantrieri. J Nat Prod. 2020; 83(12): 3681-3688. [DOI:10.1021/acs.jnatprod.0c00901]
35. Yang Y, Zhong W, Zhang Y, Cheng Y, Lai H, Yu H, Feng N, Han Y, Huang R, Zhai Q. Sustained Inflammation Induced by LPS Leads to Tolerable Anorexia and Fat Loss via Tlr4 in Mice.” J Inflamm Res. 2022; 15: 5635-5648.
36. Yen PH, Chi VT, Kiem PV, Tai BH, Quang TH, Nhiem NX, Anh Hle T, Ban NK, Thanh BV, Minh CV, Park S, Kim SH. Spirostanol saponins from Tacca vietnamensis and their anti-inflammatory activity. Bioorg Med Chem Lett 2016; 1; 26(15): 3780-4. [DOI:10.1016/j.bmcl.2016.05.048]
37. Yin S, Shao J, Wang X, Yin X, Li W, Gao Y, Velez de-la-Paz OI, Shi H, Li S. Methylene blue exerts rapid neuroprotective effects on lipopolysaccharide-induced behavioral deficits in mice. Behav Brain Res 2019; 1; 356: 288-294. [DOI:10.1016/j.bbr.2018.08.037]
38. Yokosuka A, Mimaki Y, Sashida Y. Spirostanol saponins from the rhizomes of Tacca chantrieri and their cytotoxic activity. Phytochemistry 2002a; 61(1): 73-8. [DOI:10.1016/s0031-9422(02)00168-1]
39. Yokosuka A, Mimaki Y, Sashida Y. Steroidal and pregnane glycosides from the rhizomes of Tacca chantrieri. J Nat Prod 2002b; 65(9):1293-8. [DOI:10.1021/np020094l]
40. Zakaria R, Wan Yaacob WM, Othman Z, Long I, Ahmad AH, Al-Rahbi B. Lipopolysaccharide-induced memory impairment in rats: a model of Alzheimer’s disease. Physiol Res 2017; 22; 66(4):553-565. [DOI:10.33549/physiolres.933480]
41. Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 2016; 29: 87(22): 2324-2332. [DOI:10.1212/WNL.0000000000003391]
42. Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, Lu D, Wei W, Wang Y, Li H, Fu Y, Zhu L. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 2019; 9:5790. [DOI:10.1038/s41598-019-42286-8]
43. Zhou M, Xu R, Kaelber DC, Gurney ME. Tumor Necrosis Factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasis. PLoS One 2020; 23:15(3): e0229819. [DOI:10.1371/journal.pone.0229819]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.