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Introduction: People with chronic obstructive pulmonary disease (COPD) often 
experience exacerbations and impaired gas exchange, leading to hypoxemia that may 
require hospitalization. Pattern analysis of capillary oxygen saturation (SpO2) variability 
can provide valuable insight into the adaptive capacity of the respiratory control system 
under this condition. Therefore, this study tested the hypothesis that the adaptability of the 
respiratory control system is reduced in patients with COPD.
Methods: In this study, we utilized entropy and fractal-like correlation properties of SpO2 
time series in patients with COPD. We analyzed pulse oximetry data from 13 patients 
with COPD during hospitalization and discharge time and compared them to 16 age- and 
sex-matched control subjects. SpO2 variability analysis of a 25-minute time series was 
performed using sample entropy, multiscale entropy, and detrended fluctuation analysis. 
Results: Entropy analysis revealed a complex pattern of SpO2 variability in healthy controls 
and patients with COPD. Both short-term (α1) and long-term fractal-like exponent (α2) 
were higher in patients with COPD compared to healthy controls. SpO2 entropy and mean 
were significantly lower in patients with COPD in comparison with controls. There was no 
statistically significant difference in SpO2 complexity measures between the hospitalization 
and discharge phases in these patients.
Conclusion: The respiratory control system in patients with COPD exhibits less complexity 
and information processing. These non-invasive analytical methods have the potential 
for future clinical application to monitor the integrity of respiratory control in individuals 
suffering from chronic respiratory diseases.
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Chronic obstructive pulmonary disease (COPD) af-
fects more than 300 million individuals and is the third 

leading cause of mortality globally, causing 3.23 million 
deaths in 2019 (Adeloye et al., 2022; WHO Accessed 
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16 March 2023). Patients with COPD often experience 
exacerbations, which require frequent hospital readmis-
sions (Al Rajeh et al., 2021). COPD is usually consid-
ered a progressive disease and the ultimate damage to 
different components of the respiratory system can re-
sult in the development of hypercapnia and hypoxemia 
(Fleetham et al., 1980; Kent et al., 2011).

The pulse oximeter is a widely used non-invasive 
monitoring technique in medical practice. It is utilized 
for estimating blood oxygen saturation (SpO2) and as-
sisting in the detection of hypoxemia (Jubran 2015). 
Nonetheless, depending solely on the absolute or mean 
SpO2 value may inadequately reflect the integrity of the 
respiratory control system (Amalakanti and Pentakota 
2016; Costello et al., 2020; Jiang et al., 2021).

Recently, studies have shown that the SpO2 time 
series exhibit a complex pattern of fluctuations. It has 
been proposed that the analysis of SpO2 variability may 
provide valuable information about the integrity of the 
cardiopulmonary control system, which plays a cru-
cial role in body oxygenation (Bhogal and Mani 2017). 
There are methods for quantification of the pattern and 
complexity of fluctuations in physiological time series. 
For example, sample entropy is a well-established tool 
used that measures the irregularity in a given time series 
with the ability to quantify information processing in a 
control system (Costa et al., 2005; Richman and Moor-
man 2000). A lower value of sample entropy indicates 
a higher level of regularity in the physiological time 
series and less information processing. Multiscale En-
tropy (MSE) is an effective algorithm used to measure 
the complexity of a time series by calculating sample 
entropy across multiple time scales (Costa et al., 2002). 
De-trended fluctuation analysis (DFA) is a computation-
al method that allows the quantification of fractal-like 
patterns within fluctuating time series and characterizes 
its dynamics (Peng et al., 1995). These methods over-
all measure the complexity of physiological time series 
which refers to the dynamical richness of a physiolog-
ical signal and reflects the level of adaptability of the 
physiological system (Goldberger et al., 1990). When 
physiological systems become less complex, their in-
formation content is reduced, making them less adapt-
able and more rigid in response to intrinsic and extrinsic 
challenges (Frey et al., 2011; Goldberger et al., 1990).

Recent evidence has suggested that the pattern anal-
ysis of SpO2 has the potential to identify the negative 

consequences of hypoxia in healthy subjects (Costello et 
al., 2020). Based on recent studies, graded normobaric 
hypoxia leads to a corresponding increase in SpO2 en-
tropy. Increased SpO2 entropy is indicative of enhanced 
engagement and adaptability of respiratory control 
during hypoxia in healthy individuals (Costello et al., 
2020). COPD is a progressive disease leading to chronic 
hypoxemia and altered respiratory dynamics (Al Rajeh 
et al., 2021). While hypoxia is known to increase the 
entropy and complexity of SpO2 signals in healthy in-
dividuals, its effect on patients with chronic respiratory 
disease is not well understood. Clinical reports have in-
dicated that patients with COPD have altered sensitiv-
ity to oxygen and carbon dioxide, which may indicate 
impaired central respiratory control system during the 
course of the disease following chronic hypoxia (Lane 
and Howell 1970). However, the integrity of the respira-
tory control system in patients with COPD has not been 
estimated non-invasively in comparison with healthy 
individuals. Al Raje et al. (Al Rajeh et al., 2021), have 
recently reported that alterations in SpO2 entropy and 
the fractal-like exponent have the potential to detect ex-
acerbations in COPD. However, in this study, the SpO2 
pattern is not compared with an age-matched healthy 
group. Therefore, in this study, we recorded SpO2 time 
series from patients with COPD on two occasions (24 
hrs after hospitalization and at the time of discharge) 
and compared the non-linear pattern of SpO2 signals in 
a group of age and gender-matched comprised healthy 
individuals.

Material and Methods 
 Participants characteristics 
The study was registered and approved by the Ethics 

Committee of Arak University of Medical Sciences un-
der the reference number IR.ARAKMU.REC.1400.160. 
All participants in both groups were fully informed 
about the aims of the research project and gave their 
voluntary consent before participation.

We enrolled 22 patients with COPD who were hos-
pitalized in the Pulmonology ward of Amiralmome-
nin Hospital (Arak, Iran). The patients were included 
if they had a confirmed diagnosis of COPD according 
to guidelines established by the Global Initiative for 
COPD (Ritchie et al., 2021). Patients were excluded if 
they had an existing diagnosis of congestive heart fail-
ure. 6 patients were discharged without notice to the re-
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search staff. Additionally, the recording quality of SpO2 
was found to be poor in three patients. Consequently, 
these participants were excluded from the analysis. The 
study included a total of 13 participants diagnosed with 
COPD, with an average age (SD) of 67.85 (9.79) years. 
The baseline clinical characteristics of the COPD pa-
tients are provided in Table 1. For the control group, we 
enrolled 16 age- and sex-matched participants in good 
health, with an average age (SD) of 61.15 (8.49) years 
(Table 2). In the control group, participants with a histo-
ry of smoking, pulmonary and cardiovascular diseases, 
sickle cell anemia, or recent use of medications affecting 
the respiratory or autonomic nervous systems within the 
past month were excluded. In the control group, none 
of the recruited participants chose to withdraw from the 
research. Therefore, the data from all participants in this 
group were considered for analysis. 

Data Collection
Data collection was conducted from August 27 to 

November 20, 2019. SpO2 levels were recorded using 
pulse oximetry from the index finger of one hand in all 
subjects. The signals from the pulse oximeter were dig-

itized at a sampling rate of 1 kHz, and the recorded data 
was automatically downsampled by a factor of 1000 to 
1 sample per second (1/s) by the recording device. Pulse 
oximeter recordings for COPD patients were conduct-
ed at two different time points: 24 hrs after admission 
to the hospital (during hospitalization) and right before 
discharge. In this research, 25 mins of continuous SpO2 
time series were used for the computation of SpO2 vari-
ability indices.

Linear pattern analysis of oxygen saturation (SpO2) 
variability

Traditional linear SpO2 variability analysis, including 
mean SpO2 and standard deviation, is used to identify 
the general behavioral characteristics of the time series. 

Non-linear pattern analysis of oxygen saturation 
(SpO2) variability

Nonlinear Pattern analysis of SpO2 focuses on the 
complexity of SpO2 dynamics. In this research, three 
non-linear methods based on information and fractal 
theories were conducted: Sample Entropy, MSE, and 
DFA. These techniques can provide valuable insights 

TABLE 1: TABLE 1: shows a summary of the baseline demographics of patients with COPD. All data are expressed as mean ±SD

Age BMI 6MWT FEV1 mMRC dyspnea scale

COPD patients 67.85±9.79 21.1±2.67 135.5±118 39.13±15.31 2.18±1.25

mMRC Dyspnea Scale:  Modified Medical Research Council Dyspnea Scale

TABLE 2: TABLE 2: Summary of the mean and variability indices of SpO2 in patients with COPD during the hospitalization and discharge phases and 
in control subjects. All data are expressed as mean ±SD. * Compared to Control.

                        Groups
Parameters Control COPD

Hospitalization
COPD

Discharge

Age 61.15± 8.49 67.85±9.79 67.85±9.79

BMI 23.24±3.984 21.1±2.67 21.1±2.67

Mean SpO2 96.21± 0.78 90.27± 1.37****  90.73 ± 1.34 ****

CV 0.0061± 0.0024 0.0083± 0.003 0.0073± .0029

SD 0.575± 0.225 0.7408± 0.364 0.663± 0.267

Sample Entropy  1.015 ± 0.138 0.783 ± 0.193 *** 0.778 ± 0.285 **

DFA (α1) 1.32 ± 0.08 1.412 ± 0.128 * 1. 417 ± 0.085 **

DFA (α2) 0.821 ± 0.092 0.958± 0.138 ** 0.939 ± 0.197 *
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into the underlying physiological processes.

Sample Entropy
Sample entropy can be used to investigate the tempo-

ral dynamics of physiological signals. This index quan-
tifies the degree of regularity versus unpredictability in 
the time series (Richman and Moorman 2000). Sample 
entropy is defined as the negative natural logarithm of 
the conditional probability that two sequences, which 
are similar for m points, remain similar at the next point 
within a tolerance (r) while excluding self-matches. In 
our analysis, we set the values for these parameters as 
m=2 and r=0.2 (Bhogal and Mani 2017). Higher sample 
entropy values indicate a more irregular and unpredict-
able time series, while lower sample entropy values re-
flect a more regular and predictable time series.

Multiscale Entropy 
Multiscale entropy analysis (MSE) can be utilized 

to quantify the complexity of physiological time series 
across multiple scales. Traditional entropy-based algo-
rithms can only quantify the single entropy of a physi-
ological time series, while MSE uses a coarse-graining 
procedure that creates new time series by averaging the 
time points. The entropies of the new time series are 
estimated and plotted against the scales (Costa et al., 
2005). The sequential changes over different time scales 
give information about the complexity of physiological 
signals

Detrended fluctuation analysis
Detrended fluctuation analysis (DFA) provides a 

mathematical technique for quantifying the autocor-
relation properties that are embedded in apparently 
non-stationary physiological data (Peng et al., 1995). 
In this technique, the root mean square of the fluctua-
tion is measured in the integrated and detrended time 
series data. The measurement is performed within time 
windows of various sizes, which are then plotted against 
window size on a log-log scale. The slope of the plot, 
defined by the α exponent or autocorrelation exponent, 
represents the fractal correlation property of the time se-
ries. An α exponent α = 0.5 corresponds to random white 
noise and an uncorrelated process. When 0.5 ≤ α ≤ 1, it 
indicates long-range power-law correlations. Lastly, an 
α value of 1 indicates long-range power-law correlations 
of the 1/f fractal-like dynamics. For α > 1, correlations 

exist but are no longer in the power-law form, whereas 
α = 1.5 corresponds to Brownian motion or a random 
walk.

Statistical analysis
Statistical analysis was performed using PRISM 8 

(GraphPad, La Jolla, CA, USA) with significance set 
at p < 0.05. The normality of the data was checked us-
ing the Shapiro–Wilk test. Data are shown as mean ± 
SD unless otherwise specified. Comparisons between 
healthy subjects and patients were made using the un-
paired t-test and the Mann-Whitney U test. Additional-
ly, comparisons of data between the hospitalization and 
discharge time of patients with COPD were conduct-
ed using the paired t-test and Wilcoxon test. Two-way 
ANOVA analysis was employed to determine the effect 
of both healthy status and COPD disease on the MSE 
values. Lastly, Spearman’s correlation coefficients were 
employed to evaluate the correlation between SpO2 
sample entropy and SpO2 mean.

Results
Overall SpO2 signals from thirteen patients were used 

in this study. The mean (SD) duration of hospitalization 
was 5 (1) days. All patients survived hospitalization and 
were discharged following a course of therapy. 

An example of SpO2 signals is shown for healthy par-
ticipants and patients with COPD in Figure 1. The SpO2 
signals display a complex pattern of fluctuation in both 
control and COPD participants. The SpO2 variability in-
dices are presented in Table 2. Overall, the mean SpO2 
during hospitalization was not statistically different 
from that at discharge (90.27± 1.37% vs. 90.73 ± 1.34 
%; p = 0.335). However, the mean SpO2 in control sub-
jects was 96.2 ± 0.78, which is within the normal range 
and significantly higher than the levels observed during 
hospitalization and at discharge time (p < 0.0001). Ad-
ditionally, the coefficient of variation (CVs) for both 
recording times of COPD subjects were similar, which 
was non-significantly higher than the control group (p 
= 0.0809) (Table 2). Similarly, the mean standard devi-
ation (SD) of SpO2 variations of the groups were also 
similar (Table 2). 

No statistically significant differences were observed 
between the hospitalization and discharge time in SpO2 
complexity parameters, including DFAα1, DFAα2, sam-
ple entropy, and MSE. The mean SpO2 sample entropy 
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was higher in healthy individuals in comparison with 
patients with COPD during hospitalization (1.015 ± 
0.152 vs 0.783 ± 0.193; p=0.0001) and discharge time 
(1.015 ± 0.152 vs 0.778 ± 0.285; p=0.0018). 

The relationship between SpO2 sample entropy and 
the mean SpO2 was also examined (Figure 2), and 
the graph showed that there was no linear relationship 
between the two variables (r = 0.0014, p=0.997), (r = 
0.1923, p=0.529), and (r = 0.449, p=0.124), in con-
trol, COPD hospitalization, and discharge respectively 
groups

MSE analysis demonstrated qualitative similarity in 
the profiles of MSE between both control subjects and 
those with COPD. Moreover, an increasing trend of 
sample entropy values was observed in both control and 
COPD participants at all scales (Figure 3), indicating the 
complex nature of fluctuated SpO2 time series (Al Ra-
jeh et al., 2021; Costa et al., 2002). Patients with COPD, 
however, had a significantly reduced sample entropy 
at different scales according to two-way ANOVA. This 
emphasizes the decreased complexity and information 
content of the physiological system in pathological con-
ditions (Goldberger et al., 1990).

Through DFA analysis, the short-term scaling expo-

nent (α1) and long-term scaling exponent (α2) of SpO2 
data were examined. The α1 values observed in the con-
trol subjects were (1.32 ± 0.08), ranging between those 
of pink noise (1/f dynamics) and Brownian motion. In 
contrast, there was a significant increase in the α1 values 
of COPD patients during their hospitalization (1.412 ± 
0.128) and at discharge (1.417 ± 0.085). These values 
display a considerable degree of similarity analogous 
to that observed in Brownian motion. (α = 1.50). Fur-
thermore, the α2 values observed in both the control 
and COPD groups fall within the range between those 
of white noise and pink noise. However, the α2 values 
in both recording conditions of COPD patients showed 
a significant difference when compared to the control 
group (table 2).

Discussion
This study tested the hypothesis of whether the entro-

py and fractal-like behavior of SpO2 signals are altered 
in patients with COPD. The sample entropy and multi-
scale entropy (MSE) across different scales decreased, 
while both the short-term scaling exponent (α1) and the 
long-term scaling exponent (α2) exhibited alterations in 
patients with COPD in comparison with healthy con-

FIGURE 1.FIGURE 1. Representative SpO2 signals recorded from control subjects (A) and with COPD during the hospitalization phase (B) and dis-
charge phase (C). The X-axis is the data points of the recorded pulse oximeter signals and the Y-axis is the SpO2 (%).
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trols. Our findings suggest that patients with COPD ex-
hibited a significant reduction in SpO2 complexity in 
comparison to the healthy subjects. 

SpO2 complexity, derived from non-linear analy-
sis, focuses on measuring the underlying complexity 
of non-stationary biological signals (Bhogal and Mani 

2017). A healthy subject can adapt to a dynamic envi-
ronment through the complex interactions of multisys-
tem components. In diseased conditions, the balance 
between stability and adaptability becomes impaired in 
response to intrinsic or extrinsic stimuli, resulting in a 
decrease in complexity (Frey et al., 2011; Goldberger et 

 
FIGURE 2.FIGURE 2. Graph showing the correlation between mean SpO2 level and sample entropy of SpO2. Each point represents a participant in the 
study. r and p represent the Spearman correlation coefficient and p-value, respectively.
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al., 1990). Pattern analysis of SpO2 variability has the 
ability to quantify this complexity, and it has been stud-
ied in a number of diseases with promising results. It 
has been associated with improvements in the diagnosis 
of sleep apnea-hypopnea syndrome (Vaquerizo-Villar 
et al., 2018), prognosis of survivability in patients with 
sepsis (Gheorghita et al., 2022), and prediction of ex-
acerbation in individuals with COPD (Al Rajeh et al., 
2021).

Based on theoretical studies, Pincus (1994) proposed 
that the entropy of physiological time series decreases 
with disease and pathology, indicating an increased sys-
tem isolation (Pincus 1994). Experimental studies have 
also provided evidence of a significant change in the en-
tropy of heart rate variability during diseases (Gholami 
et al., 2012; Tsai et al., 2019; Tsai et al., 2020). Simi-
larly, similar results have been observed in the analy-
sis of SpO2 variability in non-survival sepsis patients 
(Gheorghita et al., 2022). Reduced entropy can be in-
terpreted as a decline in the connectivity of the physio-
logical network (Pincus 1994). We have also observed 
a similar change in SpO2 variability in patients with 
COPD during utilizing sample entropy and MSE anal-
ysis. The lower sample entropy values observed at each 
scale during hospitalization, and also at different scales 
during discharge, suggest a decrease in complexity and 

a possible increase in partial isolation of the respiratory 
control system during the course of COPD. 

The entropy of a physiological time series quantifies 
the information content transfer between components 
within a control system (Pincus 1994). It is logical to 
suggest that fluctuations in SpO2 may provide meaning-
ful information regarding the respiratory system’s integ-
rity. Previous studies have shown that investigating the 
SpO2 pattern allows quantification of the engagement 
of the respiratory control system in response to envi-
ronmental challenges. Previous reports have shown an 
inverse correlation between mean SpO2 and SpO2 Sam-
ple Entropy in healthy individuals during exposure to 
normobaric hypoxia, indicating that lower oxygen satu-
ration is associated with higher SpO2 entropy (Costello 
et al., 2020; Jiang et al., 2021). This increase in sam-
ple entropy in response to hypoxia challenges suggests 
greater amounts of information being processed within 
the respiratory control system network (Costello et al., 
2020; Jiang et al., 2021). Increased entropy of SpO2 sig-
nals can be interpreted as a higher degree of engagement 
of the components within a respiratory control system 
(Jiang et al., 2021). Interestingly, based on our findings, 
the mean SpO2 in patients with COPD is significantly 
lower than control in both the discharge and hospitalized 
phases of the study, indicating the presence of chronic 

 

FIGURE 3.FIGURE 3. The Multiscale Entropy (MSE) graph illustrates the overall complexity of the patients with COPD during the hospitalization and 
discharge phases and the control subjects. The error bars are ± standard error of the mean values.

Physiology and Pharmacology 29 (2025) 96-105 | 102Respiratory Control System Adaptability in Patients with COPD



hypoxia in this patient population. In addition, the pa-
tients’ SpO2 sample entropy was lower than the control 
group, and there was no correlation observed between 
the mean SpO2 and SpO2 sample. This finding suggests 
a notable impairment in the cardiorespiratory integri-
ty of patients with COPD, consistent with the reduced 
complexity of OSV signals observed in patients with 
COVID-19 (Alassafi et al., 2024) and COPD (Al Rajeh 
et al., 2021). The mechanism behind this phenomenon 
might reflect the compensatory mechanism involved 
during adaption to chronic hypoxemia in COPD and 
alterations in sensitivity to oxygen and CO2 which is 
consistently reported in patients with COPD. Howev-
er, the advantage of our analysis is that it can provide a 
non-invasive method to estimate the integrity of respira-
tory control using short-term analysis of a pulse oxime-
ter which is available in more healthcare settings. 

The purpose of applying DFA to oxygen saturation 
(SpO2) fluctuations analysis is to determine the frac-
tal-like behavior of physiological time series (Peng et 
al., 1995). DFA of SpO2 signals results in two scaling 
exponents, α1 and α2 due to a crossover in the DFA 
graphs (Bhogal and Mani 2017). In SpO2 variability 
analysis, the α1 of healthy adult subjects is reported 
to be ~ 1.30, and α2 is around 0.87 (Bhogal and Mani 
2017). Our study reveals a comparable crossover effect 
where α1 falls between pink noise and Brownian motion 
(1.34), while α2 lies between white noise and pink noise 
(0.82). The fluctuation of SpO2 appears to be highly sta-
ble on very short scales, leading to a higher α1 value. 
However, on larger scales, there is greater fluctuation, 
indicating a more complex behavior (Bhogal and Mani 
2017). Based on prior studies, when α is equal to 1.5 in-
dicates Brown motion and the presence of positive auto-
correlation and smooth fluctuations (Peng et al., 1995). 
High autocorrelation indicates a strong relationship be-
tween current and past values, making prediction easier 
(Lefebvre et al., 1993; Sugihara and May 1990). Table 
2 demonstrates a significantly higher α1 and α2 during 
in patients with COPD in comparison with healthy con-
trols. Autocorrelation can provide information about the 
stability and memory of a complex system (Satti et al., 
2019). In severe asthma, the high value of the α expo-
nent that is computed from PEF data suggests longer 
memory in the respiratory system (Shirazi et al., 2013; 
Thamrin et al., 2011). The longer memory of systems 
causes the environmental challenges to be less able to 

alter the dynamics of the system and thus may reduce 
the system’s adaptability to external challenges (Frey et 
al., 2011). Therefore, according to our results, lower en-
tropy and higher autocorrelation of the SpO2 signal may 
suggest partial system isolation and less controllability 
of the respiratory system, with a decreased response to 
environmental stimuli in patients with COPD.

This study has several limitations. First, the small 
sample size prevents establishing a relationship be-
tween the severity of COPD disease and the magnitude 
of change in the complexity parameters. However, de-
spite the small sample size, the results generally showed 
a significant reduction in the complexity of the SpO2 
signal in COPD. Second, given the unstable condition 
of patients upon admission, it was not possible to record 
the SpO2 signal during the first 24 hrs of hospitalization. 
Therefore, recording the patient’s SpO2 on admission 
and before therapeutic intervention may provide more 
insightful information on the adaptation of the respira-
tory control system during the exacerbation phase of 
COPD. Third, due to the need to prevent patients from 
receiving supplemental oxygen during SpO2 data re-
cording, the absence of supplemental oxygen adminis-
tration for periods longer than 30 minutes results in in-
tolerable hypoxia in some of the patients. Therefore, the 
duration of data recording for all patients was limited to 
approximately 25 minutes. We used 25-minute signals 
for pattern analysis of SpO2. As shown in previous stud-
ies, the calculation of SpO2 entropy from 30 30-minute 
time series provides insight into the functional state of 
cardiorespiratory control under hypoxic conditions (Ji-
ang et al., 2021). 

In conclusion, this study suggests altered oxygen sat-
uration dynamics and reduced adaptability of the re-
spiratory control system in patients with COPD. The 
decrease in entropy and increase in the autocorrelation 
exponent of the SpO2 signals suggest a decline in com-
plexity within the SpO2 signals of COPD patients. Fu-
ture studies can expand this report and investigate the 
role of SpO2 entropy or DFA analysis in monitoring pa-
tients with chronic respiratory diseases such as COPD. 

Conclusion
The present study has established the pattern analy-

sis of capillary SpO2 variability in hospitalized patients 
with COPD. The application of complexity analysis 
methods provided new information about the complex-
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ity and regularity of this variability. The respiratory 
control system in patients with COPD shows less com-
plexity and Adaptability. These non-invasive analysis 
methods hold promise for potential clinical applications 
to monitor the integrity of respiratory control in individ-
uals with chronic respiratory disease.
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