Volume 27, Issue 4 (December 2023)                   Physiol Pharmacol 2023, 27(4): 392-402 | Back to browse issues page


XML Print


Abstract:   (1179 Views)

Introduction: Acorus calamus Linn. from the Acoraceae family exhibits several benefits in neurological disorders but has not been studied for chronic constriction injury (CCI) of median nerve induced neuropathic pain. Damage to median nerve leads to work-related musculoskeletal disorders (WMSDs). this study aimed to assess the effects of the ethanolic root extract of Acorus calamus (EAC) on CCI-induced neuropathic pain and WMSDs in rats.
Methods: Animals were randomly divided into 7 groups of 8 animals each. Group 1. Normal control, 2. Sham control, 3. CCI, 4. CCI+ vehicle (CMC), 5. CCI+gabapentin (50 mg/kg), 6. CCI+EAC (20 mg/kg), 7. CCI+EAC (40 mg/kg). On day 0, rats were subjected to the surgical procedure of exposure and ligation of the median nerve-produced CCI at the forearm level. Pain-sensitive tests (i.e., hot plate test, Randall Selitto test), and functional analysis (i.e., walking track) were performed. Total protein, lipid peroxidation, and histopathological changes were also estimated.
Results: CCI significantly increased thermal and mechanical hyperalgesia, raised median functional index (walking track analysis), and induced biochemical and histological disruptions. Oral administration of EAC (40 mg/kg) and gabapentin (50 mg/kg) notably lowered CCI-induced nociceptive pain threshold, improved median nerve functional index, and mitigated tissue histological alterations.
Conclusion: EAC has been found to decrease CCI-induced neuropathic pain of the median nerve. Its mechanisms likely involve neuroprotective, antioxidant, and anti-inflammatory properties.

Article number: 5
Full-Text [PDF 1088 kb]   (340 Downloads)    

References
1. Anwer S, Li H, Antwi-Afari MF, Wong A. Associations between physical or psychosocial risk factors and work-related musculoskeletal disorders in construction workers based on literature in the last 20 years: A systematic review. Int J Ind Ergon 2021; 83: 103113. [DOI:10.1016/j.ergon.2021.103113]
2. Ayrancı E, Altunkaynak BZ, Aktaş A, Rağbetli M, Kaplan S. Prenatal exposure of diclofenac sodium affects morphology but not axon number of the median nerve of rats. Folia Neuropathol 2013; 51: 76-86. [DOI:10.5114/fn.2013.34199]
3. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 1989; 83: 129-38. [DOI:10.1097/00006534-198901000-00024]
4. Bakare AO, Owoyele BV. Antinociceptive and neuroprotective effects of bromelain in chronic constriction injury-induced neuropathic pain in Wistar rats. Korean J Pain 2020; 33: 13-22. [DOI:10.3344/kjp.2020.33.1.13]
5. Baron R, Freynhagen R, Tölle TR, Cloutier C, Leon T, Murphy KT, et al. The efficacy and safety of pregabalin in the treatment of neuropathic pain associated with chronic lumbosacral radiculopathy. Pain 2010; 150: 420-427. [DOI:10.1016/j.pain.2010.04.013]
6. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988; 33: 87-107. [DOI:10.1016/0304-3959(88)90209-6]
7. Bertelli JA, Taleb M, Mira JC, Calixto JB. Muscle fiber type reorganization and behavioral functional recovery of rat median nerve repair with vascularized or conventional nerve grafts. Restor Neurol Neurosci 1996; 10: 5-12. [DOI:10.3233/RNN-1996-10102]
8. Chen JJ, Lue JH, Lin LH, Huang CT, Chiang R PY, Chen CL, et al. Effects of pre-emptive drug treatment on astrocyte activation in the cuneate nucleus following rat median nerve injury. Pain 2010; 148: 158-66. [DOI:10.1016/j.pain.2009.11.004]
9. Devi SA, Ganjewala D. Antioxidant Activities of Methanolic Extracts of Sweet-Flag (Acorus calamus) Leaves and Rhizomes. J Herbs Spices Med Plants 2011; 17: 1-11. [DOI:10.1080/10496475.2010.509659]
10. Dilley A, Harris M, Barbe MF, Bove G. Aberrant Neuronal Activity in a Model of Work-Related Upper Limb Pain and Dysfunction. The J of Pain 2022; 23: 852-863. [DOI:10.1016/j.jpain.2021.12.004]
11. Eddy NB, Leimbach D. Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutylamines. J Pharmacol Exp Ther 1953; 107: 385-93.
12. Fujiwara M, Iwata M, Inoue T, Aizawa Y, Yoshito N, Hayashi K, et al. Decreased grip strength, muscle pain, and atrophy occur in rats following long-term exposure to excessive repetitive motion. Neuro Endocrinol. Lett 2017; 7: 1737-49. [DOI:10.1002/2211-5463.12315]
13. Garcia YJ, Rodríguez-Malaver AJ, Peñaloza N. Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. J Neurosci Methods 2005; 144: 127-35. [DOI:10.1016/j.jneumeth.2004.10.018]
14. Hilaire C, Inquimbert P, Al-Jumaily M, Greuet D, Valmier J, Scamps F. Calcium dependence of axotomized sensory neurons excitability. Neurosci Lett 2005; 380: 330-4. [DOI:10.1016/j.neulet.2005.01.068]
15. Inquimbert P, Moll M, Latremoliere A, Tong CK, Whang J, Sheehan GF, et al. NMDA Receptor Activation Underlies the Loss of Spinal Dorsal Horn Neurons and the Transition to Persistent Pain after Peripheral Nerve Injury. Cell Rep 2018; 23: 2678-89. [DOI:10.1016/j.celrep.2018.04.107]
16. Krishnan KS, Raju G, Shawkataly O. Prevalence of work-related musculoskeletal disorders: Psychological and physical risk factors. Int J Environ Res Public Health 2021; 18: 9361. [DOI:10.3390/ijerph18179361]
17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-75.
18. Marchand F, Perretti M, McMahon SB. Role of the immune system in chronic pain. Nat Rev Neurosci 2005; 6: 521-32. [DOI:10.1038/nrn1700]
19. Muthuraman A, Singh N. Attenuating effect of Acorus calamus extract in chronic constriction injury induced neuropathic pain in rats: an evidence of anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory effects. BMC Complement Altern Med 2011; 11-24. [DOI:10.1186/1472-6882-11-24]
20. Muthuraman A, Singh N. Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain. J Ethnopharmacol 2012; 142: 723-31. [DOI:10.1016/j.jep.2012.05.049]
21. Naik A K, Tandan SK, Kumar D, Dudhgaonkar SP. Nitric oxide and its modulators in chronic constriction injury-induced neuropathic pain in rats. Eur J Pharmacol 2006; 530: 59-69. [DOI:10.1016/j.ejphar.2005.11.029]
22. Nakazato-Imasato E, Kurebayashi Y. Pharmacological characteristics of the hind paw weight bearing difference induced by chronic constriction injury of the sciatic nerve in rats. Life Sci 2009; 84: 622-6. [DOI:10.1016/j.lfs.2009.02.014]
23. Ortega-Álvaro A, Berrocoso E, Rey-Brea R, Leza JC, Mico JA. Comparison of the antinociceptive effects of ibuprofen arginate and ibuprofen in rat models of inflammatory and neuropathic pain. Life Sci. 2012; 90: 13-20. [DOI:10.1016/j.lfs.2011.10.002]
24. Rajput SB, Tonge MB, Karuppayil SM. An overview on traditional uses and pharmacological profile of acorus calamus Linn. (Sweet flag) and other acorus species. Phytomedicine 2014; 21: 268-276. [DOI:10.1016/j.phymed.2013.09.020]
25. Randall LO, Selitto JJ, Valdes J. Anti-inflammatory effects of xylopropamine. Arch Int Pharmacodyn Ther 1957; 113: 233-49.
26. Shukla PK, Khanna VK, Ali M, Maurya R, Handa S, Srimal RJPr. Protective effect of Acorus calamus against acrylamide induced neurotoxicity. Phytother Res 2002; 16: 256-60. [DOI:10.1002/ptr.854]
27. Shukla PK, Khanna VK, Ali MM, Maurya R, Khan MY, Srimal RC. Neuroprotective effect of Acorus calamus against middle cerebral artery occlusion-induced ischaemia in rat. Hum Exp Toxicol 2006; 25: 187-94. [DOI:10.1191/0960327106ht613oa]
28. Silverstein B, Clark R. Interventions to reduce work-related musculoskeletal disorders. J Electromyogr. Kinesiol 2004;14:135-52. [DOI:10.1016/j.jelekin.2003.09.023]
29. Sunderland S. The nerve lesion in the carpal tunnel syndrome. J Neurol Neurosurg Psychiatry 1976; 39: 615-26. [DOI:10.1136/jnnp.39.7.615]
30. Wang L, Sanford MT, Xin Z, Lin G, Lue TF. Role of Schwann cells in the regeneration of penile and peripheral nerves. Asian J Androl 2015; 17: 776-82. [DOI:10.4103/1008-682X.154306]
31. Witkin LB, Heubner CF, Galdi F, O’Keefe E, Spitaletta P, Plummer AJ. Pharmacology of 2-amino-indane hydrochloride (Su-8629): a potent non-narcotic analgesic. J Pharmacol Exp Ther 1961; 133: 400-8.
32. Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 1999; 353: 1959-64. [DOI:10.1016/S0140-6736(99)01307-0]
33. Xavier AM, Serafim KG, Higashi DT, Vanat N, Flaiban KK, Siqueira CP, et al. Simvastatin improves morphological and functional recovery of sciatic nerve injury in Wistar rats. Injury 2012; 43: 284-9. [DOI:10.1016/j.injury.2011.05.036]
34. Yousuf S, Marifatul Haq S, Rasool A, Zulfajri M, Hanafiah MM, Nafees H, et al. Evaluation of antidepressant activity of methanolic and hydroalcoholic extracts of Acorus calamus L. rhizome through tail suspension test and forced swimming test of mice. Journal of Traditional Chinese Medical Sciences 2020; 7: 301-07. [DOI:10.1016/j.jtcms.2020.07.002]
35. Zulazmi NA, Gopalsamy B, Farouk AA, Sulaiman MR, Bharatham BH, Perimal EK. Antiallodynic and antihyperalgesic effects of zerumbone on a mouse model of chronic constriction injury-induced neuropathic pain. Fitoterapia 2015; 105: 215-21. [DOI:10.1016/j.fitote.2015.07.011]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.