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Circadian rhythm is a biological clock that regulates various physiological and pathological 
processes in the body. It is believed that any disturbance in circadian rhythm leads to 
impairment in some physiological systems, such as the endocrine, reproductive, renal, and 
cardiovascular systems. Various internal and external factors can alter circadian homeostasis 
and metabolism in a tissue-specific manner, and any disruption in these temporal interactions 
can result in the development of some chronic disorders. Circadian rhythm plays a crucial 
role in the pathogenesis of diseases, including cardiovascular disease, neurodegenerative 
disease, mood disorders, sleep disorders, diabetes mellitus, metabolism disorders, and 
cancer. This review aims to provide a brief overview of the basic circadian processes and 
an overview of current and future research directions in circadian rhythm and its related 
treatments.
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Overview of the circadian rhythm
- Definition of circadian rhythms
The human body follows a natural circadian rhythm 

(CR) clock. According to Merriam-Webster (1959), cir-
cadian rhythms refer to the natural cycle of physical, 
mental, and behavioral changes that occur in a 24-hour 
cycle or period (day/night cycles) (Chang et al., 2015). 

Introduction
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These rhythms are found in all tissues of the mammali-
an body, and in addition, about 40% of protein-coding 
genes show oscillatory expression (Ruben et al., 2018). 
Furthermore, these rhythms regulate various biological 
and physiological processes of the body in living organ-
isms including sleep and wake cycles (Liu et al., 2022), 
heart rate, arterial blood pressure (Jiang et al., 2019), 
body temperature (López-Olmeda 2017; Refinetti 2020), 
hormone production and secretion (Tsang et al., 2016), 
metabolism and obesity (Sebti et al., 2022), mood and 
depression (Scott and McClung 2021), immune system 
functions (Cox et al., 2022), urine production (Ramsay 
and Zagorodnyuk 2023), digestive system (Segers and 
Depoortere 2021), skeletal muscles (Luo et al., 2022) 
and other essential body functions.

Circadian rhythms can be in some forms depending 
on their duration, including high-frequency cycles (such 
as discrete hormonal pulses throughout the day), diurnal 
cycles (such as patterns of activity and rest), and lon-
ger cycles lasting months or years (such as reproductive 
cycles in certain species) (Onishi et al., 2020). Howev-
er, most biological rhythms operate on roughly 24-hour 
cycles.

- Regulation of circadian rhythms: the role of circa-
dian clocks

The circadian rhythm is influenced by various external 

changes and factors such as exposure to light and food 
consumption (Wang et al., 2021), as well as internal fac-
tors and natural changes, such as genetics and age (Chen 
et al., 2016). Disturbances caused by jet lag and shift 
work can also negatively affect the health of the biolog-
ical rhythm (Wang et al., 2021). Therefore, any distur-
bance in the rhythm can lead to various health problems, 
including sleep disorders, mood disorders, metabolic 
disorders, cardiovascular diseases, neurodegenerative 
diseases, diabetes, and cancer (Farhud and Aryan 2018) 
(Figure 1). 

In addition, as the disturbance in the circadian clock 
increases the risk of disease, many diseases can also 
change the circadian rhythm. Circadian rhythm regula-
tion is a complex process and is controlled by a set of 
different genetic, molecular, and neural mechanisms and 
processes (Patke et al., 2020). 

The circadian rhythm is controlled by the circadian 
clock. Circadian clocks are divided into two catego-
ries: central clock (suprachiasmatic nucleus- SCN) in 
the hypothalamus and peripheral clocks (non-SCN) in 
other organs in the body (Honma 2018). The SCN is the 
primary regulator and the main center of the circadian 
rhythms that communicate with other brain areas and 
sends numerous neurological and endocrine signals to 
peripheral tissues (Leembruggen et al., 2022). This nu-
cleus synchronizes the internal clock with external cues, 
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FIGURE 1.FIGURE 1. The suprachiasmatic nucleus (SCN), as a master regulator of the circadian system in the hypothalamus, receives internal and 
external signals and synchronizes peripheral clocks in various physiological systems.



such as light-dark cycles, and controls peripheral tissue 
clocks through the release of endogenous regulatory 
substances. 

The SCN has an essential role in maintaining the sys-
temic circadian rhythm and regulating downstream pro-
cesses that affect metabolism, hormone secretion, and 
other physiological functions (Tarquini and Mazzoc-
coli 2017). Hormones such as melatonin, cortisol, and 
growth hormone also play an important role in circadian 
rhythm regulation and interact with the SCN and other 
brain regions (Ertosun et al., 2019). Light input is of-
ten used as the primary stimulus to transmit time signals 
from the SCN to peripheral clocks in other body cells 
(Alvord et al., 2022; Begemann et al., 2020; Míková et 
al., 2021). 

Since the SCN can coordinate many behaviors, in-
cluding feeding/ fasting, reproduction, and sleep-wake 
cycles, through the control of physiological fluctuations 
in metabolism, hormone levels, nutrition, and body tem-
perature (Ono et al., 2023), it seems that any type of 
damage to this area can disrupt the mentioned functions 
(Gu et al., 2021). For example, it has been found that the 
destruction or removal of the SCN center of mice leads 
to disruption of circadian rhythms related to glucose up-
take and insulin sensitivity (Peng et al., 2022).

Besides the central clock, other regulators called pe-
ripheral circadian clocks exist in some organs such as 
the digestive system, skeletal muscles, pancreas, lungs, 
spleen, reproductive system, kidneys, thymus, heart, 

prostate, liver, intestines, lymphocytes, skin, olfactory 
bulb and esophagus (Reddy et al., 2023; Zhang et al., 
2020). There are many approaches in which these sec-
ondary or peripheral oscillators communicate with one 
another. For instance, by reacting to signals sent by the 
SCN or by receiving inputs directly and indirectly from 
the nervous system, such as hormonal, physiological, 
and other behavioral rhythms (Schibler et al., 2015; 
Walker et al., 2020). Autonomic nerves, local signals, 
and endocrine signaling are only some factors that influ-
ence the pattern of gene expression of peripheral tissues 
(Xie et al., 2019). 

Unlike the central circadian clock (SCN), which only 
has independent oscillations, peripheral clocks do not 
have spontaneous oscillations and are often controlled 
by the oscillations of the main pacemaker (SCN) (Husse 
et al., 2014). There is a complex relationship between 
the SCN and surrounding tissues, and the maintenance 
of circadian rhythms in peripheral tissues is based on 
the individual needs of each tissue (Crislip et al., 2018; 
Gamble et al., 2014).

* Circadian clock genes
At the molecular level, the SCN, as a molecular clock, 

regulates the 24-hour rhythmic expression of nuclear 
clock components through the bidirectional interaction 
of a main two-loop transcriptional-translational feed-
back loop (TTFL) (Anna and Kannan 2021). These 
positive and negative molecular feedback loops include 
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FIGURE 2.FIGURE 2. The molecular circadian network is formed from a feedback loop of CLOCK, BMAL, PERs, and CRYs elements, which lead to 
24-hour rhythmic oscillations at target genes. K: kinase, P: phosphatase



two activators (CLOCK and BMAL1) and two repres-
sors (homologous circadian protein; PER1 and PER2), 
which are regulated through kinases and phosphatases 
and can be activated and inhibited together (Gul et al., 
2020) (Figure 2). 

The expression of clock genes within a cell can af-
fect several signaling pathways that enable the cell to 
detect the time of day and carry out the proper func-
tions. Therefore, feedback loops determine the timing 
of certain physiological functions and behaviors, such 
as sleep-wake cycles, stress, metabolism, and immune 
responses. The existence of circadian rhythms in both 
nucleated and non-nucleated cells indicates that the mo-
lecular clock is autonomous and can regulate itself using 
outside cues. 

The PER1/ PER2/ PER3, BMAL1/ BMAL2, CRY1/ 
CRY2, and CLOCK genes are called “clock-controlled 
genes” and regulate translation and transcription pro-
cesses (Luo et al., 2016). In some organs, such as kidney, 
liver, lung, and heart tissues, some rhythms are directly 
stimulated and activated by clock genes and operate in-
dependently of suprachiasmatic nucleus rhythms (Ono 
et al., 2023; Sahar and Sassone-Corsi 2012).

Brain and muscle aryl-hydrocarbon receptor nuclear 
translocator-like protein1 (BMAL1) gene

Circadian rhythmicity is entirely lost following the 
knockout (KO) of Bmal1. For example, The Bmal1- KO 
mice have a shorter lifespan and lower blood pressure 
than wild-type mice. In addition, they are also infertile 
and exhibit a circadian rhythmicity in their blood pres-
sure and heart rate (Solocinski and Gumz 2015). Bmal1 
KO results in a disruption in the circadian cycle under 
constant dark/ light conditions (Izumo et al., 2014). 

Bmal1 is crucial for the ovarian steroidogenic cells’ 
molecular clock, progesterone synthesis, and other pro-
cesses related to female reproduction, and any disruption 
of the Bmal1 gene is sufficient to disrupt the reproduc-
tive cycle (Boden et al., 2013; Boden et al., 2010; Liu 
et al., 2014). In addition, mice lacking specific Bmal1 
have shown defective insulin secretion and this is main-
ly due to impaired insulin secretion (de Jesus et al., 
2022; Ye et al., 2020). Bmal1 KO animals are obese and 
exhibit patterns of food malabsorption, hyperlipidemia, 
and increased body weight (Richards and Gumz 2013). 
Telomerase Reverse Transcriptase transcription (TERT, 
a downstream gene of Bmal1) was boosted when the 

central clock protein Bmal1 was eliminated, while the 
overexpression of TERT promotes the growth of tumors 
(Tang et al., 2017). Circadian disruption induces Bmal1 
downregulation, which produces osteoclasts and inhi-
bition of bone production (osteogenesis), and leads to 
abnormal growth of the lower jaw (Zhou et al., 2018). 

Period Circadian Regulator (PER) genes
The Per1, 2, and 3 genes are circadian protein homo-

logs and are classified as part of a group of circadian 
clock genes that function as transcriptional repressors 
(Cao et al., 2023). 

Per1 gene is related to cell proliferation and apoptosis 
and it has a significant impact on the development of 
oral, prostate, colon, breast, and ovarian cancers (Chen 
et al., 2021; Han et al., 2016; Lan et al., 2020; Li et al., 
2016; Liu et al., 2021; Wang et al., 2015b). Per1 is now 
known to have a vital role in controlling the female sex’s 
ability to produce progesterone (Zhang et al., 2019), so 
knocked out of the Per1 gene reduced the expression of 
progesterone receptor-related genes (Chen et al., 2021; 
Zhang et al., 2019). 

Per2 is also involved in cell differentiation and prolif-
eration and has been implicated in mammary epithelium 
and milk duct morphology and breast cancer (Wang et 
al., 2015a). The abnormal expression of Per2 increases 
the progression of oral squamous cell carcinoma (Guo 
et al., 2020). Per2 seems to have a role in neurodegener-
ative diseases and cognitive impairment patients (Bessi 
et al., 2020). 

Because of their short half-life, Per1, 2 genes are ideal 
options for performing circadian rhythms. It has been 
discovered that mice with mutant Per2 and Per1 genes 
exhibit different responses to light. Also, the mutation 
in these two genes leads to premature aging (Zhang et 
al., 2019).

Per3 is crucial in the early development of the mouse 
cerebral cortex (Noda et al., 2019), gastrointestinal 
functions (Hoogerwerf 2010), prostate cancer (Hinoura 
et al., 2021), the regulation of metabolism and obesity 
(Peng et al., 2021). 

Circadian locomotor output cycles kaput (Clock) gene
The clock mutant mouse (Δ19) was one of the first ex-

perimental models that demonstrated the significance of 
the circadian clock in metabolism. These animals (Δ19) 
demonstrate obesity and metabolic syndrome pheno-
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type. It’s interesting to note that, despite Clock mutant 
mice having normal activity rhythms in light/dark cy-
cles; feeding behavior is disrupted and leads to obesity 
and endocrine disturbance (Turek et al., 2005). 

Clock/Clock mutant mice have differences in preg-
nancy, severe birth defects, morphological deformity, 
and reduction of estradiol and progesterone serum levels 
(Miller and Takahashi 2013; Pilorz et al., 2018). Clock 
mutant mice do not have significant amounts of prolac-
tin and secrete less milk than wild-type mice (Miller and 
Takahashi 2013). 

In addition, the clock gene can be a desirable binding 
components in spermatogenesis or sperm production 
(Yang et al., 2018). The Clock is involved in the male 
reproductive system and may be important for future 
research into the relationship between spermatogenesis 
and circadian clock genes (He et al., 2023). Moreover, 
Clock expression influences cell growth and apopto-
sis-related genes in glioma cells (Wang et al., 2016). The 
Clock gene in human placenta tissue through hypoxia 
participates in the pathogenesis of preeclampsia (Li et 
al., 2020). A study by Borengasser et al. showed obesi-
ty can disrupt clock gene rhythmicity. They also found 
that maternal obesity disrupts the Clock gene and leads 
to metabolic programming of the liver in rat offspring 
(Borengasser et al., 2014).

Cryptochrome (CRY) gene
CRY1/ CRY2 have a significant role and importance 

in maintaining the circadian rhythmic state (Tokuoka et 
al., 2017). Cry1 encodes transcription factors that con-
trol the circadian clock in mammals and are expressed in 
many tissues and cells (Miller et al., 2020). In addition, 
Cry1 controls the repair of DNA damage, cell growth, 
and several other biological processes (Shafi et al., 
2021). Cry1 can stop preimplantation meiosis and oo-
cyte development in female mice (Guan et al., 2023). In 
males, Cry1 is primarily responsible for proper growth 
and normal function of the testis (Li et al., 2018). 

The Cry2 gene is also involved in stress-depressive 
behaviors (Sokolowska et al., 2021), Cognitive dysfunc-
tions (De Bundel et al., 2013), osteoarthritis (Bekki et al., 
2020), Colorectal and breast cancers (Fang et al., 2015; 
Mao et al., 2015). Cry1 has a role in Hyperglycemia and 
diabetes (Kim et al., 2022; Tong et al., 2017). Rat liver 
cells treated with synthetic Cry1/2 agonists demonstrate 
enhanced glucose synthesis as a result of Cry1/2 activity 

(Hirota et al., 2012). 

* Factors affecting the circadian rhythm:
Various internal and external factors influence circa-

dian rhythms, such as melatonin, light exposure, tem-
perature, nutrition, age, physical activity, and social in-
teractions.

Light 
Most living organisms receive the time information 

necessary to reset their internal clocks through changes 
in light intensity throughout the day. Thus, light is fre-
quently used as a stimulus in chronobiology studies to 
start clock-related reactions (Rivas et al., 2018).

Circadian clock regulation through light involves a sig-
naling chain. Optical information is received by peroxi-
some proliferator-activated receptors (pRGCs), which 
then transmit it, directly to the SCN via the retino-hy-
pothalamic tract (RHT) (Lokshin et al., 2015). This pro-
cess regulates peripheral clocks through the SCN and 
the secretion of neurohumoral factors. When the SCN is 
stimulated by light, Ca2+ enters the cell; the intracellu-
lar signaling chain is activated and increases the expres-
sion of period genes which control the molecular clock 
(Walker et al., 2020). As light can provide precise syn-
chronization with the environment, on the other hand, 
inappropriate exposure to light disrupts these rhythms 
and, as a result, can disrupt the downstream regulation 
of circadian rhythms in environmental systems (Melén-
dez-Fernández et al., 2023). For example, the circadian 
system controls glucocorticoid secretion from the adre-
nal glands, with peak concentrations in the morning that 
decline during the day in diurnal animals and humans 
(Focke and Iremonger 2020; Jha et al., 2021; Russell et 
al., 2015).

Temperature
Temperature has less effect on synchronization than 

light, making it a non-photic synchronizer. It’s important 
to note that while cells and tissues outside of the SCN 
can synchronize with temperature changes, the SCN 
clock isn’t responsive to temperature stimuli (Xie et al., 
2019). The temperature of the house and the environ-
ment affect the metabolic rhythm of the body (McKie 
et al., 2019) and the secretion of glucocorticoids caused 
by stress and temperature (de Bruijn and Romero 2018). 
It has been reported that the circadian clock can be reset 
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by multiple cues, such as light, food, and temperature. 
The interplay between temperature and nutrition leads 
to metabolic disorders (Xie et al., 2019).

Scientists by examining the temperatures of 20-21°C 
(cool temperature) and 30°C (warm temperature), the 
range of 25.5- 27.6°C was suggested as the optimal tem-
perature of the environment for the proper functioning 
of circadian rhythms in mice (Keijer et al., 2019). Mice 
exposed to temperatures of 30°C develop non-alcoholic 
fatty liver disease more frequently, and this is correlat-
ed with higher expression of genes related to fatty acid 
oxidation and lipid metabolism (Giles et al., 2017). It 
is interesting to note that some researchers have shown 
that the gender differences of mice affect how they react 
to the ambient temperature (Raun et al., 2020).

Melatonin 
Melatonin is a hormone that is secreted by the pineal 

gland during the dark hours of the day. It plays a crucial 
role in coordinating the central and peripheral clock and 
is closely regulated by SCN neurons in response to light 
exposure (Meneses-Santos et al., 2018). 

Melatonin is involved in various processes such as au-
tophagy, apoptosis, cancer (Mehrzadi et al., 2021), ovu-
lation, pregnancy, and childbirth (Olcese 2020; Talpur 
et al., 2018). Both the mother and fetus need to have 
melatonin for the development of a circadian rhythm. 
This hormone helps protect the fetus from metabolic 
pressures and supports the development of the nervous 
system and endocrine glands. Melatonin is also used 
to treat sleep problems and seasonal affective disorder 
and is a vital component of epilepsy treatment (Alston 
et al., 2019). Additionally, it regulates endocrine chang-
es during the day and helps the body respond to dai-
ly changes (Dardente 2012). Melatonin deficiency has 
been linked to an increased risk of breast, colon, and 
rectal cancer (Rondanelli et al., 2013).

Nutrition (feeding) 
Food, as a non-photic trigger, can directly affect cir-

cadian rhythms. It provides periodic access to various 
macronutrients that circulate in peripheral tissues (Xie 
et al., 2019). 

Any changes in dietary patterns can disturb circadian 
clock homeostasis, and lead to endocrine and metabolic 
disorders (Mukherji et al., 2015). For example, a high-
fat diet can reduce the intensity of circadian oscillations 

in the liver by affecting both the central and peripher-
al clock. This impact appears to be due to metabolic 
changes, blood glucose levels, and insulin resistance 
(Ding et al., 2022).

Furthermore, the composition and timing of food in-
take can influence the peripheral tissue clock, including 
the liver clock(Tahara and Shibata 2016). For example, 
Caffeine exerts a significant influence on the gene ex-
pression of peripheral tissue clocks in mice (Sherman et 
al., 2011) and can impact the body’s circadian rhythm, 
clock, and sleep gene expression post-jet lag (Burke et 
al., 2015). Dietary polyphenols (Liu et al., 2023) and di-
etary polyamines (Li et al., 2019) also have an impact on 
the circadian system in organisms. 

The timing of food intake significantly impacts the 
body’s internal clock, influencing microbiota balance, 
intestinal activity, and nutrient uptake (Brooks et al., 
2021; Zheng et al., 2020). Thus, increased cooperation 
and further studies involving chronobiologists and nutri-
tion experts are essential to establish optimal meal tim-
ings and personalized dietary strategies. This approach 
aims to enhance bodily functions for individuals, ulti-
mately lowering the risk of chronic illnesses.

Age 
the probability of a decline in or loss of circadian 

rhythms increases with age (Deibel et al., 2015). These 
age-related disturbances in the circadian rhythm can 
contribute to the development of many aging-related 
diseases. Since the circadian clock regulates the sleep-
wake cycle, it appears that the expression of these 
rhythms changes significantly with age (Mander et al., 
2017; Shuboni-Mulligan et al., 2021). Older individuals 
may experience sleep problems, early morning awaken-
ings, shorter total sleep time, and earlier sleep that can 
affect the start of the circadian rhythm and the speed of 
shifting the circadian phases (Duffy et al., 2015; Masu-
da et al., 2023; Shuboni-Mulligan et al., 2021). Studies 
have shown that older adults are more vulnerable to cir-
cadian changes than younger adults. Additionally, sleep 
termination is stabilized within a narrower range of cir-
cadian times in older adults, indicating a decrease in the 
circadian tendency to sleep in the early morning (Duffy 
et al., 2015). 

On the other hand, the timing of the circadian rhythm 
of core body temperature changes with age, and these 
individuals become more sensitive to disturbances in 
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time and weak circadian rhythms (Duffy et al., 2015; 
Martinez-Nicolas et al., 2018). In addition, the circadian 
phases of melatonin, as well as the timing of the cortisol 
rhythm, also change with age (Adamczak-Ratajczak et 
al., 2017; Duffy et al., 2015). Changes in pupil, lens, 
and retinal function have also been observed with age 
(Freund et al., 2011). For example, the transmission of 
short-wavelength light through the lens decreases with 
age (Daneault et al., 2012). Animal studies have shown 
that the expression of Per1, Bmal1, Per2, and Clock 
genes is altered in aged mice compared to young mice 
(Bonaconsa et al., 2014). 

Arousal stimuli
Non-optical cues, such as social interaction, physical 

activity and exercise, and stress, can affect the circadian 
rhythm by acting as arousal stimuli. However, light has 
been found to have a more significant effect on the main 
clock in rats than on arousal stimuli.

Stress
available data indicate that stress can change pe-

ripheral oscillators in, e.g., the liver, kidney, and heart. 
Thus, it may cause an imbalance between physiological 
and behavioral processes (Ota et al., 2021). It has been 
shown that restraint stress (RS) can alter circadian gene 
expression in the bladder and cause nocturia via changes 
in voiding frequency and bladder capacity (Ihara et al., 
2019). Daily abstinence stress for three days per week 
can increase the expression of the Per2 gene in the liver, 
kidney, and submandibular gland without affecting the 
main clock rhythm in the SCN (Tahara et al., 2015). 

The data obtained so far indicate that while the SCN 
circadian clock is well protected against stressors such 
as restraint, the peripheral clocks in various tissues are 
affected (Ota et al., 2021). Exposing pregnant mice to 
chronic stress can result in persistent disruption of coor-
dination between SCN neurons in their offspring (Yun et 
al., 2020). The impact of stress on these clocks may be 
related to the neuroendocrine stress systems, including 
the SAM (adrenaline, noradrenaline) and HPA (gluco-
corticoids) axes (Tahara et al., 2015). External stressors 
such as restraint or immobility can lead to increased 
ACTH/GC and blood pressure during the inactive phase 
of the animal, even when the HPA is not active (Ota et 
al., 2021).

Social interactions 
Social interactions are a crucial non-photic com-

ponent that influences the modulation of circadian 
rhythms. Social connection is a complex stimulus that 
may affect eating, sleeping, and wakefulness (Cambras 
et al., 2011). Studies have shown that any disturbance in 
human social programs leads to disruption of the sleep/
wake cycle (Elkhatib Smidt et al., 2022; Foster et al., 
2013). For example, isolating mice in individual cages 
or groups of 3-4 per cage affects spontaneous locomotor 
activity (SLA) rhythm and the SCN activity (Fernandes 
et al., 2021). 

The serotonergic system is known to be involved in 
the social isolation phenomenon (Sargin et al., 2016). 
An experiment conducted to determine the effect of so-
cial interaction on circadian rhythms has shown that the 
need for social contact is more significant in young mice 
than in adult mice (Lee and Noh 2015). In addition, in 
rats that live together and interact, the stability of indi-
vidual rhythm increases (Fukumitsu and Kuroda 2023; 
Hodges et al., 2018).

Physical activity and exercise 
Regular exercise has similar effects to light stimula-

tion on the circadian clock and sleep/wake cycle. It can 
increase daytime wakefulness and lead to better sleep at 
night (Aoyama and Shibata 2017; Healy et al., 2021). 
Exercise can also improve sleep quality by increasing 
the production and secretion of melatonin (Cai et al., 
2014; Tse et al., 2022), reducing heart rate, and lowering 
blood pressure (Oh et al., 2016). Additionally, exercise 
stimulates the neuroendocrine system, regulates hor-
mones, and re-synchronizes the circadian clock (Hower 
et al., 2018).

Exercise especially affects the circadian clock through 
its effects on skeletal muscles (Aoyama and Shibata 
2017; Mayeuf-Louchart et al., 2015), which are close-
ly associated with diseases like diabetes, cardiovascular 
disease, and cancer (Mayeuf-Louchart et al., 2015). The 
intensity and duration of exercise can play a role in how 
it affects the circadian clock (Lang et al., 2022; Lewis 
et al., 2018; Sellami et al., 2019). Interestingly, research 
indicates that there is no difference between persons 
who exercise in the morning and people who exercise in 
the evening regarding their physiological and behavior-
al performance (Saidi et al., 2021). Exercise and phys-
ical activity through cellular and signaling pathways 
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lead to changes in the expression of BMAL1, PER1/2, 
CLOCK, and CRY1/2 genes (Dyar et al., 2015; Healy et 
al., 2021; Small et al., 2020). 

* Circadian rhythm and physiological systems
Recently, there has been a lot of attention given to 

the biological clock due to its significant effects on the 
body’s physiological systems when disrupted. When 
the light/dark cycle changes, the SCN clock prompt-
ly adjusts internal processes to ensure all clocks and 
clock-regulated processes are effectively synchronized 
with the new environment (Ramkisoensing and Meijer 
2015). (Figure 3).

- Reproductive system
The circadian rhythms that are controlled by feed-

back loops in the SCN play a crucial role in regulating 
various aspects of reproductive biology. These include 
the estrous cycle, LH levels, ovulation, sperm produc-
tion and maturation, embryo implantation, and fertility 
(Pan et al., 2020; Silva and Domínguez 2020; Zhang 
et al., 2016). Recent research has shown how the cir-
cadian rhythm affects fertility and the complex interac-
tion among hormones, fertility, and the circadian clock 
(Sciarra et al., 2020). It has been observed that placental 
communication and fetal circadian signals are essential 
for a successful pregnancy, and any alteration to the 
body’s natural rhythm can negatively impact pregnancy 
and fetal development (Miller and Takahashi 2013). 

Certain circadian clock genes such as Per2, Clock, 
Bmal1, and Cry1 in tissues like the ovarian, fallopian 
tube, uterus, and placenta play a crucial role in preg-
nancy. Bmal1, in particular, is important in gonadal ste-
roidogenesis, expression of related genes, fertility, and 
reproductive endocrinology. Studies have shown that 
impaired reproduction, impaired reproductive gametes, 
impaired hormone secretion, and impaired signaling of 
the hypothalamus-pituitary-gonadal (H-P-G) axis were 
observed in Bmal1-KO mice (Li et al., 2022). 

Other studies have focused on the role of gonado-
tropin-releasing hormone (GnRH) on the reproductive 
clock (Ando et al., 2018; Piet 2023; Uenoyama and Tsu-
kamura 2023). It was found that the transient expres-
sion of the dominant-negative Clock protein (Clock19) 
in GnRH-secreting cells temporarily decreased GnRH 
production. Consequently, it was concluded that the cir-
cadian clock in these cells is related to the fluctuating 

expression of the nuclear circadian gene (Chu et al., 
2013; Ono et al., 2023; Richards and Gumz 2013).

- Cardiovascular system
The regulation of blood pressure (BP) is an active area 

of research, with a focus on the circadian clock in car-
diovascular tissue, as it affects BP (Douma and Gumz 
2018; Jiang et al., 2019). Throughout the day, blood 
pressure increases and decreases by approximately 10 
percent at night (Agarwal 2010; Zhang et al., 2021). 
However, individuals with diabetes, hypertension, and 
chronic renal disease whose blood pressure does not 
decrease at night are at higher risk of cardiovascular 
problems (Richards and Gumz 2013). This suggests that 
unregulated sodium reabsorption may be involved in the 
nocturnal BP reduction, and treatment with diuretics or 
angiotensin receptor blockers can aid in improving this 
issue at night (Fukuda et al., 2011). 

The impact of circadian clock proteins on blood pres-
sure control is not entirely clear. Studies have shown 
that Clock-KO mice have higher blood pressure (Fuku-
da et al., 2011), while Per1-deficient rats have signifi-
cantly lower blood pressure compared to wild-type rats 
(Stow et al., 2012). Cry1/2-KO mice exhibit salt-sensi-
tive blood pressure due to increased aldosterone synthe-
sis (Doi et al., 2010). 

Despite the research conducted on circadian rhythm 
and its relationship with the cardiovascular system, 
there is still limited knowledge in this area. Hence, more 
studies are necessary to understand the link between the 
circadian rhythm and blood pressure control.

- Renal system
Several studies have demonstrated the impact of cir-

cadian rhythm on various renal functions, such as re-
nal function, blood pressure, absorption, and excretion 
(Firsov and Bonny 2018; Mohandas et al., 2022; Zhang 
et al., 2021). Recently, numerous circadian rhythm-relat-
ed genes expressed in the kidneys have been identified, 
suggesting their involvement in circadian regulation 
(Gumz 2016; Zietara et al., 2022). The circadian rhythm 
influences daily fluctuations in urine volume, electrolyte 
excretion (sodium, potassium, phosphate, and magne-
sium), urinary protein excretion (proteinuria), activity 
of the renin-angiotensin-aldosterone system (RAAS), 
renal blood flow, and glomerular filtration rate (GFR) 
(Firsov et al., 2012; Nakamoto et al., 2021; Solocinski 
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and Gumz 2015). 
The different components of the nephron appear to 

have independent circadian functions, and the molecular 
clock in the kidney can regulate these functions. These 
components also work together to manage processes re-
lated to the renal system (Speed et al., 2018). For exam-
ple, studies suggest that there is a reciprocal relationship 
between the glomerular and molecular clock mecha-
nisms (Huang et al., 2013). Furthermore, the expression 
of the apical sodium-glucose transporter (SGLT1) and 
sodium-hydrogen exchanger (NHE3) in the proximal 
tubule (PT) seems to be regulated by the circadian clock 
(Pizarro et al., 2013). The Bmal1, Per1/2/3, and Cry 1/2 
genes are expressed in a circadian rhythm in the distal 
convoluted tubule (DCT)/ connecting tubule (CNT) 
parts (Zuber et al., 2009). According to certain research, 
genes like Bmal1, Clock, Per1, and Cry 2 exhibit circa-
dian variations in their expression over 48 hours in the 
kidney tissue of wild-type mice (Solocinski and Gumz 
2015).

- Endocrine system
The maintenance of homeostasis and the ability to 

adapt to environmental changes or stressful conditions 
are dependent on the relationship between endocrine 
factors, the central nervous system, and peripheral or-
gans. The time of day has a supportive and regulatory 
effect on these hormone-related mechanisms (Gamble 
et al., 2014; Tsang et al., 2014). It is very important to 
synchronize the endogenous circadian system with en-
vironmental and behavioral factors, as well as endocrine 
factors (Scheer et al., 2021). 

Glucocorticoids, which are steroid hormones synthe-
sized in the adrenal cortex, play a crucial role in regu-
lating the peripheral clock and endocrine system. They 
act as anti-inflammatory mediators in response to stress, 
metabolism, and cardiovascular and nervous functions 
(Dumbell et al., 2016; Son et al., 2011). Cortisol levels 
in humans exhibit a clear circadian cycle, with its high-
est levels in the morning. The gradual increase in corti-
sol levels during the sleep stage prepares the body for 
the normal stress associated with waking and increases 
activity (Benz et al., 2019). 

Research has shown that the control of glucose levels 
in the body varies depending on the time of day (Qian 
and Scheer 2016). In the morning, blood sugar levels 
increase in normal individuals, while it increases even 

more in patients with type 1 and type 2 diabetes. This 
is believed to be due to an increase in hepatic glucose 
production, which causes a corresponding rise in insulin 
levels. Insulin then helps regulate glucose levels by re-
ducing hepatic glucose production (Mason et al., 2020; 
Peng et al., 2022).

Furthermore, research has shown that short-term high-
fat diets disrupt circadian clock gene homeostasis in 
several tissues and cause subsequent metabolic distur-
bances. This suggests that circadian dyssynchrony can 
lead to endocrine and metabolic abnormalities (Pender-
gast et al., 2013).

* Treatment options for circadian rhythm disorders
Circadian rhythm issues can significantly impact dai-

ly activities and cause discomfort. The most common-
ly recommended treatments include healthy lifestyle 
changes (Farhud and Aryan 2018) and chronotherapy 
(Ruan et al., 2021), often used together. (Figure 4).

1- Healthy lifestyle changes, such as maintaining a 
regular bedtime routine, avoiding daytime napping, en-
gaging in physical activity and regular exercise, limiting 
caffeine, alcohol, nicotine, and certain drugs, managing 
exposure to light, and adhering to a regular meal plan, 
can all contribute to better sleep habits (Farhud and Ary-
an 2018).

2- In some cases, medication or nutritional supple-
ments can be used to modify the sleep-wake cycle (Holst 
and Landolt 2018). Chronobiotics, a type of drug that 
directly affects the biological clock’s output by modi-
fying the circadian phase, represent a promising area of 
research for treating circadian disorders. These drugs 
must have no negative side effects(Huang et al., 2021). 
The term “chronobiotic” was first coined in the early 
1970s to describe a medication that affects the physio-
logical control of biological time structure (Cardinali et 
al., 2021a). Melatonin is the first and most well-known 
chronobiotic (Cruz-Sanabria et al., 2023). Other phar-
maceuticals and dietary supplements, such as melatonin 
receptor agonists (Johnsa and Neville 2014), caffeine 
(Ruby et al., 2018), sleeping pills (Youn et al., 2020), 
and wakefulness-enhancing drugs (Engmann 2021) can 
also be used to manage sleep disorders.

3- Chronotherapy is a type of treatment that uses drugs 
by the body’s natural circadian cycle to enhance their 
therapeutic effects while reducing any potential negative 
effects. It has been proven to be effective in treating sev-



eral diseases such as allergic rhinitis (Kudagammna and 
Vidanapathirana 2021), arthritis (Buttgereit et al., 2015), 
peptic ulcers (Singh et al., 2015) and cancer (Zhou et al., 
2021). However, it is still not frequently employed in 
clinical practice (Petković et al., 2023).

Chronotherapy takes into account the patient’s physi-
ology and pathology and is performed in two ways: (1) 
by adjusting the sleep and wake rhythm of patients to 
prevent negative consequences and subsequent diseas-
es, and (2) by considering the patient’s circadian rhythm 
to improve treatment efficacy (Cardinali et al., 2021b). 
). Different types of chronotherapy include Bright light 
therapy (Lindskov et al., 2022), wake therapy/ sleep 
deprivation therapy (Guichard et al., 2021), sleep phase 
advance therapy (Takeshima et al., 2018), and triple 
chronotherapy (Webb 2022). Researches show that 
chronotherapy may be effective in the treatment of ma-
jor depression, bipolar disorder, eating disorders, and 
delayed sleep phase disorders (Beauchamp and Lund-
gren 2016; Culnan et al., 2019; D’Agostino et al., 2020; 
Webb 2022). Overall, chronotherapy aims to regulate 
the output phase of circadian rhythms and the body’s 
internal clock by ensuring adequate sleep, proper expo-
sure to light, and the use of chronobiotic medications, 
such as melatonin.

- The future of chronotherapy
Recent studies on circadian rhythm and chronother-

apy have made significant progress in our understand-
ing of the importance of time in medical interventions, 
creating new opportunities for novel therapies (Yu et 
al., 2022). Understanding the relationship between our 
circadian rhythms can have a significant impact on how 
we approach medical treatments in our daily lives (Bhat 
et al., 2023). 

One of the main challenges in using chronotherapy is 
the variability of internal clock timing among individu-
als, which can differ significantly across different phases 
(Kuo and Ladurner 2019). In addition, there are differ-
ent chronotypes, whose physiological and behavioral 
rhythms are timed from early morning to late at night 
and are heavily influenced by the environment (Cardina-
li et al., 2021a). Therefore, it is important to explore new 
approaches in chronotherapy to determine each person’s 
unique circadian rhythm. 

Another obstacle to chronotherapy is the modern life-
style, where people prefer street lights at night for safety 

reasons, and sleep is often viewed as a waste of time, 
leading to staying up late and waking up during the day 
(Cardinali et al., 2021a). These challenges can disrupt 
the biological cycles of individuals and increase the 
probability of developing diseases and disorders. There-
fore, further research is required to better understand 
both current and novel therapies before implementing 
chronotherapy in clinical settings. Additionally, factors 
such as age, sex, and chronotype should also be taken 
into account when considering the use of chronotherapy.

Conclusion
Disruption of the circadian rhythm is a common prob-

lem in modern life. This is mostly caused by exposure 
to light at night, shift work, traveling, and lack of sleep. 
Therefore, it is crucial to understand the importance 
of maintaining a healthy circadian rhythm to improve 
overall health. Any disturbances in this delicate balance, 
whether caused by genetic factors or environmental 
factors, can have significant negative effects on health. 
These disturbances can increase the risk of chronic dis-
eases such as obesity and diabetes, as well as sleep dis-
orders, mood disorders, and physiological system dis-
orders. Moreover, the circadian clock mechanisms and 
processes regulate a physiological/behavioral system 
that adapts to the 24-hour day-night cycles. It is essen-
tial to understand these basic circadian processes for the 
development of successful treatments in chronotherapy 
and its related domains.
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