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Introduction: Toll-like receptor (TLR) 4 is involved in neuroinflammatory processes in 
peripheral tissues and central nervous system. Pro-inflammatory cytokines production, due to 
over activation of TLR4, interfere with insulin signaling elements lead to insulin resistance. 
Regarding the critical roles of TLR4 and insulin in the pathogenesis of Parkinson’s disease (PD), 
in the present study the TLR4/insulin receptor interaction was assessed in a neuroinflammation 
model of PD.
Methods: LPS was injected into the right striatum of male Wistar rats (20µg/rat). Insulin (2.5IU/
day), insulin receptor antagonist (S961; 6.5nM/kg), or TLR4 antibody (Resatorvid (TAK242); 
0.01µg/rat) were administered intracerebroventricularly (ICV) for 14 days. Insulin and TAK242 
were also simultaneously injected in a distinct group. Behavioral assessments were performed 
using rotarod, apomorphine-induced rotation, and cylinder tests. The levels of α-synuclein, 
TLR4, and elements of the insulin signaling pathway were measured in the striatum.
Results: LPS impaired motor performance of the animals and increased the levels of α-synuclein 
and TLR4. Furthermore, it reduced mRNA levels of IRS1 and IRS2 and enhanced GSK3β mRNA 
and protein levels, indicating the development of insulin resistance. Treatment with insulin and 
TAK 242 improved motor deficits, restored insulin signaling pathway, and reduced α-synuclein 
and TLR4 levels.
Conclusion: The findings indicate that LPS impaired motor function, at least in part, via 
α-synuclein and TLR4 overexpression, leading to insulin resistance. Suppression of TLR4 
and activation of insulin receptors attenuated motor deficits, suggesting that TLR4 and insulin 
receptors are promising therapeutic targets for PD modification.
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Chronic neuroinflammation is one of the main fea-
tures of neurodegenerative diseases like Parkinson’s 
disease (PD). PD is characterized by motor impairments 
such as bradykinesia, rigidity, resting tremor, and pos-
tural instability due to the loss of dopaminergic neurons 
in the substantia nigra pars compacta (SNpc) (Heidari et 
al., 2022). Increase in proinflammatory and reduction of 
anti-inflammatory cytokines have been reported in pa-
tients with PD (Mogi et al., 1996; Qin et al., 2016).

Microglia, the immune cells of nervous system, are 
activated in response to inflammatory insults and pro-
duce proinflammatory cytokines including TNFα, inter-
leukin (IL)-1β and IL-6 (Kam et al., 2020). These glial 
cells express high density of toll-like receptors (TLRs), 
which are innate immune system receptors and mem-
bers of the pattern recognition receptor (PRR) family 
(Gorecki et al., 2021). TLRs have critical roles in recogi-
nizing pathogen-associated molecular patterns (PAMPs) 
expressed by microbial invaders and damage-associat-
ed molecular patterns (DAMPs) released during tissue 
damage (Perez-Pardo et al., 2019). TLR2 and TLR4 
are two important members of this family which play 
roles in inflammatory processes. TLR4 is also involved 
in microglial activation induced by α-synuclein in PD 
(Heidari et al., 2022). α-Synuclein aggregates as neue-
rotoxic oligomers in neurons, especially dopaminergic 
neurons in SNpc, in patients with PD leads to dopami-
nergic neuronal cell death. α-Synuclein also acts as an 
immune signaling molecule and endogenous agonist of 
TLR4, and activates TLR4 on microglia and astrocytes 
(Codolo et al., 2013; Fellner et al., 2013; Gorecki et al., 
2021; Hughes et al., 2019; Rannikko et al., 2015). Li -
popolysaccharide (LPS), a component of gram-negative 
bacteria’s outer membrane, is a potent activator of TLR4 
(Kim and Sears 2010). LPS activates TLR4 on microga-
lia, leading to the production of pro-inflammatory cy-
tokines and neuronal damage (Vargas et al., 2020). In 
experimental studies, LPS is used to induce a neuroin-
flammation model of PD, both in vivo and in vitro (Liu 
and Bing 2011; Tufekci et al., 2011).

Insulin and insulin receptors exist in different regions 
of the brain and regulate many functions including neu-
ronal cell survival, synaptic function, and neural circuit 
formation (Banks et al., 2012). Insulin is important for 
dopaminergic neurons survival and function, and any 
disruption in its signaling pathway may lead to dopa-

minergic neurons dysfunction (Athauda and Foltynie 
2016). In patients with type 2 diabetes, insulin resise-
tance and hyperglycemia can induce dopaminergic neu-
rons degeneration (Song and Kim 2016). It has been 
indicated that diabetic patients may be more susceptible 
to PD and have more severe movement symptoms than 
non-diabetic patients with PD (Mollenhauer et al., 2019; 
Pagano et al., 2018; Sandyk 1993). Furthermore, insu -
lin resistance is one of the pathological hallmarks in the 
brain of PD patients (Athauda and Foltynie 2016). Ex -
perimental studies have shown that insulin administra-
tion protects dopaminergic neurons against 6-hydroxy 
dopamine (6-OHDA) and improves motor impairments 
(Iravanpour et al., 2021). 

TLR4 and the insulin signaling pathway are closely 
related. Chronic activation of TLR4 increases inflam-
matory factors that interfere with insulin receptor and 
insulin receptor substrates (IRSs), resulting in insu-
lin desensitization (Huang et al., 2017). Regarding the 
critical role of TLR4 and the insulin signaling pathway 
in the pathogenesis of PD, this study was designed to 
evaluate the effects of insulin, insulin receptor antago-
nist, and TLR4 blocker (TAK242; Resatorvid) on mo-
tor impairments in the neuroinflammation model of PD 
induced by LPS. Furthermore, molecular assessments 
were performed to elucidate the interaction of these sig-
naling pathways.

Materials and Methods
Animals
Male Wistar rats (220-250g) were used in this study 

under the standard cycle of 12 hours of light/12 hours 
of darkness and a temperature of 23±2 °C. The rats had 
free access to water and food ad libitum. The experi-
ments were performed at the same time during the day 
(light phase) to avoid circadian variations in animals. 
All procedures were followed the guidelines of the Na-
tional Institutes of Health for the care and use of labo-
ratory animals (8th edition, 2011) and approved by the 
Animal Research Ethics Committee of Shahid Beheshti 
University of Medical Sciences (IR.SBMU.RETECH.
REC.1400.676).

Drugs
LPS (Sigma-Aldrich, USA) was dissolved in sterile 

0.9% normal saline (NS) (20µg/2μl /rat) (Hunter et al., 
2007; Shukuri et al., 2021). Insulin and S961, a high-afn-
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finity biosynthetic insulin receptor antagonist, were pre-
pared from Novo-Nordisk, Denmark. These two drugs 
were dissolved in NS and administered ICV (insulin: 
2.5 IU/day (Balakumar et al., 2013), S961: 6.5nM/kg 
(Knudsen et al., 2012; Vikram and Jena 2010)). TAK-
242 (resatorvid) (InvivoGen, USA), a small-molecule 
inhibitor of TLR4, was dissolved in dimethyl sulphox-
ide (DMSO) (0.01μ/rat, ICV) (Suzuki et al., 2012).

Stereotaxic surgery
The rats were anesthetized with ketamine/xylazine 

(80/20mg/kg, intraperitoneally) and placed on a stereo-
taxic instrument (Stoelting, USA). LPS was injected 
(20µg/2μl/rat) into the right striatum (AP: +1; ML: +3; 
DV: -5). The rats in the sham group received the same 
volume of vehicle (2μl of sterile 0.9% NS). A guide can-
nula was implanted in the right lateral ventricle (AP: 
-0.75, ML: +1.7, DV: -4) for intracerebroventricular 
(ICV) administration of drugs.

Experimental groups
The rats were randomly divided to the following 

groups (n=10):
1) Sham: NS in right striatum
2) LPS: LPS in right striatum
3) LPS+NS: LPS in right striatum + NS (ICV)
4) LPS+DMSO: LPS in right striatum + DMSO (ICV)
5) LPS+Insulin: LPS in right striatum + insulin
6) LPS+S961: LPS in right striatum + S961
7) LPS+TAK242: LPS in right striatum + TAK242
8) LPS+TAK242+insulin: LPS in right striatum + 

TAK242/insulin

All treatments were administered for 14 consecutive 
days. Then, the rats were subjected to behavioral tests, 
and were sacrificed for striatum extraction for molecular 
assessments (n=3). The experiment’s time-line is pre-
sented in Figure 1.

Behavioral tests
Rotarod test
Rotarod  test is commonly used to assess motor co-

ordination and balance (Martinez 2019; Moon et al., 
2018). This test contains of two consecutive days of 
training, with constant speed (10 rpm) on the first day, 
and escalating speed (from 5 to 20 rpm in 5 minutes) on 
the second day. On the test day, each rat performed five 
trials with escalating speed (5-40 rpm) and a 5-minute 
cut off time. The average of five trials was recorded as 
the final score.

Apomorphine-induced rotation test 
Apomorphine was dissolved in NS with 0.2 mg/ml 

ascorbic acid and subcutaneously injected (0.5 mg/kg). 
All rotations were recorded for 40 minutes. The  net 
contralateral rotations were then calculated (contralater-
al - ipsilateral) (da Conceição et al., 2010).

Cylinder test 
The cylinder test is a common method to evaluate mo-

tor-sensory function in animal models of PD (Moon et 
al., 2018). Due to the nigrostriatal lesion, the use of the 
contralateral forelimb is reduced (Martinez 2019). In 
this test, the rat was placed in a glass cylinder for 5 min-
utes, and the total number of the paw touches (right, left, 

 

FIGURE 1.FIGURE 1. Experimental time-line.
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or both) on the cylinder wall were counted. Finally, the 
percentage of using contralateral hand was calculated.

RNA isolation and qPCR Protocol
Total RNA was extracted from the striatum using the 

Total RNA Isolation System (Qiagen, USA), according 
to the manufacturer’s instruction. RNA concentration 
was evaluated using a NanodropTM spectrophotome-
ter (Nanodrop; Thermo Fisher Scientific, Wilmington, 
DE, USA). Then, total RNA (1μg) was used for cDNA 
synthesis by RevertAid™ First Strand cDNA Synthesis 
kit (Qiagen, USA). The expression of target genes was 
quantitatively measured using SYBR Green Real-Time 
PCR Master Mix reagents in the ABI system (USA). 
Relative expression of α-synuclein, TLR4, IRS1, IRS2 
and GSK3β was calculated by the 2-ΔΔCT method, and 
β-actin was used as the house-keeping gene. Primers se-
quences used for qPCR are presented in Table 1.

Western blotting
A Potter-Elvehjem tissue grinder (Sigma, St Louis, 

Missouri, USA) with chilled tris-buffered saline with 
tween (TBST) (20mM Tris, pH=7.5; 0.75M NaCl; 
2mM 2-mercaptoethanol) and 10 µl/ml protease in-
hibitor cocktail (Sigma) was used to homogenize the 
striatum in a centrifuge (23,000 g) at 4 ˚C for 45 min-
utes. Protein concentration was measured using a bi-
cinchoninic acid protein assay kit (Sigma-Aldrich) 
with bovine serum albumin (BSA). In the next stage, 
25 µg of total protein was loaded on sodium dodecyl 
sulphate polyacrylamide gels for electrophoresis and 
transferred to polyvinylidene difluoride membranes 
(MSI, Westborough, Massachusetts, USA). BSA block-
ing buffer was used to block non-specific binding sites 
for 60 minutes. The membranes were incubated with 
rabbit anti-α-synuclein (1:1000, ab52168, Abcam), an-

ti-TLR4 (1:1000, ab22048, Abcam), anti-IRS1 (1:1000, 
ab52167, Abcam), anti-IRS2 (1:1000, ab134101, Ab-
cam), anti-GSK3β (1:1000, ab2602, Abcam), and an-
ti-β-actin (1:1000, ab20272, Abcam) antibodies at 4 ˚C 
overnight. After washing with TBST, the membranes 
were incubated with horseradish-peroxidase-conjugated 
rabbit anti-mouse secondary antibody (1:2000, ab6728, 
Abcam) at room temperature for 30 minutes. Enhanced 
chemiluminescent substrate (ChemiGlow; Alpha Inno-
tech, San Leandro, California, USA) and chemilumi-
nescent imaging system (FluorChem 5500; Alpha Inno-
tech) were used to visualize the immunoreactive bands. 
Quantification of the band’s density was performed us-
ing ImageJ software.

Statistical analysis
Data were analyzed using the 16th version of SPSS. 

One-way ANOVA with Tukey’s post hoc tests was used 
to compare behavioral data, gene expression, and pro-
tein levels between groups. Statistically significant level 
was set at P<0.05. Data are reported as mean± standard 
error of the mean (SEM).

Results
Insulin significantly improved motor impairment in-

duced by LPS
In all behavioral tests, insulin attenuated motor im-

pairments induced by LPS (Figure 2). the rotarod test 
was used to evaluate balance and motor coordination. 
Statistical analysis indicated that the time spent on the 
rotarod was different between groups [F (7, 72) = 12.59, 
P<0.001]. LPS reduced the latency time to fall from the 
rotarod compared to sham (P<0.001), and insulin sig-
nificantly increased it (P<0.01 compared to LPS), and 
restored motor coordination to the control level (P>0.05 
in comparison to sham). An improvement in motor co-

TABLE 1:TABLE 1: Primer sequences use for qPCR.

Gene Forward Primers (5′3′) Revers Primers (5′3′)

α-synuclein CCAACATATAGGCTGGAGTG TAGCCATCCACAGACACACC

TLR4 GTGGGTCAAGGACCAGAAAA GGCTACCACAAGCACACTGA

IRS1 AGGTTTTCCCCTCCTAGCAA GCTGAGATCGAAACATGCAA

IRS2 GGCTCACCAGTTTTCTGCTC GTAGAATTGCTCCCGTTGGA

GSK3β TCGGCTCTCTCCTTCCATTA CCCTCATCCCTGTACCTCAA

β-actin TAGGGTCCATTGGTGGAAAC TGCCGATAGTGATGACCTGA



ordination and balance was also observed in animals 
treated by insulin+TAK242 (P<0.001 compared to LPS 
and TAK242). However, S961 and TAK242 could not 
improve motor coordination (P<0.001 vs. sham and in-
sulin, and P>0.05 vs. LPS) (Figure 2A).

As shown in Figure 2B, a significant increase in con-
tralateral rotations induced by apomorphine was seen in 
LPS-treated animals compared to sham [F (7, 72) = 17.34, 
P<0.001]. Insulin significantly reduced apomorphine-in-
duced rotations, alone or in combination with TAK242, 
in comparison to LPS (P<0.001). However, S961 and 
TAK242 could not decrease contralateral rotations com-
pared to LPS (P>0.05). In these groups, there was a sig-
nificant increase in contralateral rotations compared to 
sham (P<0.001 and P<0.01, respectively) (Figure 2B).

LPS administration also decreased the use of con-
tralateral forelimb in the cylinder test [F (7, 72) = 6.57, 
P<0.001], and insulin partially improved forelimb 

asymmetry (P>0.05 vs. sham), which was not statistical-
ly significant compared to LPS. This improvement was 
also observed in the insulin+TAK242 group compared 
to LPS (P<0.05). However, there was no improvement 
in the S961 and TAK242 groups (Figure 2C). The find-
ings of behavioral tests proposed that TLR4 inhibition 
simultaneous with insulin receptor activation is more 
effective in attenuating motor deficits than TLR4 sup-
pression alone.

Insulin and TAK242 attenuated LPS-induced increase 
in α-synuclein and TLR4

α-synuclein and TLR4 levels in the striatum were 
evaluated by qPCR and western blot techniques (Fig-
ure 3). Statistical analysis indicated that LPS signifi-
cantly increased α-synuclein mRNA [F (5, 12) = 688.711, 
P<0.001]. Insulin, TAK242, and insulin+TAK242 de-
creased it compared to LPS (P<0.001). However, in 

FIGURE 2.FIGURE 2. Insulin treatment improved motor impairments induced by LPS.
LPS administration in rats induced motor deficits in rotarod (A), apomorphine-induced rotation (B) and cylinder (C) tests. Insulin, alone and 
with TAK242, could improve these impairments. S961 and TAK242 had no effects on motor performance. Data are indicated as mean ± SEM 
(n=10).
**P<0.01,***P<0.001 vs. Sham
#P<0.05, ##P<0.01, ###P<0.001 vs. LPS
$P<0.05, $$$P<0.001 vs. LPS+TAK242
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S961-treated animals, α-synuclein expression was sig-
nificantly higher than sham and LPS (P<0.001) (Figure 
3A). α-Synuclein protein expression was also elevated 
by LPS [F (5, 12) = 270.434, P<0.001] and significantly 
attenuated by insulin (P<0.001). Treatment with S961, 
TAK242, and insulin+TAK242 could not reduce α-sy-
nuclein protein expression (P<0.001 compared to both 
sham and LPS) (Figure 3B).

LPS injection significantly enhanced the mRNA [F 

(5, 12) = 91.113, P<0.001] and protein [F (5, 12) = 593.77, 
P<0.001] levels of TLR4. All treatments attenuated it at 
both mRNA and protein levels (P<0.001 in comparison 
to LPS). However, there was a significant increase in all 
treatments compared to sham (P<0.001) (Figure 3C-D).

IRS1 and IRS2 genes expressions were reduced by 
LPS and enhanced by insulin

Changes in the mRNA and protein levels of IRS1 and 

2 are shown in Figure 4. ANOVA analysis indicated that 
IRS1 gene expression was decreased by LPS [F (5, 12) = 
731.758, P<0.001], while insulin and insulin+TAK242 
significantly increased it compared to both sham and 
LPS (P<0.001). S961 and TAK242 did not enhance 
IRS1 expression compared to LPS (P>0.05) (Figure 
4A). IRS1 protein level was elevated in all experimental 
groups, with the exception of S961, compared to sham 
[F (5, 12) = 143.057, P<0.001]. Moreover, IRS1 protein 
was significantly increased in insulin, TAK242 and 
insulin+TAK242 groups compared to LPS (P<0.001) 
(Figure 4B).

IRS2 mRNA and protein levels were also statistical-
ly different between groups [F (5, 12) = 142.819, P<0.001 
and F (5, 12) = 325.258, P<0.001, respectively] (Figure 
4C, D). IRS2 gene expression was decreased by LPS 
(P<0.01), while insulin and insulin+TAK242 increased 

FIGURE 3.FIGURE 3. The effect of insulin, S961 and TAK242 on α-synuclein and TLR4.
The mRNA and protein levels of α-synuclein (A, B) and TLR4 (C, D) were significantly increased by LPS. Insulin and TAK242 could de-
creased both α-synuclein and TLR4. S961 decreased only TLR4 mRNA and protein levels. Data are shown as mean ± SEM (n=3).
**P<0.01,***P<0.001 vs. Sham
###P<0.001 vs. LPS
+++P<0.001 vs. LPS+Insulin
$$$P<0.001 vs. LPS+TAK242
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it in comparison to LPS (P<0.001). IRS2 gene expres-
sion was also higher in insulin treated animals compared 
to sham (P<0.001). S961 and TAK242 could not change 
it (P>0.05 compared to LPS) (Figure 4C). IRS2 protein, 
similar to IRS1, was increased in all groups compared 
to sham, with the exception of S961 (P<0.001) (Figure 
4D).

Insulin and TAK242 attenuated GSK3β mRNA and 
protein levels following LPS 

Statistical analysis indicated a significant difference 
between groups in mRNA [F (5, 12) = 215.127, P<0.001] 
and protein [F (5, 12) = 387.765, P<0.001] levels of GSK3β 
(Figure 5). GSK3β gene expression was elevated by 
LPS (P<0.001). Insulin, TAK242, and insulin+TAK242 
significantly decreased it compared to LPS (P<0.001). 
GSK3β gene expression reached control levels in in-

sulin and insulin+TAK242 treated animals (P>0.05), 
however, it was still higher in TAK242 group com-
pared to sham (P<0.001). S961 not only could not re-
duce the GSK3β mRNA but also significantly increased 
it compared to both sham and LPS (P<0.001) (Figure 
5A). GSK3β protein expression was increased by LPS 
(P<0.001) and attenuated by insulin, S961, and TAK242 
(P<0.001). In animals receiving insulin+TAK242, 
GSK3β protein expression was significantly higher than 
sham and LPS (P<0.001) (Figure 5B).

Discussion
The findings of the present study showed that LPS im-

paired motor performance through an increase in α-sy-
nuclein and TLR4, and insulin signaling dysfunction in 
the striatum, all of which improved by insulin, alone and 
with TAK24. Administration of S961 had no effect on 

FIGURE 4.FIGURE 4. Changes in IRS1 and 2 following LPS injection and insulin treatment.
LPS administration reduced the mRNA and increased protein of IRS1 (A, B) and IRS2 (C, D). Insulin could increase IRS1 and 2 at both mRNA 
and protein levels. TAK242 increased the mRNA of IRS1 and 2, and the protein of IRS1. Data are shown as mean ± SEM (n=3).
**P<0.01,***P<0.001 vs. Sham
#P<0.05, ###P<0.001 vs. LPS
+++P<0.001 vs. LPS+Insulin
$$$P<0.001 vs. LPS+TAK242
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these behavioral and molecular deficits, confirming the 
important role of insulin signaling pathways in LPS-in-
duced PD pathology.

LPS is widely used to study the neuroinflammation 
model of PD, both in vitro and in vivo. In animals, LPS 
can be injected into the striatum, SN or globus pallidus, 
or be systemically administered by an intraperitone-
al injection (Liu and Bing 2011). It has been demond-
strated that systemic inflammation induced by LPS is 
correlated with neuroinflammation, neurodegeneration, 
and the development of PD (Oliynyk et al., 2021). LPS 
is a potent agonist for TLR4 on microglial cells, and 
therefore produces some pathological features of PD, 
like dopaminergic neurons loss in SNpc, by extensive 
microglial activation and  releasing pro-inflammatory 
mediators (Liu and Bing 2011). Astrocytes also highly 
express TLR4 and are activated after exposure to LPS 
(La Vitola et al., 2021). In vitro studies have shown that 
LPS treatment increases the expression of TLR4 at both 
mRNA and protein levels in primary murine and rat as-
trocytes cells (Bowman et al., 2003; Li et al., 2016), and 
lithium reduces astrocyte activation through inhibition 
of TLR4 expression (Li et al., 2016). An in vitro study 
has indicated that LPS treatment increases TLR4 gene 
expression, and inflammatory factors like IL-1β, IL-6 

and TNF as well. Insulin-like growth factor-I (IGF-I) 
treatment has been shown to reduce LPS-induced TLR4 
overexpression (Bellini et al., 2011). Exogenous IGF-I 
and its gene delivery to primary astrocytes from the 
mouse cerebral cortex could decrease TLR4 expression 
and eventually counteract LPS-induced neuroinflamma-
tion (Bellini et al., 2011). Consistent with these studies, 
we also indicated overexpression of TLR4 in the stria-
tum of rats receiving LPS, confirming the induction of 
neuroinflammation, which was attenuated by insulin.

Insulin through IRS1/PI3K/Akt pathway regulates 
microglial activation and pro-inflammatory cytokines 
production (Yang et al., 2017). Microglial cells, in re0-
sponse to inflammatory insults, act as a neuroprotective 
mechanism and prevent neuronal damage. However, in 
pathological conditions, excessive and long-term mi-
croglial activation leads to releasing the proinflamma-
tory cytokines, called chronic neuroinflammation (Kim 
and Joh 2006), which interfere with insulin signaling els-
ements, such as IRSs (Copps and White 2012; Kim and 
Feldman 2012). Proinflammatory cytokines decrease 
IRS interactions with insulin receptors through serine 
phosphorylation IRSs, reduce insulin sensitivity, and 
cause insulin resistance (Copps and White 2012; Kim 
and Feldman 2012).

FIGURE 5.FIGURE 5. The effect of insulin, S961 and TAK242 on GSK3β following LPS injection.
LPS increased the mRNA (A) and protein (B) of GSK3β. Insulin and TAK242 could significantly attenuate both of them. S961 could decrease 
only the protein of GSK3β. Data are expressed as mean ± SEM (n=3).
***p<0.001 vs. Sham
###p<0.001 vs. LPS
+++p<0.001 vs. LPS+Insulin
$$$p<0.001 vs. LPS+TAK242
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IRS1 and 2 are highly expressed in different regions 
of the brain and regulate GSK3β activity, which is in-
volved in regulating many cellular processes such as 
protein synthesis, cell survival, and metabolism (Speed 
et al., 2011). GSK3β overactivation initiates several ins-
tracellular signaling cascades which promote apoptot-
ic cell death (Ghasemi et al., 2013). GSK3β plays an 
important role in the pathogenesis of neurodegenerative 
diseases, and inhibition of its activity can be considered 
as a therapeutic strategy in reducing the pathology and 
severity of PD (Duka et al., 2009; Li et al., 2014). Ini-
sulin exerts some of its neuroprotective effects through 
inactivating GSK3β by phosphorylation on Ser9, which 
is mediated by IRS/PI3K/Akt signaling pathway. There-
fore, in pathological conditions correlated with chronic 
neuroinflammation, insulin resistance occurs, which is 
characterized by a decrease in insulin receptor and IRSs, 
concomitant with increased activity of GSK3β.

Several studies have indicated a link between insulin 
resistance and brain dysfunction (Ma et al., 2015; Mas-
ciejczyk et al., 2019). Dopaminergic neurons, in pare-
ticular, have a high energy demand, which may partly 
explain their increased sensitivity to hyperglycemia 
(Lv et al., 2021). Insulin receptors are expressed in the 
substantia nigra, and the development of insulin resis-
tance reduces the insulin-dependent release of dopamine 
(Akhtar and Sah 2020). It has been shown that chrone-
ic insulin resistance due to a high-fat diet disrupts ni-
grostriatal function by reducing the release and clear-
ance of dopamine (Vijiaratnam et al., 2021). There is 
evidence that insulin signaling pathways are disrupted 
in PD. Insulin receptors are reduced in the striatum of 
PD patients, accompanied by decrease of the release and 
clearance of dopamine (Morris et al., 2011). It has been 
also indicated that insulin resistance due to a high-fat 
diet in mice leads to more severe motor deficits induced 
by 6-OHDA than control mice, suggesting that insulin 
resistance increases the risk of PD pathology (Sharma 
and Taliyan 2018). Clinical studies have shown that unv-
controlled diabetes acts as a risk factor for developing 
PD (Ou et al., 2021). Insulin resistance can also induce 
iron deposition in dopaminergic neurons, which lead to 
the production of highly reactive radicals and neuronal 
dysfunction (Pignalosa et al., 2021). Consistent with this 
evidence, our findings revealed that LPS impaired the 
motor function of the animals, at least in part, due to 
the induction of insulin resistance. Moreover, there was 

also overexpression of TLR4 following LPS injection, 
proposing the interaction of TLR4 and insulin signaling 
pathway and the role of TLR4 in LPS-induced insulin 
resistance.

α-Synuclein aggregation and accumulation in the 
brain, especially in dopaminergic neurons, is the main 
pathological hallmark of PD. This presynaptic protein 
is involved in many physiological processes including 
synaptic transmission, neurotransmitter release, and 
mitochondrial function (Bendor et al., 2013). Howevd-
er, when aggregating in the oligomeric form, it becomes 
toxic  and causes mitochondrial dysfunction via inter-
action with the respiratory chain complexes (Chinta et 
al., 2010). Besides, α-synuclein is also involved in neue-
roinflammatory processes through activation of TLR4 
on microglia and astrocytes (Codolo et al., 2013; Fellner 
et al., 2013; Gorecki et al., 2021; Hughes et al., 2019; 
Rannikko et al., 2015). Previous studies have shown that 
LPS induces overexpression of α-synuclein via over-
activation of microglial cells (Niu et al., 2020). It has 
been shown that chronic microglial overactivation due 
to overexpression of α-synuclein leads to motor impair-
ments in mice (Drouin-Ouellet et al., 2015). Here, we 
observed overexpression of α-synuclein in the striatum 
of animals that received LPS concomitant with overex-
pression of TLR4. Administration of insulin and TLR4 
blocker (TAK242) could decrease them. Insulin has 
been indicated to activate autophagy through PI3K/Akt/
mTOR pathway, and promote degradation of accumu-
lated toxic proteins like α-synuclein (Heras-Sandoval 
et al., 2014). In the present study, α-synuclein protein 
was attenuated following insulin treatment, while S961 
could not reduce α-synuclein. This proposes that α-sy-
nuclein clearance might be mediated by mTOR inhibi-
tion via IRS/ PI3K/Akt pathway. In parallel with these 
findings, during an in vitro study insulin could reduce 
α-synuclein in PC12 cells due to treatment with MPP+ 
(Ramalingam and Kim 2017). Furthermore, other stud -
ies have previously reported that rapamycin, an inhib-
itor of mTORC1, decreased α-synuclein aggregation 
and prevented dopaminergic neuron loss (Sarkar et al., 
2007; Tain et al., 2009).

Conclusion
Generally, the present study indicated that LPS im-

paired motor behaviors in animal models through neu-
roinflammation, overexpression of α-synuclein, and 
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insulin resistance. Insulin administration and TLR4 
suppression by TAK242 could overcome LPS-induced 
deficits at both behavioral and molecular levels, propos-
ing the modulation of TLR4 and insulin receptor as a 
promising therapeutic approach to improve PD-related 
problems.
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