Volume 28, Issue 3 (September 2024)                   Physiol Pharmacol 2024, 28(3): 257-270 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gudadappanavar A, Hombal P, Benni J. An Evidence-Based Systematic Review: The Impact of Artificial Intelligence in Pharmacology and Health Research. Physiol Pharmacol 2024; 28 (3) : 3
URL: http://ppj.phypha.ir/article-1-2189-en.html
Abstract:   (1303 Views)

Introduction: Artificial intelligence (AI) has gradually become a vital part of health care currently. AI and machine learning (ML) have made significant progress in recent years, particularly in terms of deep learning (DL) approaches in pharmacology. AI will have a significant impact on pharmacologists at all levels in the coming decade, including drug development and research, medical education, and clinical practice. AI is transforming health research, by boosting data analysis, providing diagnostic tools, predicting outcomes, and helping develop personalized treatments. AI affords early detection of diseases and creates virtual patient models to assess treatments. In this reverence, the objective of this systematic review is to evaluate the impact of AI in the field of Pharmacology and health research. 
Methods: The review was performed by preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. The studies published from 2009 to 2022 were identified using specific keywords through searches on PubMed, Google Scholar, Web of Science, Science Direct, and Cochrane review databases. The explorations retrieved 972 studies and on subsequent screening with the inclusion and exclusion criteria, 71 studies were included for this systematic review.
Results: The collective results showed that AI plays a significant role in the fields of pharmacology, research, medical education, health care diagnostics, and clinical practice, with high accuracy and efficiency.
Conclusion: AI has emerged as a powerful tool in pharmacology and healthcare, offering innovative solutions to longstanding challenges. It has revolutionized and digitally transformed the manual healthcare system into an automated version in many areas.

Article number: 3
Full-Text [PDF 868 kb]   (171 Downloads)    
Type of Manuscript: Review | Subject: Clinical Physiology/Pharmacology

References
1. Abatemarco D, Perera S, Bao S H, Desai S, Assuncao B, Tetarenko N, et al. Training augmented intelligent capabilities for pharmacovigilance: applying deep-learning approaches to individual case safety report processing. Pharmaceut Med. 2018; 32(6): 391-401. [DOI:10.1007/s40290-018-0251-9]
2. Aldahdooh J, Tanoli Z, Tang J. R-BERT-CNN: Drug-target interactions extraction from biomedical literature. arXiv preprint arXiv:2111.00611 2021.
3. Alimadadi A, Aryal S, Manandhar I, Munroe P B, Joe B, Cheng X. Artificial intelligence and machine learning to fight COVID-19. Physiol Genomics. 2020; 52(4): 200-202. [DOI:10.1152/physiolgenomics.00029.2020]
4. Ampadu H H, Hoekman J, de Bruin M L, Pal S N, Olsson S, Sartori D, et al. Adverse drug reaction reporting in Africa and a comparison of individual case safety report characteristics between Africa and the rest of the world: analyses of spontaneous reports in VigiBase®. Drug safety 2016; 39: 335-345. [DOI:10.1007/s40264-015-0387-4]
5. Arnold M H. Teasing out artificial intelligence in medicine: an ethical critique of artificial intelligence and machine learning in medicine. Journal of bioethical inquiry 2021; 18: 121-139. [DOI:10.1007/s11673-020-10080-1]
6. Athreya A P, Iyer R, Wang L, Weinshilboum R M, Bobo W V. Integration of machine learning and pharmacogenomic biomarkers for predicting response to antidepressant treatment: can computational intelligence be used to augment clinical assessments? Pharmacogenomics. 2019; 20(14): 983-938. [DOI:10.2217/pgs-2019-0119]
7. Bakkar N, Kovalik T, Lorenzini I, Spangler S, Lacoste A, Sponaugle K, et al. Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol 2018; 135: 227-247. [DOI:10.1007/s00401-017-1785-8]
8. Baron R J. Using artificial intelligence to make use of electronic health records less painful-fighting fire with fire. JAMA Netw Open. 2021; 4(7): e2118298. [DOI:10.1001/jamanetworkopen.2021.18298]
9. Basile A O, Yahi A, Tatonetti N P. Artificial intelligence for drug toxicity and safety. Trends Pharmacol Sci. 2019; 40(9): 624-635. [DOI:10.1016/j.tips.2019.07.005]
10. Benbya H, Davenport T H, Pachidi S. Artificial intelligence in organizations: current state and future opportunities. MIS Quarterly Executive, 2020. 19(4): 9-21. [DOI:10.2139/ssrn.3741983]
11. Blais C, Jean S, Sirois C, Rochette L, Plante C, Larocque I, et al. Quebec integrated chronic disease surveillance system (QICDSS), an innovative approach. Chronic Dis Inj Can. 2014; 34(4): 226-235. [DOI:10.24095/hpcdp.34.4.06]
12. Bosale S, Pujari V, Multani Z. Advantages and disadvantages of artificial intelligence. Aayushi International Interdisciplinary Research Journal. 2020, 9(1): 227-230.
13. Cabitza F, Rasoini R, Gensini G F. Unintended consequences of machine learning in medicine. JAMA. 2017; 318(6): 517-518. [DOI:10.1001/jama.2017.7797]
14. Chan K S, Zary N. Applications and challenges of implementing artificial intelligence in medical education. Integrative Review JMIR Med Educ 2019; 5(1): e13930. [DOI:10.2196/13930]
15. Chaudhari R, Fong L W, Tan Z, Huang B, Zhang S. An up-to-date overview of computational polypharmacology in modern drug discovery. Expert Opin Drug Discov. 2020; 15(9): 1025-1044. [DOI:10.1080/17460441.2020.1767063]
16. Chen J, See K C. Artificial intelligence for COVID-19: rapid review. J Med Internet Res. 2020; 22(10): e21476. [DOI:10.2196/21476]
17. Christopoulou F, Tran T T, Sahu S K, Miwa M, Ananiadou S. Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods. J Am Med Inform Assoc. 2020; 27(1): 39-46. [DOI:10.1093/jamia/ocz101]
18. Dandala B, Joopudi V, Devarakonda M. IBM Research System at MADE 2018: detecting adverse drug events from electronic health records. Journal 2018: 39-47.
19. Dodziuk H. Applications of 3D printing in healthcare. Kardiochir Torakochirurgia Pol. 2016; 13(3): 283-293. [DOI:10.5114/kitp.2016.62625]
20. D’Souza S, Prema K V, Balaji S. Machine learning models for drug-target interactions: current knowledge and future directions. Drug Discov Today. 2020; 25(4): 748-756. [DOI:10.1016/j.drudis.2020.03.003]
21. Duke J, Faiola A, Kharrazi H. A novel visualization tool for evaluating medication side-effects in multi-drug regimens. Human-Computer Interaction 2009: 478-487. [DOI:10.1007/978-3-642-02583-9_52]
22. Friedrichs M, Shoshi A. History and Future of KALIS: Towards computer-assisted decision making in prescriptive medicine. J Integr Bioinform. 2019; 16(3): 20190011. [DOI:10.1515/jib-2019-0011]
23. Ganbaatar U, Liu C. CRISPR-based COVID-19 testing: toward next-generation point-of-care diagnostics. Frontiers in cellular and infection microbiology 2021; 11: 663949. [DOI:10.3389/fcimb.2021.663949]
24. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta R K, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021; 25(3): 1315-1360. [DOI:10.1007/s11030-021-10217-3]
25. Han E R, Yeo S, Kim M J, Lee Y H, Park K H, Roh H. Medical education trends for future physicians in the era of advanced technology and artificial intelligence: an integrative review. BMC medical education. 2019; 19(1): 1-5. [DOI:10.1186/s12909-019-1891-5]
26. Hashimoto D A, Rosman G, Rus D, Meireles O R. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018; 268(1): 70-76. [DOI:10.1097/SLA.0000000000002693]
27. Hessler G, Baringhaus K H. Artificial intelligence in drug design. Molecules. 2018; 23(10): 2520. [DOI:10.3390/molecules23102520]
28. Hu M, Ge X, Chen X, Mao W, Qian X, Yuan W E. Micro/nanorobot: a promising targeted drug delivery system. Pharmaceutics. 2020; 12(7): 665. [DOI:10.3390/pharmaceutics12070665]
29. Jang I J. Artificial intelligence in drug development: clinical pharmacologist perspective. Transl Clin Pharmacol. 2019; 27(3): 87-88. [DOI:10.12793/tcp.2019.27.3.87]
30. Jecker N S. Sociable robots for later life: Carebots, friendbots and sexbots. Sex robots: Social impact and the future of human relations 2021: 25-40. [DOI:10.1007/978-3-030-82280-4_2]
31. Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin Drug Discov. 2021; 16(9): 949-959. [DOI:10.1080/17460441.2021.1909567]
32. Kalinin A A, Higgins G A, Reamaroon N, Soroushmehr S, Allyn-Feuer A, Dinov I D, et al. Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics. 2018; 19(7): 629-650. [DOI:10.2217/pgs-2018-0008]
33. Keskinbora K H. Medical ethics considerations on artificial intelligence. J Clin Neurosci. 2019; 64: 277-282. [DOI:10.1016/j.jocn.2019.03.001]
34. Khanzode K C, Sarode R D. Advantages and disadvantages of artificial intelligence and machine learning: aliterature review. International Journal of Library & Information Science (IJLIS). 2020; 9(1):3.
35. Kompa B, Hakim J B, Palepu A, Kompa K G, Smith M, Bain P A, et al. Artificial intelligence based on machine learning in pharmacovigilance: a scoping review. Drug Safety. 2022; 45(5): 477-491. [DOI:10.1007/s40264-022-01176-1]
36. Kornegay J G, Leone K A, Wallner C, Hansen M, Yarris L M. Development and implementation of an asynchronous emergency medicine residency curriculum using a web-based platform. Intern Emerg Med. 2016; 11(8): 1115-1120. [DOI:10.1007/s11739-016-1418-6]
37. Lake F. Artificial intelligence in drug discovery: What is new, and what is next? Advances in clinical immunology, medical microbiology, COVID-19, and big data: Jenny Stanford Publishing, 2021: 539-545.
38. Lavan A H, O’Mahony D, Gallagher P, Fordham R, Flanagan E, Dahly D, et al. The effect of SENATOR (Software ENgine for the Assessment and optimisation of drug and non-drug Therapy in Older peRsons) on incident adverse drug reactions (ADRs) in an older hospital cohort - Trial Protocol. BMC Geriatr. 2019; 19(1): 40. [DOI:10.1186/s12877-019-1047-9]
39. Lin E, Kuo P H, Liu Y L, Yu Y W, Yang A C, Tsai S J. Prediction of antidepressant treatment response and remission using an ensemble machine learning framework. Pharmaceuticals (Basel). 2020; 13(10): 305. [DOI:10.3390/ph13100305]
40. Lociciro A, Guillon A, Bodet-Contentin L. A telepresence robot in the room of a COVID-19 patient can provide virtual family presence. Can J Anaesth. 2021; 68(11): 1705-1706. [DOI:10.1007/s12630-021-02039-6]
41. Lysenko A, Sharma A, Boroevich KA, Tsunoda T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci Alliance. 2018; 1(6): e201800098. [DOI:10.26508/lsa.201800098]
42. Mak K K and Pichika M R. Artificial intelligence in drug development: present status and future prospects, Drug Discovery Today, 2019, 24(3): 773-780. [DOI:10.1016/j.drudis.2018.11.014]
43. Masters K. Artificial intelligence in medical education. Med Teach. 2019; 41(9): 976-980. [DOI:10.1080/0142159X.2019.1595557]
44. McDonald E G, Wu P E, Rashidi B, Wilson M G, Bortolussi-Courval É, Atique A, et al. The medsafer study-electronic decision support for deprescribing in hospitalized older adults: a cluster randomized clinical trial. JAMA Intern Med. 2022; 182(3): 265-273. [DOI:10.1001/jamainternmed.2021.7429]
45. Meenakshi K, Safa M, Karthick T, Sivaranjani N. A novel study of machine learning algorithms for classifying health care data. Research J Pharm and Tech. 2017; 10(5): 1429-1432. [DOI:10.5958/0974-360X.2017.00253.0]
46. Mockute R, Desai S, Perera S, Assuncao B, Danysz K, Tetarenko N, et al. Artificial intelligence within pharmacovigilance: a means to identify cognitive services and the framework for their validation. Pharmaceut Med. 2019; 33(2): 109-120. [DOI:10.1007/s40290-019-00269-0]
47. Müller-Staub M, de Graaf-Waar H, Paans W. An internationally consented standard for nursing process-clinical decision support systems in electronic health records. Comput Inform Nurs. 2016; 34(11): 493-502. [DOI:10.1097/CIN.0000000000000277]
48. Kotni M, Kaur S, Prakash A, Medhi B. Artificial intelligence in pharmacovigilance: practical utility. Indian Journal of Pharmacology. 2019; 51(6): 373-376. [DOI:10.4103/ijp.IJP_814_19]
49. Nelson G S. Bias in artificial intelligence. North Carolina medical journal 2019; 80: 220-222. [DOI:10.18043/ncm.80.4.220]
50. Ngiam K Y, Khor I W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019; 20(5): 262-273. [DOI:10.1016/S1470-2045(19)30149-4]
51. Ong E, Cooke M F, Huffman A, Xiang Z, Wong M U, Wang H, et al. Vaxign2: The second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Research. 2021;49(W1): 671-678. [DOI:10.1093/nar/gkab279]
52. Palanica A, Docktor M J, Lieberman M, Fossat Y. The need for artificial intelligence in digital therapeutics. Digit Biomark. 2020; 4(1): 21-25. [DOI:10.1159/000506861]
53. Paranjape K, Schinkel M, Nannan Panday R, Car J, Nanayakkara P. Introducing artificial intelligence training in medical education. JMIR Med Educ. 2019; 5(2): e16048. [DOI:10.2196/16048]
54. Parikh R B, Teeple S, Navathe A S. Addressing bias in artificial intelligence in health care. JAMA. 2019; 322(24): 2377-2378. [DOI:10.1001/jama.2019.18058]
55. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade R K. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021; 26(1): 80-93. [DOI:10.1016/j.drudis.2020.10.010]
56. Rodrigues P P, Ferreira-Santos D, Silva A, Polónia J, Ribeiro-Vaz I. Causality assessment of adverse drug reaction reports using an expert-defined Bayesian network. Artif Intell Med. 2018; 91: 12-22. [DOI:10.1016/j.artmed.2018.07.005]
57. Shakshuki E, Reid M. Multi-agent system applications in healthcare: current technology and future roadmap. Procedia Computer Science. 2015; 52: 252-261. [DOI:10.1016/j.procs.2015.05.071]
58. Silva P, Jacobs D, Kriak J, Abu-Baker A, Udeani G, Neal G, et al. Implementation of pharmacogenomics and artificial intelligence tools for chronic disease management in primary care setting. J Pers Med. 2021; 11(6): 443. [DOI:10.3390/jpm11060443]
59. Sirois C, Khoury R, Durand A, Deziel P L, Bukhtiyarova O, Chiu Y, et al. Exploring polypharmacy with artificial intelligence: data analysis protocol. BMC Med Inform Decis Mak. 2021; 21(1): 219. [DOI:10.1186/s12911-021-01583-x]
60. Smith J, Stein V. SPORCalc: A development of a database analysis that provides putative metabolic enzyme reactions for ligand-based drug design. Comput Biol Chem. 2009; 33(2): 149-159. [DOI:10.1016/j.compbiolchem.2008.11.002]
61. Souri EA, Laddach R, Karagiannis SN, Papageorgiou LG, Tsoka S. A computational approach to predict drug-target interactions using machine learning. BMC Bioinformatics. 2022 Apr 4;23(121).
62. Suhail M, Khan A, Rahim M A, Naeem A, Fahad M, Badshah S F, Jabar A, Janakiraman AK. Micro and nanorobot-based drug delivery: an overview. J Drug Target. 2022; 30(4): 349-358. [DOI:10.1080/1061186X.2021.1999962]
63. Sun H, Scott D O. Structure-based drug metabolism predictions for drug design. Chem Biol Drug Des. 2010; 75(1): 3-17. [DOI:10.1111/j.1747-0285.2009.00899.x]
64. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019; 18(6): 463-477. [DOI:10.1038/s41573-019-0024-5]
65. Vanhaelen Q, Lin YC, Zhavoronkov A. The advent of generative chemistry. ACS Med Chem Lett. 2020; 11(8): 1496-1505. [DOI:10.1021/acsmedchemlett.0c00088]
66. Vermeer N S, Straus S M, Mantel-Teeuwisse A K, Domergue F, Egberts T C, Leufkens H G, et al. Traceability of biopharmaceuticals in spontaneous reporting systems: a cross-sectional study in the FDA Adverse Event Reporting System (FAERS) and Eudra Vigilance databases. Drug Saf. 2013; 36(8): 617-625. [DOI:10.1007/s40264-013-0073-3]
67. Whirl-Carrillo M, McDonagh E M, Hebert J M, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012; 92(4): 414-417. [DOI:10.1038/clpt.2012.96]
68. Wilfling D, Hinz A, Steinhäuser J. Big data analysis techniques to address polypharmacy in patients - a scoping review. BMC Fam Pract. 2020; 21(1): 180. [DOI:10.1186/s12875-020-01247-1]
69. Wolbrink T A, Burns J P. Internet-based learning and applications for critical care medicine. J Intensive Care Med. 2012; 27(5): 322-332. [DOI:10.1177/0885066611429539]
70. Yang X, Bian J, Gong Y, Hogan W R, Wu Y. MADEx: A system for detecting medications, adverse drug events, and their relations from clinical notes. Drug Saf. 2019; 42(1): 123-133. [DOI:10.1007/s40264-018-0761-0]
71. Yew G C K. Trust in and ethical design of carebots: the case for ethics of care. Int J Soc Robot. 2021; 13(4): 629-645. [DOI:10.1007/s12369-020-00653-w]
72. Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017; 22(11): 1680-1685. [DOI:10.1016/j.drudis.2017.08.010]
73. Zhao Z, Ma Y, Mushtaq A, Rajper A M A, Shehab M, Heybourne A, et al. Applications of robotics, artificial intelligence, and digital technologies during COVID-19: A Review. Disaster Med Public Health Prep. 2021: 1-11. [DOI:10.1017/dmp.2021.9]
74. Zhou XY, Guo Y, Shen M, Yang G Z. Application of artificial intelligence in surgery. Front Med. 2020; 14(4): 417-430. [DOI:10.1007/s11684-020-0770-0]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.