Volume 28, Issue 3 (September 2024)                   Physiol Pharmacol 2024, 28(3): 351-362 | Back to browse issues page


XML Print


Abstract:   (869 Views)

Introduction: The study investigates the protective effects of chrysin (CR) on the quality of oocytes and embryos in rats undergoing in vitro fertilization after treatment with cyclophosphamide (CPH). 
Methods: In this study, female NMRI mice were divided into five groups: I. control group, II. sham group, III. CPH group (receiving 120 mg/kg.wk of CPH intraperitoneally (IP), IV and V: CR groups receiving 5 and 10 mg/kg. day CR for four weeks. For oocyte induction, ten units of pregnant mare serum gonadotropin were injected IP after the last injection. All mice were then sacrificed by aspiration of their oocytes for further experiments. The growth of embryos was investigated using mature oocytes in vitro.
Results: CR significantly increased the number of 2 cells and 4 cells after 24 and 48 hours compared to the CPH group. Groups treated with CR showed a significant increase in the expression level of the BMP-15 and GDF-9 genes in a dose-dependent manner compared to the CPH group.
Conclusion: In mice, CR reduced oxidative damage and oocyte cytokine levels in ovarian tissue after CPH-induced degeneration.

Article number: 11
Full-Text [PDF 1258 kb]   (44 Downloads)    
Type of Manuscript: Experimental research article | Subject: Others

References
1. Athira V R, Shivanandappa T, Yajurvedi H N. Cyclophosphamide, a cancer chemotherapy drug-induced early onset of reproductive senescence and alterations in reproductive performance and their prevention in mice. Drug and Chemical Toxicology. 2022; 45(2): 760-766. [DOI:10.1080/01480545.2020.1774773]
2. Athira V R, Saranya M K, Shivanandappa T, Yajurvedi H N. Multiple dose treatment reduces cyclophosphamide-induced ovarian follicular loss in mice. Birth Defects Research. 2020; 112(1): 71-80. [DOI:10.1002/bdr2.1603]
3. Agarwal A, Saleh R A, Bedaiwy M A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertility and sterility. 2003; 79(4): 829-843. [DOI:10.1016/S0015-0282(02)04948-8]
4. Aktas C, Kanter M, Kocak Z. Antiapoptotic and proliferative activity of curcumin on ovarian follicles in mice exposed to whole body ionizing radiation. Toxicology and industrial health. 2012; 28(9): 852-863. [DOI:10.1177/0748233711425080]
5. Amini E, Baharara J, Nikdel N, Salek Abdollahi F. Cytotoxic and pro-apoptotic effects of honey bee venom and chrysin on human ovarian cancer cells. Asia Pacific Journal of Medical Toxicology. 2015; 4(2): 68-73.
6. Ahmad H I, Ahmad M J, Adeel M M, Asif A R, Du X. Positive selection drives the evolution of endocrine regulatory bone morphogenetic protein system in mammals. Oncotarget. 2018; 9(26): 18435. [DOI:10.18632/oncotarget.24240]
7. Brechbuhl H M, Kachadourian R, Min E, Chan D, Day B J. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: the role of glutathione. Toxicology and applied pharmacology. 2012; 258(1): 1-9. [DOI:10.1016/j.taap.2011.08.004]
8. Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Farzadnia M, Khazaei M. Thymoquinone protects the rat kidneys against renal fibrosis. Research in pharmaceutical sciences. 2017; 12(6): 479. [DOI:10.4103/1735-5362.217428]
9. Boots C E, Jungheim E S. Inflammation and human ovarian follicular dynamics. Journal 2015; 33: 270-275. [DOI:10.1055/s-0035-1554928]
10. Chen Y, Zhao Y, Miao C, Yang L, Wang R, Chen B, et al. Quercetin alleviates cyclophosphamide-induced premature ovarian insufficiency in mice by reducing mitochondrial oxidative stress and pyroptosis in granulosa cells. Journal of Ovarian Research 2022; 15(1): 138. [DOI:10.1186/s13048-022-01080-3]
11. Chen XY, Xia HX, Guan HY, Li B, Zhang W. Follicle loss and apoptosis in cyclophosphamide-treated mice: what’s the matter? International journal of molecular sciences 2016; 17(6): 836. [DOI:10.3390/ijms17060836]
12. Demir EA, Mentese A, Demir S, Küçük H, Türkmen N, Aliyazicioğlu Y. Evaluation of therapeutic effect of chrysin against 5-fluorouracil-induced ovarian damage in rats. Farabi Tıp Dergisi. 2023; 2(1): 1-7. [DOI:10.59518/farabimedj.1221397]
13. Guigon CJ, Mazaud S, Forest MG, Brailly-Tabard S, Coudouel N, Magre S. Unaltered development of the initial follicular waves and normal pubertal onset in female rats after neonatal deletion of the follicular reserve. Endocrinology 2003; 144(8): 3651-3662. [DOI:10.1210/en.2003-0072]
14. Helsby N A, Yong M, van Kan M, de Zoysa J R, Burns K E. The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes. British journal of clinical pharmacology. 2019: 85(9): 1925-1934. [DOI:10.1111/bcp.14031]
15. Hou J, Lei Z, Cui L, Hou Y, Yang L, An R, et al. Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats. Ecotoxicology and Environmental Safety 2021; 212: 112012. [DOI:10.1016/j.ecoenv.2021.112012]
16. Jessmon P, Boulanger T, Zhou W, Patwardhan P. Epidemiology and treatment patterns of epithelial ovarian cancer. Expert review of anticancer therapy 2017; 17(5): 427-437. [DOI:10.1080/14737140.2017.1299575]
17. Jiao Y, Jiang T, Lin Q, Guo J, Bei C, Cong P, et al. Molecular characterization of the follicular development of BMP15-edited pigs. Reproduction 2023; 166: 247-261. [DOI:10.1530/REP-23-0034]
18. Jang H, Hong K, Choi Y. Melatonin and fertoprotective adjuvants: prevention against premature ovarian failure during chemotherapy. International journal of molecular sciences 2017; 18(6): 1221. [DOI:10.3390/ijms18061221]
19. Kovanci E, Schutt A K. Premature ovarian failure: clinical presentation and treatment. Obstetrics and Gynecology Clinics 2015; 42(1): 153-161. [DOI:10.1016/j.ogc.2014.10.004]
20. Khoo BY, Chua SL, Balaram P. Apoptotic effects of chrysin in human cancer cell lines. International journal of molecular sciences 2010; 11(5): 2188-2199. [DOI:10.3390/ijms11052188]
21. Koike M, Kanda A, Kido K, Goto K, Kumasako Y, Nagaki M, et al. Effects of cyclophosphamide administration on the in vitro fertilization of mice. Reproductive Medicine and Biology 2018; 17: 262-267. [DOI:10.1002/rmb2.12099]
22. Kuang Y, Chen Q, Hong Q, Lyu Q, Ai A, Fu Y, Shoham Z. Double stimulations during the follicular and luteal phases of poor responders in IVF/ICSI programmes (Shanghai protocol). Reproductive biomedicine online 2014; 29(6): 684-691. [DOI:10.1016/j.rbmo.2014.08.009]
23. Lin J, Li X-l, Song H, Li Q, Wang M-y, Qiu X-m, et al. A general description for Chinese medicine in treating premature ovarian failure. Chinese journal of integrative medicine 2017; 23: 91-97. [DOI:10.1007/s11655-016-2642-7]
24. Li X, Li X, Deng L. Chrysin reduces inflammation and oxidative stress and improves ovarian function in D-gal-induced premature ovarian failure. Bioengineered 2022; 13(4): 8291-8301. [DOI:10.1080/21655979.2021.2005991]
25. Mantawy E M, Said R S, Abdel-Aziz A K. Mechanistic approach of the inhibitory effect of chrysin on inflammatory and apoptotic events implicated in radiation-induced premature ovarian failure: emphasis on TGF-β/MAPKs signaling pathway. Biomedicine & Pharmacotherapy 2019; 109: 293-303. [DOI:10.1016/j.biopha.2018.10.092]
26. Mentese A, Alemdar N T, Livaoglu A, Ayazoglu Demir E, Aliyazicioglu Y, Demir S. Suppression of cisplatin-induced ovarian injury in rats by chrysin: an experimental study. Journal of Obstetrics and Gynaecology 2022; 42(8): 3584-3590. [DOI:10.1080/01443615.2022.2130201]
27. Melekoglu R, Ciftci O, Eraslan S, Alan S, Basak N. The protective effects of glycyrrhetinic acid and chrysin against ischemia-reperfusion injury in rat ovaries. BioMed research international 2018; 2018: 5421308. [DOI:10.1155/2018/5421308]
28. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Human reproduction update. 2001; 7(6): 535-543. [DOI:10.1093/humupd/7.6.535]
29. Özatik F Y, Özatik O, Tekşen Y, Koçak H, Arı N S, Ünel Ç Ç. Dose-Dependent Effect of Hydrogen Sulfide in Cyclophosphamide-Induced Hepatotoxicity in Rats. The Turkish Journal of Gastroenterology 2023; 34: 626. [DOI:10.5152/tjg.2023.22040]
30. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. The Lancet Global Health 2016; 4(9): 609-616. [DOI:10.1016/S2214-109X(16)30143-7]
31. Siegel R L, Miller K D, Jemal A. Cancer statistics, 2018. CA: a cancer journal for clinicians 2018; 68: 7-30. [DOI:10.3322/caac.21442]
32. Shahbaz M, Naeem H, Imran M, Ul Hassan H, Alsagaby S A, Al Abdulmonem W, et al. Chrysin a promising anticancer agent: Recent perspectives. International Journal of Food Properties 2023; 26: 2294-2337. [DOI:10.1080/10942912.2023.2246678]
33. Sanfins A, Rodrigues P, Albertini D F. GDF-9 and BMP-15 direct the follicle symphony. Journal of assisted reproduction and genetics. 2018; 35: 1741-1750. [DOI:10.1007/s10815-018-1268-4]
34. Shao J J, Zhang A P, Qin W, Zheng L, Zhu Y F, Chen X. AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 lung cancer cells. Biochemical and Biophysical Research Communications 2012; 423(3): 448-453. [DOI:10.1016/j.bbrc.2012.05.123]
35. Samarghandian S, Afshari J T, Davoodi S. Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics 2011; 66(6): 1073-1079. [DOI:10.1590/S1807-59322011000600026]
36. Salimi A, Shabani M, Mohammadi H, Sudi V. Intraperitoneal pretreatment of ellagic acid and chrysin alleviate ifosfamide-induced neurotoxicity, but betanin induces death in male wistar rats. Human & Experimental Toxicology 2023; 42: 09603271221147883. [DOI:10.1177/09603271221147883]
37. Temel Y, Çağlayan C, Ahmed BM, Kandemir F M, Çiftci M. The effects of chrysin and naringin on cyclophosphamide-induced erythrocyte damage in rats: biochemical evaluation of some enzyme activities in vivo and in vitro. Naunyn-Schmiedeberg’s Archives of Pharmacology 2021; 394: 645-654. [DOI:10.1007/s00210-020-01987-y]
38. Taslimi P, Kandemir F M, Demir Y, İleritürk M, Temel Y, Caglayan C, et al. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. Journal of biochemical and molecular toxicology 2019; 33: e22313. [DOI:10.1002/jbt.22313]
39. Yuksel A, Bildik G, Senbabaoglu F, Akin N, Arvas M, Unal F, et al. The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells. Human reproduction 2015; 30: 2926-2935. [DOI:10.1093/humrep/dev256]
40. Wu N L, Fang J Y, Chen M, Wu C J, Huang C C, Hung C F. Chrysin protects epidermal keratinocytes from UVA-and UVB-induced damage. Journal of agricultural and food chemistry 2011; 59(15): 8391-8400. [DOI:10.1021/jf200931t]
41. Wei J H, Yuan X Y, Zhang J M, Wei J Q. Caspase activity and oxidative stress of granulosa cells are associated with the viability and developmental potential of vitrified immature oocytes. European Journal of Obstetrics & Gynecology and Reproductive Biology 2016; 198: 22-26. [DOI:10.1016/j.ejogrb.2015.12.010]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.