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Introduction: Oxytocin (OXT) has attracted attention as an effective treatment for anxiety 
and depression. It also can prevent 3-NP-induced anxiety and depression. However, the 
effects of OXT can be context-dependent. The objective of this investigation was to explore 
how prenatal stress (PS) context modulates the effectiveness of OXT in mitigating anxiety- 
and depression-like behaviors induced by 3-NP, as well as alterations in antioxidant levels.
Methods: The dams underwent PS or PS+3NP treatments, and the effects of OXT on the 
anxiety-like behavior, and depression-like behavior in these treatment groups were evaluated 
via elevated plus maze and forced swim test respectively. The reduced glutathione (GSH) 
level was also measured in the striatum, hippocampus, prefrontal cortex, and amygdala. 
Results: We found that PS per se and 3-NP in the context of PS increased anxiety and 
depression. These groups also had lower GSH levels in the brain regions examined. OXT 
pretreatment markedly increased the behavioral changes in the PS group and ameliorated 
the antioxidant changes. However, OXT pretreatment could not improve 3-NP-induced 
behavioral and GSH level changes in the context of PS.
Conclusion: These findings indicate that OXT improves PS-induced anxiety and depression 
and the antioxidant level changes, but we found that PS per se thwarts the protective effects 
of OXT in the 3-NP-induced anxiety and depression.
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Oxytocin (OXT) is suggested as an effective agent for 
treating anxiety and depression (Arletti and Bertolini 
1987; Uvnas-Moberg et al., 1994; Yoshida et al., 2009). 
It also prevents anxiety and depression from beginning 
in Huntington’s disease (HD) (Khodagholi et al., 2022). 
The context of individual differences is a factor that 

modulates the influences of OXT treatment (Bartz et 
al., 2011; Ma et al., 2018). For example, the effects of 
OXT on social sharing and social support seeking are 
context-dependent in human (Cardoso et al., 2016; Ma 
et al., 2018). The context-dependent effect of OXT is 
also seen in rats (e.g., for helping behavior) (Yamagishi 
et al., 2020). 
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Describing the factors that influence response to treat-
ment can improve the success rate of OXT treatment. 
One source of individual difference is rooted back in the 
prenatal period, in which stress can leave long-lasting 
effects and even cause anxiety and depression (Maires-
se et al., 2015; Vallee et al., 1997). On the other side, 
maternal stress during pregnancy can be regarded as a 
hard early life experience through making stable chang-
es in epigenetic factors. Its effect can be observed and 
reflected in both behavioral and neurobiological factors 
(Amici et al., 2022; Nolvi et al., 2023).

Therefore, rats with prenatal stress (PS) potentially re-
spond differently to OXT compared to the control group. 
The impact of PS and sex on the preventive role of OXT 
in HD-induced cognitive impairment has been previous-
ly described (Moslemi et al., 2020) and in addition, we 
reported that OXT has a protective effect against 3-NP 
induced anxiety and depression (Khodagholi et al., 
2022), However, it is not clear if PS modulates the ef-
fect of OXT on preventing anxiety and depression from 
beginning in HD. Due to the autosomal dominant inher-
itance of HD and a major overlap between the onset age 
of its symptoms and the childbearing age (Duff et al., 
2007; Roos 2010), there is a high possibility that these 
symptoms in either parent become a source of stress for 
the unborn children (Kinsella and Monk 2009). There-
fore, describing the interactions between PS and OXT 
treatment in terms of preventing psychiatric symptoms 
of HD can improve patient selection for this treatment.

It has been shown that PS disturbs the function of 
different brain regions and causes a variety of neuro-
logical disorders in the offspring (Charil et al., 2010). 
PS impairs neurotransmissions (Wu et al., 2024) in-
cluding the serotonergic pathway, and develops anxiety 
and depression in adulthood (Pereira-Figueiredo et al., 
2014). PS also causes other neurologic symptoms in-
cluding memory and cognitive dysfunctions (Charil et 
al., 2010). Additionally, similar symptoms like anxiety 
and depression-like behaviors, memory, and cognitive 
dysfunctions are also observed in HD (Walker 2007). 
As mentioned above we revealed that PS affects the 
protective influence of OXT on HD-induces cognitive 
impairment, however, the exact relationship between PS 
and HD needs further investigation. 

HD is an inherited neurodegenerative condition 
marked by progressive movement impairments (de Boo 
et al., 1997), which inevitably leads to premature death 

(Solberg et al., 2018). In recent decades, the discovery 
of HD mutation and the interference of resultant protein 
in biological functions have partly unfolded the patho-
physiology of HD (Sari 2011). HD is characterized by 
atrophy of basal ganglia and predominantly the neu-
ron loss in the striatum (Walker 2007). In the subcel-
lular pathophysiology, it is believed that the defective 
function of mitochondria is the core abnormality in HD 
(Costa and Scorrano 2012; Kim et al., 2010). The central 
role of mitochondria enables scientists to develop ani-
mal models of HD and test novel treatments. 

3-Nitropropionic acid (3-NP) is a popular molecule 
replicating HD in animal models (Borlongan et al., 
1997). It has been demonstrated that 3-NP interferes 
with the normal function of complex II enzymes in 
neural mitochondria and leads to a cascade of dysreg-
ulations like decreased adenosine triphosphate (ATP) 
production, oxidative stress with increased levels of re-
active oxygen species (ROS), elevated concentration of 
intracellular Ca2+, and ultimately cell death (Liot et al., 
2009). These damages occur in broad neural structures 
(Hamilton and Gould 1987), although striatal and cor-
tical lesions have attracted more attention in previous 
studies (Beal et al., 1993; La Fontaine et al., 2000) and it 
is well-known that 3-NP causes a selective degeneration 
in the striatum, therefore mimics HD pathophysiology 
(Borlongan et al., 1997; Kumar et al., 2012). It is note-
worthy that the neurologic pathology starts long before 
the evident motor symptoms and manifests itself with 
psychiatric disorders, including anxiety and depression 
(Duff et al., 2007; Julien et al., 2007). 

These symptoms restrict the daily living activities of 
patients (Hamilton et al., 2003), lead to their placement 
in nursing facilities (Wheelock et al., 2003), and gener-
ally impose an enormous burden on them (Paoli et al., 
2017). 3-NP injected rats mimic the anxiety- and depres-
sion-like behaviors of HD (Khodagholi et al., 2022). 
Preventing the initiation of these psychiatric symptoms 
can enhance the patients’ quality of life and may be more 
beneficial than treating the evident symptoms. 

We previously showed that OXT can prevent 3-NP-in-
duced anxiety and depression (Khodagholi et al., 2022) 
and since the OXT effects are context-dependent (Mos-
lemi et al., 2020), herein, the objective of this investi-
gation was to assess how OXT pretreatment impacts 
anxiety and depression in the rats in the context of PS 
and compare this effect between these rats and those 
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who have been injected with 3-NP in addition to PS. We 
also described the antioxidant level impacts of maternal 
stress per se and their response to OXT. In this regard, 
the level of reduced glutathione (GSH) was assessed in 
the striatum (ST), hippocampus (HIP), prefrontal cortex 
(PFC), and amygdala (AMY).

Materials and Methods
Experimental Design
The Animal Care Committee of Shahid Beheshti Uni-

versity of Medical Sciences authorized all experimental 
procedures and the experiments were carried out with 
permission from the institution’s Ethics Committee 
(Ethics code: IR.SBMU.PHNS.REC.1398.159). Fur-
thermore, the animals were treated in accordance with 
the guidelines provided by the National Institutes of 
Health for the Care and Use of Laboratory Animals, en-
suring compliance with the specified protocols.

Adult Wistar rats were purchased from the Tehran 
Pasteur Institute and were kept under conventional labo-
ratory conditions. Following mating, pregnant rats were 
assigned randomly to either the non-stressed or stressed 
groups. Modified prenatal stress was applied to the 
stressed group using the Pereira-Figueiredo et al. proto-
col by using a cylindrical restrainer (Pereira-Figueiredo 
et al., 2014). Following birth, all mother rats and their 
pups were left undisturbed in their cages until weaning 
at 21 days of age and were kept to adulthood. Afterward, 
male offspring of either stressed or non-stressed mothers 
were separated and divided into the following groups: 
1-Control group whose mothers were not exposed to the 
stressor; 2-Stress group whose mothers were exposed 
to the stressor; 3-Sress+3-NP group that received 3-NP 
(20 mg/kg/day, i.p.) over a period of five consecutive 
days (Brouillet 2014) and their mothers were exposed 
to the stressor; 4-Stress + OXT group who received sin-
gle-dose intracerebroventricular (ICV) injection of OXT 
(10 µg) and their mothers were exposed to the stressor; 
5-Stress+3-NP+OXT group who received OXT twen-
ty-four hours before the 3-NP treatment, and their moth-
ers were subjected to the stressor. The OXT was injected 
at the age of 90 days and 3-NP was injected from the age 
of 91 days.

Behavioral assessments
Elevated plus maze (EPM): As described previously 

by Pellow (Pellow et al., 1985), the maze comprised two 

closed and two open arms. The enclosed arms were bor-
dered by walls. The central part connected these four 
arms and was open around. The apparatus was raised 
to a height of 50 cm from the floor and was illuminated 
from the top. After placing the subjects in the central part 
of the maze, their behaviors were recorded for five min-
utes, recording the time spent in the open arm, closed 
arm, and center zone, and they were analyzed later.

Forced swim test (FST): To investigate depression-like 
behaviors, the FST was used (Porsolt et al., 1978). The 
animals were subjected to the experiment for two days. 
On each day, the animals were compelled to engage in 
forced swimming within a plastic cylinder containing 
clean water at a depth of 35 cm and maintained at the 
temperature of 24 °C. The animals were unable to exit 
the cylinder or provide support by touching the bottom 
of the cylinder. On the initial day, rats were subjected to 
fifteen minutes of pre-exposure to the test environment, 
and on the subsequent day, the subjects had to swim in 
the cylindrical chamber for five minutes. On the second 
day, the total duration of struggling, swimming, and im-
mobility time were recorded.

Reduced glutathione level assay
The protein amount was determined in different sam-

ples based on the method of Bradford (Bradford 1976). 
GSH level was measured in all selected brain areas ac-
cording to the Ellman method (Ellman 1959). Briefly, 
prepared samples were mixed with 10% trichloroacetic 
acid and centrifuged. Ellman reagent including DTNB 
was introduced into the supernatant and the absorbance 
was then assessed at 412 nm.

Statistical analysis
Experimental data were analyzed, after testing the 

normal distribution of data, using the conventional one-
way analysis of variance (ANOVA) followed by mul-
tiple comparisons post hoc Tukey’s comparison test. 
The results are presented as mean values standard error 
of the mean (SEM) with the numbers that have been 
mentioned in the figure legends. Statistically significant 
values were: *p < 0.05, **p < 0.01, ***p < 0.001 and 
****p < 0.0001.

Results
 The effect of Oxytocin on PS and 3-NP+PS induced 

anxiety-like behaviors in rats
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The one-way ANOVA analysis conducted on the data 
from elevated plus-maze revealed significant variations 
among the groups (Fig. 1) [F (4, 35) = 86.99, the p-value 

was less than < 0.0001 for the duration spent in open 
arms (Fig. 1a), F (4, 35) = 36.50, the p-value was less than 
< 0.0001 for the duration spent in close arms (Fig. 1b), 
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FIGURE 1.FIGURE 1. The behaviors of different groups of rats in the elevated plus maze (EPM). a The time spent in the open arms, b the time spent in 
the closed arms, and c the time spent in the center zone compartment. Data are presented as mean ± SEM (n=8/group). PS prenatal stress, OXT 
Oxytocin, 3-NP 3-Nitropropionic acid.
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and F (4, 35) = 15.99, the p-value was less than< 0.0001 
for the duration spent in the center zone (Fig. 1c)]. Post 
hoc analysis using Tukey’s test indicated that both PS 
and PS+3-NP decreased the time rats spent in the open 
arms (ps < 0.0001), and led to a notable increase in the 

duration within the closed arms (ps < 0.0001) when con-
trasted with the control group.

The administration of OXT notably ameliorated 
PS-induced anxiety-like behaviors in the EPM in rats. 
PS+OXT group spent more time in open arms (p < 0.05) 

 

FIGURE 2.FIGURE 2. The behaviors of different groups of rats in the forced swim test (FST). a The struggling time, b swimming time, and c immobility 
time. Data are presented as mean ± SEM (n=8/group). PS prenatal stress, OXT Oxytocin, 3-NP 3-Nitropropionic acid.
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and the center zone (p < 0.05), and less time in closed 
arms (p < 0.01) compared to the PS group. On the con-
trary, OXT administration had no significant protective 
effects on the anxiety-like behaviors in EPM caused 
by 3-NP in the context of PS, and the behaviors of the 
PS+3-NP+OXT group and PS+3-NP group were not 
significantly different. 

The effect of Oxytocin on PS and 3-NP+PS induced 
depression-like behaviors

Data analysis by one-way ANOVA test in the forced 
swim test showed significant differences among the 
groups [F (4, 35) = 75.18, p <0.0001 for the struggling time 
(Fig. 2a), F (4, 35) = 19.16, p < 0.0001 for the swimming 
time (Fig. 2b), F (4, 35) = 121.4, p < 0.0001 for the immo-
bility time (Fig. 2c)].

Post hoc analysis (Tukey’s test) showed that PS and 
PS+3-NP led to the development of severe depres-
sion-like behaviors in the forced swim test. In rats PS 
decreased struggling (p <0.0001 ), swimming time (p < 
0.01), and increased immobility duration (p <0.0001 ) 
compared to the controls. OXT administration signifi-
cantly increased struggling (p <0.0001 ), and swimming 

time (p <0.001 ) and significantly decreased immobility 
duration (p <0.0001 ) in the PS+OXT group compared 
to the PS group. 

Similar to the PS group, the PS+3-NP group showed 
depression-like behaviors in the FST. Rats in the PS+3-
NP group had decreased struggling time (ps <0.0001 ), 
swimming time (p <0.0001 ), and increased immobility 
duration (p <0.0001 ) compared to the controls. Howev-
er, OXT pretreatment in the PS+3-NP+OXT group did 
not alleviate depressive-like behaviors induced by 3-NP 
in the context of PS when compared to the PS+3-NP 
group in the rats. 

The effect of Oxytocin on the reduced levels of GSH 
induced by PS and 3-NP+PS in various brain regions 
of rats

As depicted in Fig. 3, the findings revealed substan-
tial disparities among groups regarding the GSH levels 
across the investigated brain regions [F (4, 25) = 16.91, 
p <0.0001  in the ST; F (4, 25) = 29.66, p <0.0001  in the 
HIP; F (4, 25) = 15.46, p <0.0001  in the PFC; and F (4, 25) = 
27.93, p <0.0001  in the AMY]. 

PS group had significantly lower GSH levels in the 
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FIGURE 3.FIGURE 3. The relative level of GSH in the striatum, hippocampus, prefrontal cortex, and amygdala of rats. (n = 6/group). PS prenatal stress, 
OXT Oxytocin, 3-NP 3-Nitropropionic acid.



Physiology and Pharmacology 29 (2025) 63-73 | 69 Khodagholi et al.

investigated brain regions compared to the controls [the 
ST (p-value was less than< 0.001), HIP (p-value was 
less than< 0.0001), PFC (p-value was less than< 0.05), 
and AMY (p-value was less than< 0.01)]. Similarly, 
the PS+3-NP group had significantly lower GSH lev-
els compared to the controls [the ST (p-value was less 
than< 0.0001), HIP (p-value was less than< 0.0001), 
PFC (p-value was less than 0.0001), and AMY (p-value 
was less than< 0.0001) of rats].

OXT administration to those with prenatal stress in-
creased the GSH level across all brain regions compared 
with the PS group [ST (p <0.01 ), HIP (p <0.0001 ), PFC 
(p <0.05 ), and AMY (p <0.01 )]. However, the protec-
tive effects of OXT pretreatment on rats of PS+3-NP 
were more limited.

Discussion
This study evaluated the behavioral and antioxidant 

level changes following PS and PS+3-NP and questioned 
whether intracranial injection of OXT can prevent these 
changes. Another major objective of this investigation 
was to ascertain whether PS has any modulatory influ-
ence on the efficacy of OXT in preventing anxiety and 
depression induced by 3-NP. We chose ST, HIP, PFC, 
and AMY because of their extensive involvement in the 
pathophysiology of depression (Drevets 2000; Drevets 
et al., 2008) and anxiety (Charney and Deutch 1996; 
Engin and Treit 2007). Among the recently developed 
treatments for depression and anxiety, OXT has demon-
strated promising advantages (De Cagna et al., 2019). 
This prompts inquiries into the effectiveness of OXT in 
the PS setting and its potential to mitigate anxiety and 
depression induced by HD in the context of prenatally 
stressed rats.

We found that rats with PS had higher anxiety- and de-
pression-like behaviors. This is similar to previous find-
ings (Mairesse et al., 2015; Morley-Fletcher et al., 2011; 
Vallee et al., 1997). In contrast, there are some reports 
that do not confirm the severe effect of PS (Sickmann et 
al., 2015; Van den Hove et al., 2014). It might be due to 
differences between the prepubertal stage and adulthood 
or differences between rat strains or study settings. Of 
course, it should not be neglected that early, middle, and 
late gestational stress duration as well as the severity, 
and kind of exposed stress can show different results.

Several mechanisms have been proposed explaining 
how prenatal stress influences adulthood anxiety and de-

pression. One of the most important mechanisms is in-
creased oxidative stress (Dowell et al., 2019). According 
to previous findings, prenatal stress increases the gener-
ation of neuronal nitric oxide synthase (Zhu et al., 2004) 
and ROS, while diminishing antioxidant capacity and 
GSH level in the brain (Bernhardt et al., 2017; Cao et al., 
2014). These changes cause a disparity between oxidants 
and antioxidants, leading to oxidative stress. We found 
that rats with PS had consistently lower levels of GSH in 
their ST, HIP, PFC, and AMY. These changes show that 
GSH is reduced in combat with the adverse effects of 
ROS. The oxidative stress causes increased lipid peroxi-
dation, DNA damage, and protein misfolding (Dowell et 
al., 2019). More importantly, it damages mitochondrial 
DNA (mtDNA) which interrupts mitochondrial bioener-
getic function and deteriorates oxidative stress (Siddiqui 
et al., 2012). In addition, it has been demonstrated that 
prenatal treatment with N-acetylcysteine, the precursor 
of GSH, attenuates the behavioral and oxidative impacts 
of PS (Bernhardt et al., 2017).

The majority of these PS-induced changes can be re-
versed by the effects of OXT on the brain. At the top of 
these effects is the ability of OXT to stimulate the syn-
thesis of ATP in the mitochondria. Two main pathways 
can be proposed for this boosting effect. First, OXT in-
creases the intramitochondrial transport of Ca2+ (Gravi-
na et al., 2011) and stimulates ATP synthesis (Griffiths 
and Rutter 2009). Second, OXT opens the mitochon-
drial ATP-dependent potassium (mitoKATP) channel 
which is involved in regulating mitochondrial energet-
ic function and volume, and increases ATP synthesis 
(Paggio et al., 2019), decreases ROS formation (Bertero 
and Maack 2018), and ultimately brings cytoprotective 
effects (O’Rourke 2004). In this context, our findings 
indicate that OXT significantly alleviated anxiety- and 
depression-like behaviors in prenatally stressed rats and 
increased GSH levels in ST, HIP, PFC, and AMY of rats. 
It shows that OXT improves oxidative state by enhanc-
ing antioxidant capacity. It can be a putative explanation 
and part of the mechanism involved in the observed be-
havior as well. 

A recently published study demonstrated the anxio-
lytic effect of OXT in rats that had prior exposure to 
PS (Maikoo et al., 2022). Although the conditions of 
stress exposure in terms of timing and duration differed 
from our experimental design, we found their findings 
intriguing. Their study revealed an increase in endog-
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enous OXT secretion following OXT injection. They 
suggested that OXT might contribute to the increased 
secretion of opioids, proposing it as a potential under-
lying mechanism. Importantly, they also observed that 
centrally administered OXT had a more pronounced ef-
fect compared to systemic administration, which aligns 
with our chosen route of administration. Overall, our re-
sults provide further support for the protective effect of 
OXT against stress, particularly PS.

The biological changes in the models of HD overlap 
with those after PS, although they may not have identi-
cal intensities. In the HD models, whether the disease is 
replicated by transgenic animals or injection of 3-NP, the 
main pathology is increased oxidative stress and ROS 
(Liot et al., 2009; Siddiqui et al., 2012). It can cause 
changes like increased lipid peroxidation, nuclear DNA 
damage, protein misfolding, and eventually cell death 
(Dowell et al., 2019). Most importantly, oxidative stress 
damages mtDNA, which is highly prone to damage due 
to lower protective supports. It also impairs mtDNA re-
pairs and decreases spare respiratory capacity (Liot et 
al., 2009; Siddiqui et al., 2012). We found that rats of the 
PS+3-NP group had higher anxiety- and depression-like 
behaviors in comparison to the controls, although not 
significant from PS-exposed rats. We also found that the 
levels of GSH in ST, HIP, PFC, and AMY were signifi-
cantly lower in this group compared to controls. How-
ever, unlike the effective role of OXT on prenatal stress, 
when PS was applied as a context, its protective effect 
was suppressed.

We found that in the 3-NP injected rats with prior pre-
natal stress, administration of OXT could not improve 
the anxiety- and depression-like behaviors. It also did 
not normalize the changes in the level of GSH in ei-
ther studied brain region. It means that the increased 
excitation led to oxidative stress. The present findings 
on the results of the 3-NP+PS group raise the concern 
that these effects could be due to 3-NP itself without 
the effects of PS, but as we previously revealed the ICV 
injection of OXT before 3-NP injection (i.p.) can sig-
nificantly prevent anxiety and depression in adult Wis-
tar rats (Khodagholi et al., 2022), it therefore seems that 
the context of PS has a role in preventing the protective 
effects of OXT against 3-NP toxicity. However, it is pos-
sible that chronic treatment with OXT or treatment with 
a higher dose reverses 3-NP-induced changes, even in 
those with PS. Additional behavioral and biochemical 

studies could confirm or reject this hypothesis.

Conclusion
Taken together, we conclude that PS induces anxiety- 

and depression-like behaviors and widely affects GSH 
levels across the brain. 3-NP treatment in the context 
of PS has similar patterns of behavioral and antioxidant 
consequences. Treatment with OXT reverses PS-in-
duced changes. However, PS prevents the protective 
properties of OXT pretreatment on 3-NP-induced be-
havioral and antioxidant changes. We showed that the 
protective effects of OXT on 3-NP-induced mood disor-
ders depend on the context.
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