

Review Article

Epilepsy and dopaminergic system

Mahmoud Rezaei, Azam Sadeghian, Nahid Roohi, Amir Shojaei, Javad Mirnajafi-Zadeh*

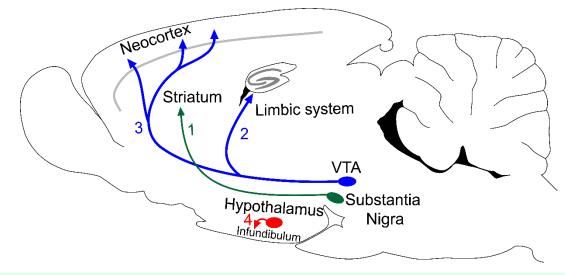
Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Abstract

Epilepsy is accompanied with a strong change in neuronal activity not only in excitatory (glutamatergic) and inhibitory (GABAergic) neurotransmission, but also in neuromodulatory agents. Dopaminergic system, as an important neuromodulatory system of the brain, has significant effect on neuronal excitability. In addition, this system undergoes many changes in epileptic brain. Understanding the effects of dopaminergic system in neuronal activities in epileptic brain and knowing the seizure-induced changes in dopaminergic system can shed light into finding the mechanisms involved in epileptogenesis and can help us in finding new treatments for epilepsy. In this review we briefly introduce dopaminergic system and its changes in brain areas which have role in epilepsy and dopaminergic system.

Introduction

Epilepsy is among the most common neurological diseases which affects 1-2 percent of peoples (more than 50 million) all over the world (Graves, 2006). Epilepsy can be considered as occurrence of sudden, spontaneous and recurrent seizures. A seizure can define as an abnormal, synchronized hyperactivity in a group of neurons (Millichap, 2003). It usually accompanies with some behavioral manifestations (i.e. convulsive seizures). Outcome of seizures strictly depends on the brain regions that are affected by hyperactivity (Michael-Titus et al., 2007). Despite of a lot of progress in finding the mechanisms involved in epileptic seizures, there is not a definite treatment way for their complete suppression. Antiepileptic drugs can only reduce the rate of seizures in about 40 percent of patients (McNamara, 1994). Therefore, many studies are done to find new antiepileptic drugs.


One important change in epileptic brain is an imbalance in excitation to inhibition ratio (Engel and

Keywords: Epilepsy; Dopaminergic system

Received: 22 Oct 2016

Accepted: 28 Dec 2016 *Correspondence to: J. Mirnajafi-Zadeh Tel: +98-2182883865 Fax: +98-2182884555 Email: mirnajaf@modares.ac.ir

Pedley, 2008). Although this change is usually because of abnormal activity in glutamatergic and/or GABAergic neurons per se. however, neuromodulators such as dopamine can also affect this ratio by inducing some changes in the activity of glutamatergic and/or GABAergic neurons (Gonzalez-Islas and Hablitz, 2003; Slaght et al., 2002). Many evidences show that dopaminergic system has a critical role in controlling the neuronal activities during seizure. Previous studies have shown that significant changes occur in different aspects of dopaminergic system (such as release, metabolism and receptor binding of dopamine) following epileptic seizures both in human and laboratory animals (Bozzi et al., 2011; Waddington, 1993; Starr, 1996). In addition. dopaminergic neurons modulate the synaptic plasticity, a phenomenon that is also affected by seizure activity (Hansen and Manahan-Vaughan, 2014). Any abnormal variation in synaptic plasticity may change the neuronal responsiveness and leads to seizure induced impairment in different aspects of brain function of epileptic patients such as hyper-excitabilities progressive and cognitive

Fig.1. The main dopaminergic pathways of the adult rodent brain in the sagittal plane. The numbers show these pathways including: 1- Nigrostriatal pathway, 2- mesolimbic pathway, 3- mesocortical pathway and 4- tuberoinfundibular pathway.

Dopamine receptors	Coupled G proteins	Cellular effector	Signaling pathway	Reference	
D1	$G_{\alpha s}/G_{\alpha olf}$	Adenylyl cyclase, Protein kinase A stimulation	Increasing cAMP	(Beaulieu and Gainetdinov 2011)	
	G _{αq}	Phospholipase C	Increasing inositol 3 phosphate/Diacylglyserol	(Clifford, Tighe et al 1999)	
D2/D3/D4	G _{ai} /G _{ao}	Adenylyl cyclase, Protein kinase A inhibition	Decreasing cAMP	(Beaulieu and	
	G _{βγ}	Phospholipase C, Ca ²⁺ channles	Increasing inositol 3 phosphate/Diacyl glyserol	Gainetdinov 2011)	
D5	G _{αs}	Adenylyl cyclase, Protein kinase A	Increasing cAMP (Sahu, Tyeryar		
	G _{aq}	Phospholipase C	Increasing inositol 3 phosphate/Diacyl glyserol	2009)	

dysfunctions. Therefore, understanding the effects of dopaminergic system in neuronal activities in epileptic brain and knowing the seizure-induced changes in dopaminergic system can shed light into finding the mechanisms involved in epileptogenesis and can help us in finding new treatments for epilepsy. In this review we will briefly introduce dopaminergic system and its changes in brain areas which have role in epilepsy. Then, we will focus on the evidences showing the relationship between epilepsy and dopaminergic system.

Dopamine receptors

Dopamine is one of the most important modulatory neurotransmitters in the central nervous system which is released from dopaminergic fibers. There are four main dopaminergic pathways in central nervous system including: 1) the nigrostriatal, 2) mesolimbic, 3) mesocortical and 4) tuberoinfundibular systems (Fig. 1) (Koob, 1992). Based on sequence homology, pharmacology and second messenger activation, dopamine receptors are divided into two subfamilies: D_1 -like and D_2 -like receptors. The D_1 -

like subfamily includes D₁ and D₅ receptors, while the D_2 -like consists D_2 , D_3 and D_4 receptors (Sibley et al., 1993; Vallone et al., 2000). Using mRNA analysis, it has been shown that D₂ like receptors are abundantly expressed in many brain regions, such as frontal cortex. olfactory bulbs, nucleus accumbens, hippocampus and amygdala. D2 and D3 dopamine receptors are also expressed in substantia nigra pars compacta and ventral tegmental area (VTA, the main anatomical regions that dopaminergic fibers give raise). In these areas D2-like receptors indicate mainly a presynaptic location. D₁ -like receptors are expressed in striatum, frontal cortex, nucleus accumbens, substantia nigra and amygdala which are exclusively postsynaptic location (Civelli et al., 1991; Jackson and Westlind-Danielsson, 1994; Perez de La Mora et al., 2012; Cocker et al., 2014).

Numerous signal transduction pathways activated by dopamine receptors. Dopamine receptors belong to the family of seven transmembrane domain G-protein coupled receptors. Activation or inhibition of the cyclic adenosine monophosphate (cAMP) pathway and modulation of Ca²⁺ signaling are the best described effects mediated by dopamine receptors. D₁ -like receptors are generally coupled to G $\alpha_{s/olf}$ and stimulate the production of the second messenger cAMP which activates protein kinase A (PKA). In contrast, D₂ -like receptors are coupled to G $\alpha_{i/o}$ and negatively regulate the production of cAMP which leads to decreasing PKA activity (Table 1).

D₁ -like receptors, especially D₅ receptors, may also couple to $G\alpha_{q}$ and regulate phospholipase C (PLC). Activation of PLC leads to the production of inositol triphosphate (IP3) and diacylglycerol that result to activation of PKC and an increased mobilization of intracellular calcium in response to IP₃ (Table 1). Alternatively, dopamine receptors have been shown to make heterodimers with a number of other Gprotein coupled receptors (Clifford et al., 1999; Beaulieu and Gainetdinov, 2011). It has been shown that D₁/D₂ dopamine receptor heterodimers regulate calcium-dependent cell signaling in some neuronal populations. D₂ -like receptors also can regulate intracellular calcium levels by acting on ion channels or intracellular calcium stores that are mediated by the G $\beta\gamma$ subunits, separated from G α subunit after receptor activation, of heterotrimeric G proteins (O'Sullivan et al., 2008).

 D_1 and D_2 -like receptors have different affinity to

dopamine. In rat central nervous system, the D_1 -like receptor have primarily low affinity, whereas the D_2 - like receptors have high affinity to dopamine agonist (Richfield et al., 1989).

Dopamine neurons have two firing patterns: phasic (spontaneous bursts, followed by pauses, 10–30 Hz) and tonic (regular firing patterns, 1–4 Hz). Tonic firing is defined as random spikes at an average rate of 4 Hz, but phasic mode is defined as transient increases in firing rate using random spikes with average firing rate of 20 Hz (Dreyer et al., 2010; Dreyer and Hounsgaard, 2013). These neurons shift from a tonic to phasic firing mode on encountering salient stimuli or unexpected appetitive stimuli like food, water and novelty.

The different firing patterns of dopaminergic neurons influence the balance between D_1 and D_2 receptor dependent pathways. It has been hypothesized that the tonic mode of dopamine firing maintains a basal dopamine tone in the range of nM that activates the higher affinity D₂-like receptors. Phasic dopamine firing induces a fast and transient rise in dopamine concentration in the range of µM to mM. This range of concentration enables the activation of the lower affinity D₁-like receptors. Therefore, phasic firing mode of dopamine neurons primarily increases D1like receptor occupancy, whereas D₂-like receptor occupancy is less affected. Phasic pattern reduces the average occupancy of D_2 -like receptors by >40% compared to tonic firing (Drever and Hounsgaard, 2013).

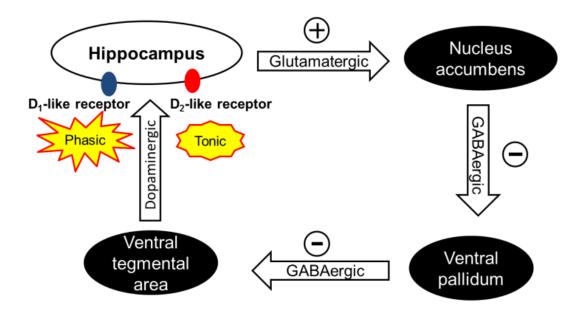
Distribution of dopamine receptors

Different performance of neuromodulatory function of dopamine D_1 - and D_2 -like receptors may be related to various distributions of these receptors. As there is no specific ligands for all dopamine receptor subtypes, in situ hybridization is broadly used for measuring the dopamine receptor mRNAs in the brain (Missale et al., 1998). On the whole, the most widespread dopamine receptor is D_1 receptor (Dearry et al., 1990; Fremeau et al., 1991; Weiner et al., 1991). Distribution of various dopamine receptors in different brain areas has been reviewed in Table 2.

The role of dopamine receptors in seizure

Many studies on animal models showed the opposite actions of D_1 -like and D_2 -like receptor signaling in limbic epileptogenesis. D_1 -like receptors signaling is

Dopamine receptors	Location	Distribution	Density	Reference
D ₁	Hippocampal formation	Molecular layer of CA1 Dentate gyrus Stratum moleculare stratum oriens	++ ++ + +	(Savasta et al., 1986) (Mansour et al., 1990)
	Cerebral cortex	Suprarhinal dopamine terminal Anteromedial dopamine terminal	++ ++	(Savasta et al., 1986)
	Basal ganglia	Pars reticulate ventral tegmental area Caudate-putamen Nucleus accumbens Globus pallidus Striatal GABAergic neurons	++++ ++ ++++ ++++ ++++	(Mansour et al., 1990) (Le Moine et al., 1991 (Gerfen et al., 1990)
	Hypothalamus	Lateral nucleus Ventromedial nucleus Arcuate nucleus Suprachiasmatic nucleus	+ + + ++	(Mansour et al., 1990
	Midbrain	Superior colliculus	+++	(Mansour et al., 1990
	Amygdala	Cortical nucleus Lateral nucleus Basalateral nucleus Medial nucleus Intercalated nucleus	++++ ++++ +++ +	(Mansour et al., 1990 (Levey et al., 1993)
	Olfactory bulb	internal granular layer Plexiform layer	+ +	(Levey et al., 1993)
	Hippocampal formation	Stratum lacunosum Stratum moleculare Subiculum Pyramidal cell layer CA1, CA2, CA3 Granular cells of DG Molecular layer of DG Hilar region Subicular region	++++ ++++ + + + + + + + + + + +	(Mansour et al., 1990 (Khan et al., 1998)
П	Cerebral cortex	All cortical regions	+++	(Khan et al., 1998)
D2	Basal ganglia	Nucleus accumbens Substantia nigra pars compacta Globus pallidus Olfactory nerve	+++ + ++++ +	(Jackson and Westlin Danielsson, 1994) (Levey et al., 1993)
	amygdala	Central nucleus	+	(Levey et al., 1993)
	Hypothalamus	Arcuate nucleus Supraoptic nucleus Suprachiasmatic nucleus Mammillary nucleus	+ + + +	(Khan et al., 1998)
	Hippocampal formation	Stratum oriens of CA1 Stratum radiatum of CA1 Molecular layer of DG Subicular region	+++ +++ +++ +	(Khan et al., 1998)
	Cerebral cortex	All cortical regions	+++	(Khan et al., 1998)
D_3	Basal ganglia	Nucleus accumbens Ventral pallidum	+++	(Bouthenet et al., 199
		Olfactory tubercle Islands of Calleja Dorsal striatum Substantia nigra pars compacta	+ + + +	(Diaz et al., 1994) (Bouthenet et al., 199 Levesque et al., 1992 Sokoloff et al., 1990) (Diaz et al., 1994; D


Table 2: Description Description Description Description							
Dopamine receptors	Location	Distribution	Density	Reference			
D4	Hippocampal formation	Dentate gyrus Polymorphic layer of CA1, CA2, CA3 Entorhinal cortex	+++ + +++	(O'Malley et al., 1992)			
	Cerebral cortex	Cerebral neocortex Medial frontal cortex layer II,III Layer IV,V Corpus callosum	+++ +++ +	(Defagot et al., 1997)			
	Amygdala	Anterior cortical Posterolateral cortical Basomedial	+++ +++ +++	(Khan et al., 1998) (Defagot et al., 1997)			
	Basal ganglia	Substantia nigra Pars compacta Pars reticulata	+ ++++ ++++ +	(Defagot et al., 1997)			
	Hypothalamus Thalamus	Paraventricular nucleus Supraoptic nucleus Reticular nucleus	+++ +++ +	(Defagot et al., 1997)			
	Cerebellum	Purkinje cells Molecular layer Granular layer	+++ ++ ++	(Defagot et al., 1997)			
	Midbrain	Superior colliculus Inferior colliculus	+++ +++	(Defagot et al., 1997)			
	Hippocampal formation	Pyramidal cells of hippocampus Dentate gyrus	+++ +	(Huntley et al., 1992)			
	Cerebral cortex	Frontal areas Limbic cortical areas Occipital cortex	+++ +++ +	(Khan et al., 2000; Huang et al., 1992)			
	Basal Ganglia	Pars compacta Pars reticulate Nucleus accumbens Globus pallidus Islands of Calleja, olfactory tubercle Septal area	+ + + + +	(Khan et al., 2000)			
D ₅	Hypothalamus	Hypothalamic arcuate Mammillary nucleus Supraoptic nucleus	+ + +	(Khan et al., 2000)			
	Thalamus	Lateral dorsal nucleus Anterior ventrolateral Anterior dorsomedial lateral Posterior nucleus	+++ +++ +++ +++	(Meador-Woodruff et al., 1992; Trumpp- Kallmeyer et al., 1992; Khan et al., 2000)			
	Cerebellum	Granule cell layer	+	(Khan et al., 2000)			
	Midbrain	Inferior colliculus Oculomotor nucleus central nucleus Superior colliculus	+++ + +	(Khan et al., 2000)			

generally pro-epileptogenic, whereas signaling from D_2 -like receptors perform an anti-epileptogenic effect (Bozzi and Borrelli, 2013). Dopamine has inhibitory effect on excitability of hippocampal neurons through D_2 -like receptors (Starr, 1996; Starr, 1993).

Drugs that stimulate dopaminergic system such as L-DOPA and anti-parkinson drugs (bromocriptine, pergolide), apomorphine and amphetamines have anti-epileptic and anti-convulsant effects (Starr, 1996). In epileptic patients, the anti-psychotic drugs (D₂-like antagonists) decrease seizure threshold and in patients without previous history of the disease promote the seizures. On the other hand, activation of dopamine D_1 -like receptors exerts a proconvulsant effect and decrease the seizure threshold (Starr, 1996; Starr, 1993).

The opposite action of dopamine D_1 - and D_2 -like receptors signaling in epilepsy may be because of glutamate-dopamine interaction in limbic epileptogenesis. This hypothesis has been supported by studies in animal models in which activation of D_1 like receptors can activate glutamatergic neurons during seizure (Gangarossa et al., 2011).

Epilepsy is accompanied with impairment in

Fig.2. Hippocampal-ventral tegmental area loop. Hippocamal glutamatergic neurons (through ventral subicular) projects to nucleus accumbens to stimulate its GABAergic projections to ventral pallidum, where inhibition of its GABAergic neurons makes a dis-inhibitory effect on ventral tegmental area and activates the dopaminergic fibers of VTA to affect hippocamus through D_1 - (during phasic activity) and D_2 -like receptors (during tonic activity) (Floresco et al., 2003b; Lisman and Grace, 2005).

controlling the dopamine level and expression of its receptors. The role of dopamine in epilepsy maybe due to these impairments. In addition, the level of dopamine and its metabolites is markedly changed according to the types of epilepsy and animal model (Starr, 1996). Most of animal models of temporal lobe epilepsy are accompanied with an increase in the firing rate of dopaminergic neurons and the level of dopamine in extracellular space (Cifelli and Grace, 2012).

The role of dopamine in epilepsy is also depends on the brain regions which involves in seizure generation and/or control. For example, hippocampus is one of the regions that involves in temporal lobe epilepsy. In this region, the concentration of D_2 -like (especially D_4) is more than D_1 -like receptors. During epilepsy, the amount of dopamine increases. Therefore, dopamine can inhibit the seizure activity through activating of hippocampal D_2 -like receptors.

Another region that involves in epilepsy is the dentate gyrus. According to dentate 'gate' theory of temporal lobe epilepsy, seizures happen when the gate function of the dentate gyrus is interrupted such that excess excitation appears from or passes through the dentate gyrus to downstream regions (Heinemann et al., 1992; Lothman et al., 1992). In this region, similar to the hippocampus, D_2 -like receptors play an anti-

epileptogenic role.

Changes in dopaminergic system in epilepsy

Epilepsy has been characterized as an imbalance between excitatory (glutamatergic) and inhibitory (GABAergic) transmission, however clinical and experimental evidences indicate the involvement of the major neuromodulatory systems, such as dopaminergic system, in epilepsy and seizure activity regulation.

Several studies have suggested the presence of dopaminergic dysfunctions either in the brain of epileptic patient or in animal models of seizure and epilepsy (Starr, 1993; Starr, 1996; Bozzi et al., 2011). The involvement of dopamine in epilepsy is likely due to a dysfunctional control of dopamine levels or an alteration in expression of specific receptors. Any changes in dopamine levels and/or its specific receptors can alter the neuromodulatory action of dopamine on brain circuits especially in the limbic system. Different pattern of change may observe in the level of dopamine and its metabolites according to the type and animal model of epilepsy.

1- Epilepsy and dopamine level

The extracellular concentration of neurotransmitters changes in the brain of epileptic patients and

experimental animals (Goren et al., 2003). Many studies have focused on the hippocampus, because its involvement in the pathophysiology of the temporal lobe epilepsy, the prevalent type of seizure in adults. Several studies have suggested that seizure activity leads to enhancement of brain dopamine level.

In 2008, Meurs and his colleagues, measured the level of hippocampal extracellular dopamine using in vivo intracerebral microdialysis following seizures induced by different pharmacological agents including pilocarpine (the muscarinice receptor agonist), picrotoxin (the GABA_A receptor antagonist) and R,S-3,5-dihydroxyphenylglycine (the group 1 metabotropic receptor agonist). glutamate Intrahippocampal administration of these three convulsive drugs significantly increased the dopamine dialysated concentration. These data confirmed many other studies which indicated the presence of higher level of dopamine in the brain of epileptic animals (Alam and Starr, 1996; Cavalheiro et al., 1994; Clinckers et al., 2004; Khan et al., 1999; Khan et al., 2000; Shih and McDonough, 1997; Smolders et al., 1997; Stragier et al., 2006). Therefore, increased network activity during seizure, results in increased level of extracellular dopamine.

In contrast to the above mentioned reports, there are another studied showing that the level of dopamine decreases in epileptic patients and animal models of seizure. Alcantara-Gonzalez et al. (2013), showed that extracellular levels of dopamine in hippocampus of kindled rat were significantly lower than control animals during interictal period. Similarly, it has been reported that the tissue content of dopamine in the amygdala of kindled animal (Engel and Sharpless, 1977), and in the epileptic focus (Mori et al., 1987) is decreased. The lower amount of dopamine in interictal period could be due to an increased turnover (Wilkison and Halpern, 1979) or due to inhibitory effect of D_2 autoreceptors on dopamine releasing.

In addition to experimental models, there are also evidences showing that dopaminergic neurotransmission alters in the epileptic patients. It has been shown that dopamine and its metabolite, homovanilic acid, is lower in temporal neocortex of patient with mesial temporal lobe epilepsy (Rocha et al., 2012) and temporal lobe epilepsy secondary to brain tumor or lesion compared with temporal neocortex from autopsies from died human due to The reduction in tissue content of dopamine and homovalinic acid, may be as a result of decreasing in metabolism or release of dopamine, but not dopamine syntheses, because according to Pintor et al., (1990) no change is observed in tyrosine hydroxylase (TH) expression and activity. Other possibilities are a) an increase in the expression of monoamine oxidase, an enzyme that involves in the degradation of dopamine and b) an alteration of dopamine reuptake.

Changes in affinity of dopamine receptors can also affect the responsiveness of dopaminergic system during seizure. The expression of dopamine transporters increases in temporal cortex of patients with mesial temporal lobe epilepsy and temporal lobe epilepsy. It is interesting that this change positively correlates to the frequency of seizure (Del Sole et al., 2010). These effects may represent a compensatory mechanism to remove increased dopamine released as result of ictal activity.

2- Epilepsy and alteration in activity of dopaminergic neurons

It has been shown that epilepsy can change the activity of dopaminergic neurons. Pilocarpine- treated rats display an abnormally enhanced dopaminergic neuron drive in the form of an increase in activity of dopaminergic neuron population (Cifelli and Grace, 2012). In normal rats, the activity of VTA dopaminergic neurons is regulated by hippocampal-VTA loop which includes ventral subicular-nucleus accumbens-ventral pallidal-VTA pathway (Fig. 2) (Floresco et al., 2003). Therefore, during temporallobe epilepsy, the pathological hyperactivity of the hippocampal formation (including subiculum) can lead to increased VTA dopamine neuron activity. Since the phasic burst firing response of dopaminergic neurons depends on their spontaneous activity (Lodge and Grace, 2006), abnormally high levels of population activity would enable a phasic burst stimulus to elicit burst firing in a greater number of dopamine neurons, thereby putting the dopaminergic system in a hyper-responsive state in epileptic brain (Floresco et al., 2003; Lisman and Grace, 2005) (Fig. 2).

3- Changes in dopamine receptors in animal

models of seizure

In addition to changes in dopamine level, variations in dopamine receptors have also been reported both in epileptic patients and animal models of epilepsy. D₂- like receptor activation (which induces G_i protein activity) increases in different brain areas, including the ventral hippocampus of kindled rats (Alcantara-Gonzalez et al., 2013) and in other specific brain structures in kainic acid-induced seizures (Csernansky et al., 1988; Ando et al., 2004; Sato, 1983). In contrast, some studies showed reduced availability of D_2/D_3 receptors in the anterior caudate putamen of rats during the chronic phase of pilocarpine models (Yakushev et al., 2010).

4- Alteration in dopamine receptors and dopamine transporter in epileptic patients

There are a lot of reports on the abnormalities in dopamine receptors and transporters in the brain of epileptic patients. Most of studies show that the binding potential of D_2/D_3 receptor reduces in the brain of epileptic patient. For example, the decrease in D₂ receptor protein expression in the temporal neocortex (Rocha et al., 2012), decrement in binding potential of D₂/D₃ receptors in the ipsilateral temporal lobe, bilateral basal ganglia and irritative zone surrounding of the epileptogenic area (Werhahn et al., 2006) and in thalamus of patient with mesial temporal lobe epilepsy (Bernedo Paredes et al., 2015) have been shown. In addition, it has been reported that striatal D₁-receptor binding in autosomal dominant nocturnal frontal lobe epilepsy (Fedi et al., 2008) and binding potential of D_2/D_3 receptors bilaterally in the posterior putamen in the patients with juvenile myoclonic epilepsy are reduced significantly (Landvogt et al., 2010).

The observed decrease in D_2 -spicific binding may be due to reduction of the receptors amount, decrease in receptor affinity and the increase in occupancy of the receptors by dopamine or due to dopamine promoted receptor internalization (Ginovart et al., 2004).

However, in contrast to the above mentioned reports, significant increase in D_2/D_3 receptor binding potential in the hippocampus (Bernedo Paredes et al., 2015), and higher expression of dopamine D_1 receptor and higher D_2 -like induced activation of G proteins in the neocortex have been observed in patients with temporal lobe epilepsy (Rocha et al., 2012).

In the case of changes in dopamine transporter in

epileptic patients, there are many controversies in results of previous studies. Some investigations show that dopamine transporter binding elevates in epileptic patient (Rocha et al., 2012; Sander et al., 2000; Del Sole et al., 2010); a phenomenon which may be a compensatory mechanism to remove released dopamine due to ictal activity (Meurs et al., 2008). On the other hand, there are also reports show that binding potential of dopamine transporter reduces in substantia nigra and midbrain in the patients with juvenile myoclonic epilepsy (Ciumas et al., 2008).

Dopamine and synaptic plasticity

Epileptic seizures are accompanied with changes in synaptic plasticity. Therefore, the phenomenons which are related to synaptic plasticity can be affected by seizure occurrence. Synaptic plasticity is one of the most important mechanisms that modifies the neural circuits in central nervous system. Synaptic plasticity is considered as the major cellular mechanisms that underlies learning and memory. Different kinds of long-lasting changes in the efficacy of synapses, includes long term potentiation (LTP), long term depression (LTD) and depotentiation, are influenced by dopamine (Zucker, 1989; Abraham and Bear, 1996; Malinow and Malenka, 2002).

In 1983, for the first time, two studies (Bliss et al., 1983; Krug et al., 1983) concurrently demonstrated that a depletion of catecholamine could modulate LTP in the dentate gyrus of freely moving rats. Among catecholamine transmitters, dopamine, has been recognized to play an important role in both synaptic plasticity and memory processes (Jay, 2003).

In addition to its role in reward, dopamine has been shown to be essential role in learning and memory especially in mesohippocampal pathway (Jay 2003). Neuronal activities in different hippocampal subregions such as dentate gyrus, CA1 region and subiculum are modulated by activation of dopamine receptors (Frey et al., 1993; Grace et al., 2007). However, it is not completely clear that how do the two different classes of dopamine receptors modulate different forms of synaptic plasticity. Following dopamine denervation, different kinds of plasticity, LTP and LTD are lost in different parts of CNS (Centonze et al., 1999; Calabresi et al., 2000a; Paillé et al., 2010). In recent years, many studies focus on

dopaminergic system and dopamine receptors' role in synaptic plasticity; nevertheless, many controversial results have been reported.

D₁-like receptors antagonist inhibits the expression and maintenance of late LTP, whereas the D1-like receptor agonist induces both the early and late phases of LTP. Previous studies also demonstrated that in D1 knockout mice, late LTP was absent and spatial memory impaired (Kusuki et al., 1997; Calabresi et al., 2000b; Gurden et al., 2000; Kerr and Wickens, 2001; Huang et al., 2004; Matsuda et al., 2006; Schotanus and Chergui, 2008; Zhou et al., 2009). But some studies have showed that D₁-like receptors manipulation had no effect on LTP and LTD (Huang and Kandel, 1995; Swanson-Park et al., 1999; Kulla and Manahan-Vaughan, 2000; Thomas et al., 2000; Abe et al., 2008; Xu and Yao, 2010). In vitro studies on CA1 synapses showed that both the early and late phases of LTD are dependent on D_1/D_5 receptor activation. Consistent with this in vitro data, D₁-like receptors agonist and antagonist facilitates and inhibits LTD induction, respectively (Gurden et al., 2000; Lemon and Manahan-Vaughan, 2006). Interestingly, D₁-like receptor manipulation also affects depotentiation (a form of plasticity that is the reversal of previous potentiation) both in vitro and in vivo. Application of D₁-like receptors agonist decreased depotentiation and antagonist prevented inhibition of depotentiation (Otmakhova and Lisman, 1998).

Activation of D₂-like receptors has suppressive effect on LTD in the hippocampal CA1 region of rats (Chen et al., 1995). Previous studies on corticostriatal synapses showed LTP was enhanced in slices using D₂-like receptor antagonist or in mice lacking D₂-like receptors (Matsuda et al., 2006; Rocchetti et al., 2015). In one study, Rocchetti et al. (2015) showed that the genetic deletion and the pharmacologic blockade of D₂-like receptors in mice severely both N-methyl-D-aspartate impaired receptor (NMDAR)-dependent LTP and LTD in CA1, and decrease learning and memory performance. Recently, the deficiency of depotentiation has been shown in patients with Parkinson's disease who lack nigrostriatal dopaminergic projections (Rocchetti et al., 2015). Another study on hippocampal synapses showed that depotentiation was induced through activation of D₄ receptor but not D₁/D₅ receptors (Kwon et al., 2008).

In addition to above mentioned effects of D2-like receptors on synaptic plasticity in normal conditions, these receptors can also modify seizure-induced potentiation in kindling model of epilepsy. Previous studies showed that kindling can induced synaptic potentiation (Sutula and Steward, 1986; Gilbert and Mack, 1990; Mohammad-Zadeh et al., 2007) and this effect can be prevented by application of lowfrequency stimulation (Mohammad-Zadeh et al., 2007; Zeraati et al., 2010; Asgari et al., 2016; Ghorbani et al., 2007; Ghotbedin et al., 2013; Sadegh et al., 2007; Jahanshahi et al., 2009; Shahpari et al., 2012). This phenomenon depends to activation of D₂like receptors, so that administration of D₂-like receptor antagonist can remove the preventing effect of low-frequency stimulation (Rezaei, 2016).

These variations in effects of dopamine on synaptic plasticity may be based on difference in brain regions, dopaminergic innervation, expression of dopamine receptors or protocols of LTP or LTD induction.

Conclusion

Dopamine as one of the most important neuromodulators in the brain has very important effects on neuronal excitability. As the main aim of using the anticonvulsive therapeutic manners (such as antiepileptic drugs or brain stimulations) is to reduce the excitation to inhibition ratio in neuronal activity, thus, it is necessary to understand the role of dopaminergic system on neuronal activity in epileptic brain. In addition, by increasing our knowledge on the effects of dopamine on synaptic plasticity in both normal and epileptic conditions, we can shed lights on determining the mechanisms which may be responsible in seizure-induced impairments in synaptic plasticity-dependent phenomenon.

Acknowledgments

Writing of this review article was supported by Chancellor of Research of Tarbiat Modares University, Tehran, Iran.

Conflict of interest

The authors state that there is no conflict of interest.

References

- Abe K, Niikura Y, Fujimoto T, Akaishi T, Misawa M. Involvement of dopamine D2 receptors in the induction of long-term potentiation in the basolateral amygdaladentate gyrus pathway of anesthetized rats. Neuropharmacology 2008; 55: 1419-24.
- Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 1996; 19: 126-30.
- Alam AM, Starr MS. Regional changes in brain dopamine utilization during status epilepticus in the rat induced by systemic pilocarpine and intrahippocampal carbachol. Neuropharmacology 1996; 35: 159-67.
- Alcantara-Gonzalez D, Floran B, Escartin E, Rocha L. Changes on D2-like receptor induced Gi protein activation and hippocampal dopamine release in kindled rats. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40: 246-51.
- Ando N, Morimoto K, Watanabe T, Ninomiya T, Suwaki H. Enhancement of central dopaminergic activity in the kainate model of temporal lobe epilepsy: implication for the mechanism of epileptic psychosis. Neuropsychopharmacology 2004; 29: 1251-8.
- Asgari A, Semnanian S, Atapour N, Shojaei A, Moradi-Chameh H, Ghafouri S, et al. Low-frequency electrical stimulation enhances the effectiveness of phenobarbital on GABAergic currents in hippocampal slices of kindled rats. Neuroscience 2016; 330: 26-38.
- Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63: 182-217.
- Bernedo Paredes VE, Buchholz HG, Gartenschlager M, Breimhorst M, Schreckenberger M, Werhahn KJ. Reduced D2/D3 receptor binding of extrastriatal and striatal regions in temporal lobe epilepsy. PloS one 2015; 10: e0141098.
- Bliss TV, Goddard GV, Riives M. Reduction of long-term potentiation in the dentate gyrus of the rat following selective depletion of monoamines. J Physiol 1983; 334: 475-91.
- Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res 1991; 564: 203-19.
- Bozzi Y, Borrelli E. The role of dopamine signaling in epileptogenesis. Front Cell Neurosci 2013; 7: 157.
- Bozzi Y, Dunleavy M, Henshall DC. Cell signaling underlying epileptic behavior. Front Behav Neurosci 2011; 5: 45.
- Calabresi P, Centonze D, Bernardi G. Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci 2000a; 23: S57-S63.
- Calabresi P, Gubellini P, Centonze D, Picconi B, Bernardi G, Chergui K, et al. Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J Neurosci 2000b; 20: 8443–51.

- Cavalheiro EA, Fernandes MJ, Turski L, Naffah-Mazzacoratti MG. Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 1994; 35: 1-11.
- Centonze D, Gubellini P, Picconi B, Calabresi P, Giacomini P, Bernardi G. Unilateral dopamine denervation blocks corticostriatal LTP. J Neurophysiol 1999; 82: 3575-9.
- Chen Z, Ito K, Fujii S, Miura M, Furuse H, Sasaki H, et al. Roles of dopamine receptors in long-term depression. enhancement via D1 receptors and inhibition via D2 receptors. Receptors Channels 1995; 4: 1-8.
- Cifelli P, Grace AA. Pilocarpine-induced temporal lobe epilepsy in the rat is associated with increased dopamine neuron activity. Int J Neuropsychopharmacol 2012; 15: 957-64.
- Ciumas C, Wahlin TB, Jucaite A, Lindstrom P, Halldin C, Savic I. Reduced dopamine transporter binding in patients with juvenile myoclonic epilepsy. Neurology 2008; 71: 788-94.
- Civelli O, Bunzow JR, Grandy DK, Zhou QY, van Tol HH. Molecular biology of the dopamine receptors. Eur J Pharmacol 1991; 207: 277-86.
- Clifford JJ, Tighe O, Croke DT, Kinsella A, Sibley DR, Drago J, et al. Conservation of behavioural topography to dopamine D 1-like receptor agonists in mutant mice lacking the D 1A receptor implicates a D 1-like receptor not coupled to adenylyl cyclase. Neuroscience 1999; 93: 1483-9.
- Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y. Anticonvulsant action of hippocampal dopamine and serotonin is independently mediated by D and 5-HT receptors. J Neurochem 2004; 89: 834-43.
- Cocker PJ, Le Foll B, Rogers RD, Winstanley CA. A selective role for dopamine d 4 receptors in modulating reward expectancy in a Rodent Slot Machine Task. Biol Psychiatry 2014; 75: 817-24.
- Csernansky JG, Kerr S, Pruthi R, Prosser ES. Mesolimbic dopamine receptor increases two weeks following hippocampal kindling. Brain Res 1988; 449: 357-60.
- Perez de La Mora M, Gallegos-Cari A, Crespo-Ramirez M, Marcellino D, Hansson AC, Fuxe K. Distribution of dopamine D 2-like receptors in the rat amygdala and their role in the modulation of unconditioned fear and anxiety. Neuroscience 2012; 201: 252-66.
- Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG. Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature 1990; 347: 72-6.
- Defagot MC, Malchiodi EL, Villar MJ, Antonelli MC. Distribution of D4 dopamine receptor in rat brain with sequence-specific antibodies. Brain Res Mol Brain Res 1997; 45: 1-12.
- Del Sole A, Chiesa V, Lucignani G, Vignoli A, Giordano L, Lecchi M, et al. Exploring dopaminergic activity in ring chromosome 20 syndrome: a SPECT study. Q J Nucl Med Mol Imaging 2010; 54: 564–9.
- Diaz J, Lévesque D, Griffon N, Lammers CH, Martres MP, Sokoloff P, et al. Opposing roles for dopamine D2 and D3 receptors on neurotensin mRNA expression in

11 | Physiol Pharmacol 21 (2017) 1-14

nucleus accumbens. Eur J Neurosci 1994; 6: 1384-7.

- Diaz J, Lévesque D, Lammers CH, Griffon N, Martres MP, Schwartz JC, et al. Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience 1995; 65: 731-45.
- Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD. Influence of phasic and tonic dopamine release on receptor activation. J Neurosci 2010; 30: 14273-83.
- Dreyer JK, Hounsgaard J. Mathematical model of dopamine autoreceptors and uptake inhibitors and their influence on tonic and phasic dopamine signaling. J Neurophysiol 2013; 109: 171-82.
- Engel J, Pedley TA. Epilepsy. A comprehensive textbook / editors, Jerome Engel Jr., Timothy A. Pedley; associate editors, Jean Aicardi ... [et al.]. London: Wolters Kluwer/Lippincott Williams & Wilkins, 2008.
- Engel J Jr, Sharpless NS. Long-lasting depletion of dopamine in the rat amygdala induced by kindling stimulation. Brain Res 1977; 136: 381-6.
- Fedi M, Berkovic SF, Scheffer IE, O'Keefe G, Marini C, Mulligan R, et al. Reduced striatal D1 receptor binding in autosomal dominant nocturnal frontal lobe epilepsy. Neurology 2008; 71: 795-8.
- Floresco SB, West AR, Ash B, Moore H, Grace AA. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 2003; 6: 968–73.
- Fremeau RT, Duncan GE, Fornaretto MG, Dearry A, Gingrich JA, Breese GR, et al. Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc Natl Acad Sci U S A 1991; 88: 3772-6.
- Frey U, Huang YY, Kandel ER. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 1993; 260: 1661-4.
- Gangarossa G, Di Benedetto M, O'Sullivan GJ, Dunleavy M, Alcacer C, Bonito-Oliva A, et al. Convulsant doses of a dopamine D1 receptor agonist result in Erk-dependent increases in Zif268 and Arc/Arg3.1 expression in mouse dentate gyrus. PloS one 2011; 6: e19415.
- Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, et al. D1 and D2 dopamine receptorregulated gene expression of striatonigral and striatopallidal neurons. Science 1990; 250: 1429-32.
- Ghorbani P, Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y. Effect of different patterns of lowfrequency stimulation on piriform cortex kindled seizures. Neurosci Lett 2007; 425: 162-6.
- Ghotbedin Z, Janahmadi M, Mirnajafi-Zadeh J, Behzadi G, Semnanian S. Electrical low frequency stimulation of the kindling site preserves the electrophysiological properties of the rat hippocampal CA1 pyramidal neurons from the destructive effects of amygdala kindling: the basis for a possible promising epilepsy therapy. Brain Stimul 2013; 6: 515-23.
- Gilbert ME, Mack CM. The NMDA antagonist, MK-801, suppresses long-term potentiation, kindling, and kindling-induced potentiation in the perforant path of the

unanesthetized rat. Brain Res 1990; 519: 89-96.

- Ginovart N, Wilson AA, Houle S, Kapur S. Amphetamine pretreatment induces a change in both D2-Receptor density and apparent affinity: a 11Craclopride positron emission tomography study in cats. Biol Psychiatry 2004; 55: 1188-94.
- Gonzalez-Islas C, Hablitz JJ. Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex. J Neurosci 2003; 23: 867-75.
- Goren MZ, Aker R, Yananli HR, Onat FY. Extracellular concentrations of catecholamines and amino acids in the dorsomedial hypothalamus of kindled rats. A microdialysis study. Pharmacology 2003; 68: 190-7.
- Grace AA, Floresco SB, Goto Y, Lodge DJ. Regulation of firing of dopaminergic neurons and control of goaldirected behaviors. Trends Neurosci 2007; 30: 220-7.
- Graves TD. Ion channels and epilepsy. QJM 2006; 99: 201-17.
- Gurden H, Takita M, Jay TM. Essential role of D1 but not D2 receptors in the NMDA receptor-dependent longterm potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci 2000; 20: RC106.
- Hansen N, Manahan-Vaughan D. Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb Cortex 2014; 24: 845-58.
- Heinemann U, Beck H, Dreier JP, Ficker E, Stabel J, Zhang CL. The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl 1992; 7: 273-80.
- Huang Q, Zhou D, Chase K, Gusella JF, Aronin N, DiFiglia M. Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus. Proc Natl Acad Sci U S A 1992; 89: 11988-92.
- Huang YY, Kandel ER. D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci U S A 1995; 92: 2446-50.
- Huang YY, Simpson E, Kellendonk C, Kandel ER. Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proc Natl Acad Sci U S A 2004; 101: 3236-41.
- Huntley GW, Morrison JH, Prikhozhan A, Sealfon SC. Localization of multiple dopamine receptor subtype mRNAs in human and monkey motor cortex and striatum. Brain Res Mol Brain Res 1992; 15: 181-8.
- Jackson DM, Westlind-Danielsson A. Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther 1994; 64: 291-370.
- Jahanshahi A, Mirnajafi-Zadeh J, Javan M, Mohammad-Zadeh M, Rohani R. The antiepileptogenic effect of electrical stimulation at different low frequencies is accompanied with change in adenosine receptors gene expression in rats. Epilepsia 2009; 50: 1768-79.
- Jay TM. Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol

Epilepsy and dopaminergic system

2003; 69: 375-90.

- Kerr JN, Wickens JR. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol 2001; 85: 117-24.
- Khan GM, Smolders I, Lindekens H, Manil J, Ebinger G, Michotte Y. Effects of diazepam on extracellular brain neurotransmitters in pilocarpine-induced seizures in rats. Eur J Pharmacol 1999; 373: 153-61.
- Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, De La Calle A. Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol 1998; 402: 353-71.
- Khan ZU, Gutiérrez A, Martín R, Peñafiel A, Rivera A, De La Calle A. Dopamine D5 receptors of rat and human brain. Neuroscience 2000; 100: 689-99.
- Koob GF. Drugs of abuse. anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 1992; 13: 177-84.
- Krug M, Chepkova AN, Geyer C, Ott T. Aminergic blockade modulales long-term potentiation in the dentate gyrus of freely moving rats. Brain res Bull 1983; 11: 1-6.
- Kulla A, Manahan-Vaughan D. Depotentiation in the dentate gyrus of freely moving rats is modulated by D1/D5 dopamine receptors. Cereb Cortex 2000; 10: 614-20.
- Kusuki T, Imahori Y, Ueda S, Inokuchi K. Dopaminergic modulation of LTP induction in the dentate gyrus of intact brain. Neuroreport 1997; 8: 2037-40.
- Kwon OB, Paredes D, Gonzalez CM, Neddens J, Hernandez L, Vullhorst D, et al. Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors. Proc Natl Acad Sci U S A 2008; 105: 15587-92.
- Landvogt C, Buchholz HG, Bernedo V, Schreckenberger M, Werhahn KJ. Alteration of dopamine D2/D3 receptor binding in patients with juvenile myoclonic epilepsy. Epilepsia 2010; 51: 1699-706.
- Le Moine C, Normand E, Bloch B. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci U S A 1991; 88: 4205-9.
- Lemon N, Manahan-Vaughan D. Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and longterm depression. J Neurosci 2006; 26: 7723-9.
- Levesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, et al. Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H] hydroxy-N, N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci U S A 1992; 89: 8155-9.
- Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, et al. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 1993; 90: 8861-5.
- Lisman JE, Grace AA. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 2005; 46: 703-13.

Lodge DJ, Grace AA. The hippocampus modulates

dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuropsychopharmacology 2006; 31: 1356-61.

- Lothman EW, Stringer JL, Bertram EH. The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res Suppl 1992; 7: 301-13.
- Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002; 25: 103-26.
- Mansour A, Meador-Woodruff JH, Bunzow JR, Civelli O, Akil H, Watson SJ. Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradiographic analysis. J Neurosci 1990; 10: 2587-600.
- Matsuda Y, Marzo A, Otani S. The presence of background dopamine signal converts long-term synaptic depression to potentiation in rat prefrontal cortex. J Neurosci 2006; 26: 4803-10.
- McNamara JO. Cellular and molecular basis of epilepsy. J Neurosci 1994; 14: 3413-25.
- Meador-Woodruff JH, Mansour A, Grandy DK, Damask SP, Civelli O, Watson SJ. Distribution of D5 dopamine receptor mRNA in rat brain. Neurosci Lett 1992; 145: 209-12.
- Meurs A, Clinckers R, Ebinger G, Michotte Y, Smolders I. Seizure activity and changes in hippocampal extracellular glutamate, GABA, dopamine and serotonin. Epilepsy Res 2008; 78: 50-9.
- Michael-Titus A, Revest P, Shortland P. The nervous system. Edinburgh: Churchill Livingstone, 2007.
- Millichap JG. Mechanisms of Epilepsy. Pediatr Neurol Briefs 2003; 17: 74.
- Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 1998; 78: 189-225.
- Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M, Ghorbani P, Sadegh M, et al. Effect of low frequency stimulation of perforant path on kindling rate and synaptic transmission in the dentate gyrus during kindling acquisition in rats. Epilepsy Res 2007; 75: 154-61.
- Mori A, Hiramatsu M, Namba S, Nishimoto A, Ohmoto T, Mayanagi Y, et al. Decreased dopamine level in the epileptic focus. Res Commun Chem Pathol Pharmacol 1987; 56: 157-64.
- O'Malley KL, Harmon S, Tang L, Todd RD. The rat dopamine D4 receptor: sequence, gene structure, and demonstration of expression in the cardiovascular system. New Biol 1992; 4: 137-46.
- O'Sullivan GJ, Dunleavy M, Hakansson K, Clementi M, Kinsella A, Croke DT, et al. Dopamine D 1 vs D 5 receptor-dependent induction of seizures in relation to DARPP-32, ERK1/2 and GluR1-AMPA signalling. Neuropharmacology 2008; 54: 1051-61.
- Otmakhova NA, Lisman JE. D1/D5 dopamine receptors inhibit depotentiation at CA1 synapses via cAMPdependent mechanism. J Neurosci 1998; 18: 1270-9.

Pacia SV, Doyle WK, Broderick PA. Biogenic amines in the

human neocortex in patients with neocortical and mesial temporal lobe epilepsy: identification with in situ microvoltammetry. Brain Res 2001; 899: 106-11.

- Paillé V, Picconi B, Bagetta V, Ghiglieri V, Sgobio C, Di Filippo M, et al. Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition. J Neurosci 2010; 30: 14182-93.
- Pintor M, Mefford IN, Hutter I, Pocotte SL, Wyler AR, Nadi NS. Levels of biogenic amines, their metabolites, and tyrosine hydroxylase activity in the human epileptic temporal cortex. Synapse 1990; 5: 152-6.
- Rezaei M. The role of dopamine D2-like receptors on the inhibitory effects of low frequency electrical stimulation in perforant path kindling in rat. M.Sc. Thesis. Tehran, 2016.
- Richfield EK, Penney JB, Young AB. Anatomical and affinity state comparisons between dopamine D 1 and D 2 receptors in the rat central nervous system. Neuroscience 1989; 30: 767-77.
- Rocchetti J, Isingrini E, Dal Bo G, Sagheby S, Menegaux A, Tronche F, et al. Presynaptic D 2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus. Biol Psychiatry 2015; 77: 513-25.
- Rocha L, Alonso-Vanegas M, Villeda-Hernandez J, Mujica M, Cisneros-Franco JM, Lopez-Gomez M, et al. Dopamine abnormalities in the neocortex of patients with temporal lobe epilepsy. Neurobiol Dis 2012; 45: 499-507.
- Sadegh M, Mirnajafi-Zadeh J, Javan M, Fathollahi Y, Mohammad-Zadeh M, Jahanshahi A, et al. The role of galanin receptors in anticonvulsant effects of lowfrequency stimulation in perforant path-kindled rats. Neuroscience 2007; 150: 396-403.
- Sander T, Berlin W, Ostapowicz A, Samochowiec J, Gscheidel N, Hoehe MR. Variation of the genes encoding the human glutamate EAAT2, serotonin and dopamine transporters and Susceptibility to idiopathic generalized epilepsy. Epilepsy Res 2000; 41: 75-81.
- Sato M. Long-lasting hypersensitivity to methamphetamine following amygdaloid kindling in cats: the relationship between limbic epilepsy and the psychotic state. Biol Psychiatry 1983; 18: 525-36.
- Savasta M, Dubois A, Scatton B. Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390. Brain Res 1986; 375: 291-301.
- Schotanus SM, Chergui K. Dopamine D1 receptors and group I metabotropic glutamate receptors contribute to the induction of long-term potentiation in the nucleus accumbens. Neuropharmacology 2008; 54: 837-44.
- Shahpari M, Mirnajafi-Zadeh J, Firoozabadi SM, Yadollahpour A. Effect of low-frequency electrical stimulation parameters on its anticonvulsant action during rapid perforant path kindling in rat. Epilepsy Res 2012; 99: 69-77.
- Shih TM, McDonough JH. Neurochemical Mechanisms in Soman-induced Seizures. J Appl Toxicol 1997; 17: 255-64.

- Sibley DR, Monsma FJ, Shen Y. Molecular neurobiology of dopaminergic receptors. Int Rev Neurobiol 1993; 35: 391-415.
- Slaght SJ, Paz T, Mahon S, Maurice N, Charpier S, Deniau JM. Functional organization of the circuits connecting the cerebral cortex and the basal ganglia: implications for the role of the basal ganglia in epilepsy. Epileptic Disord 2002; 4 Suppl 3: S9-22.
- Smolders I, Khan GM, Manil J, Ebinger G, Michotte Y. NMDA receptor-mediated pilocarpine-induced seizures: characterization in freely moving rats by microdialysis. Br J Pharmacol 1997; 121: 1171-9.
- Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics 1990.
- Starr MS. Regulation of seizure threshold by D1 versus D2 receptors. New York: Academic Press, 1993, p. 235-69.
- Starr MS. The role of dopamine in epilepsy. Synapse 1996; 22: 159-94.
- Stragier B, Clinckers R, Meurs A, De Bundel D, Sarre S, Ebinger G, et al. Involvement of the somatostatin-2 receptor in the anti-convulsant effect of angiotensin IV against pilocarpine-induced limbic seizures in rats. J Neurochem 2006; 98: 1100-13.
- Sutula T, Steward O. Quantitative analysis of synaptic potentiation during kindling of the perforant path. J Neurophysiol 1986; 56: 732-46.
- Swanson-Park JL, Coussens CM, Mason-Parker SE, Raymond CR, Hargreaves EL, Dragunow M, et al. A double dissociation within the hippocampus of dopamine D1/D5 receptor and beta-adrenergic receptor contributions to the persistence of long-term potentiation. Neuroscience 1999; 92: 485-97.
- Thomas MJ, Malenka RC, Bonci A. Modulation of long-term depression by dopamine in the mesolimbic system. J Neurosci 2000; 20: 5581-6.
- Trumpp-Kallmeyer S, Hoflack J, Bruinvels A, Hibert M. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J Med Chem 1992; 35: 3448-62.
- Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev 2000; 24: 125-32.
- Waddington JL. D1:D2 Dopamine Receptor Interactions. New York: Academic Press; 1993.
- Weiner DM, Levey AI, Sunahara RK, Niznik HB, O'dowd BF, Seeman P, et al. Dopamine D1 and D2 receptor mRNA expression in rat brain. Proc Natl Acad Sci U S A 1991; 88: 1859-63.
- Werhahn KJ, Landvogt C, Klimpe S, Buchholz HG, Yakushev I, Siessmeier T, et al. Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: an 18Ffallypride PET study. Epilepsia 2006; 47: 1392-6.
- Wilkison DM, Halpern LM. Turnover kinetics of dopamine and norepinephrine in the forebrain after kindling in rats. Neuropharmacology 1979; 18: 219-22.
- Xu TX, Yao WD. D1 and D2 dopamine receptors in

separate circuits cooperate to drive associative longterm potentiation in the prefrontal cortex. Proc Natl Acad Sci U S A 2010; 107: 16366-71.

- Yakushev IY, Dupont E, Buchholz H-G, Tillmanns J, Debus F, Cumming P, et al. In vivo imaging of dopamine receptors in a model of temporal lobe epilepsy. Epilepsia 2010; 51: 415-22.
- Zeraati M, Mirnajafi-Zadeh J, Javan M, Semnanian S, Namvar S. Effect of an ectonucleotidase inhibitor on anticonvulsant actions of low-frequency electrical

stimulation in perforant path rapid kindling in rats. Physiol Pharmacol 2010; 14: 115-126.

- Zhou R, Zhang Z, Zhu Y, Chen L, Sokabe M, Chen L. Deficits in development of synaptic plasticity in rat dorsal striatum following prenatal and neonatal exposure to low-dose bisphenol A. Neuroscience 2009; 159: 161-71.
- Zucker RS. Short-term synaptic plasticity. Annu Rev Neurosci 1989; 12: 13-31.