1. Abatemarco D, Perera S, Bao S H, Desai S, Assuncao B, Tetarenko N, et al. Training augmented intelligent capabilities for pharmacovigilance: applying deep-learning approaches to individual case safety report processing. Pharmaceut Med. 2018; 32(6): 391-401. [
DOI:10.1007/s40290-018-0251-9]
2. Aldahdooh J, Tanoli Z, Tang J. R-BERT-CNN: Drug-target interactions extraction from biomedical literature. arXiv preprint arXiv:2111.00611 2021.
3. Alimadadi A, Aryal S, Manandhar I, Munroe P B, Joe B, Cheng X. Artificial intelligence and machine learning to fight COVID-19. Physiol Genomics. 2020; 52(4): 200-202. [
DOI:10.1152/physiolgenomics.00029.2020]
4. Ampadu H H, Hoekman J, de Bruin M L, Pal S N, Olsson S, Sartori D, et al. Adverse drug reaction reporting in Africa and a comparison of individual case safety report characteristics between Africa and the rest of the world: analyses of spontaneous reports in VigiBase®. Drug safety 2016; 39: 335-345. [
DOI:10.1007/s40264-015-0387-4]
5. Arnold M H. Teasing out artificial intelligence in medicine: an ethical critique of artificial intelligence and machine learning in medicine. Journal of bioethical inquiry 2021; 18: 121-139. [
DOI:10.1007/s11673-020-10080-1]
6. Athreya A P, Iyer R, Wang L, Weinshilboum R M, Bobo W V. Integration of machine learning and pharmacogenomic biomarkers for predicting response to antidepressant treatment: can computational intelligence be used to augment clinical assessments? Pharmacogenomics. 2019; 20(14): 983-938. [
DOI:10.2217/pgs-2019-0119]
7. Bakkar N, Kovalik T, Lorenzini I, Spangler S, Lacoste A, Sponaugle K, et al. Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol 2018; 135: 227-247. [
DOI:10.1007/s00401-017-1785-8]
8. Baron R J. Using artificial intelligence to make use of electronic health records less painful-fighting fire with fire. JAMA Netw Open. 2021; 4(7): e2118298. [
DOI:10.1001/jamanetworkopen.2021.18298]
9. Basile A O, Yahi A, Tatonetti N P. Artificial intelligence for drug toxicity and safety. Trends Pharmacol Sci. 2019; 40(9): 624-635. [
DOI:10.1016/j.tips.2019.07.005]
10. Benbya H, Davenport T H, Pachidi S. Artificial intelligence in organizations: current state and future opportunities. MIS Quarterly Executive, 2020. 19(4): 9-21. [
DOI:10.2139/ssrn.3741983]
11. Blais C, Jean S, Sirois C, Rochette L, Plante C, Larocque I, et al. Quebec integrated chronic disease surveillance system (QICDSS), an innovative approach. Chronic Dis Inj Can. 2014; 34(4): 226-235. [
DOI:10.24095/hpcdp.34.4.06]
12. Bosale S, Pujari V, Multani Z. Advantages and disadvantages of artificial intelligence. Aayushi International Interdisciplinary Research Journal. 2020, 9(1): 227-230.
13. Cabitza F, Rasoini R, Gensini G F. Unintended consequences of machine learning in medicine. JAMA. 2017; 318(6): 517-518. [
DOI:10.1001/jama.2017.7797]
14. Chan K S, Zary N. Applications and challenges of implementing artificial intelligence in medical education. Integrative Review JMIR Med Educ 2019; 5(1): e13930. [
DOI:10.2196/13930]
15. Chaudhari R, Fong L W, Tan Z, Huang B, Zhang S. An up-to-date overview of computational polypharmacology in modern drug discovery. Expert Opin Drug Discov. 2020; 15(9): 1025-1044. [
DOI:10.1080/17460441.2020.1767063]
16. Chen J, See K C. Artificial intelligence for COVID-19: rapid review. J Med Internet Res. 2020; 22(10): e21476. [
DOI:10.2196/21476]
17. Christopoulou F, Tran T T, Sahu S K, Miwa M, Ananiadou S. Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods. J Am Med Inform Assoc. 2020; 27(1): 39-46. [
DOI:10.1093/jamia/ocz101]
18. Dandala B, Joopudi V, Devarakonda M. IBM Research System at MADE 2018: detecting adverse drug events from electronic health records. Journal 2018: 39-47.
19. Dodziuk H. Applications of 3D printing in healthcare. Kardiochir Torakochirurgia Pol. 2016; 13(3): 283-293. [
DOI:10.5114/kitp.2016.62625]
20. D’Souza S, Prema K V, Balaji S. Machine learning models for drug-target interactions: current knowledge and future directions. Drug Discov Today. 2020; 25(4): 748-756. [
DOI:10.1016/j.drudis.2020.03.003]
21. Duke J, Faiola A, Kharrazi H. A novel visualization tool for evaluating medication side-effects in multi-drug regimens. Human-Computer Interaction 2009: 478-487. [
DOI:10.1007/978-3-642-02583-9_52]
22. Friedrichs M, Shoshi A. History and Future of KALIS: Towards computer-assisted decision making in prescriptive medicine. J Integr Bioinform. 2019; 16(3): 20190011. [
DOI:10.1515/jib-2019-0011]
23. Ganbaatar U, Liu C. CRISPR-based COVID-19 testing: toward next-generation point-of-care diagnostics. Frontiers in cellular and infection microbiology 2021; 11: 663949. [
DOI:10.3389/fcimb.2021.663949]
24. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta R K, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021; 25(3): 1315-1360. [
DOI:10.1007/s11030-021-10217-3]
25. Han E R, Yeo S, Kim M J, Lee Y H, Park K H, Roh H. Medical education trends for future physicians in the era of advanced technology and artificial intelligence: an integrative review. BMC medical education. 2019; 19(1): 1-5. [
DOI:10.1186/s12909-019-1891-5]
26. Hashimoto D A, Rosman G, Rus D, Meireles O R. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018; 268(1): 70-76. [
DOI:10.1097/SLA.0000000000002693]
27. Hessler G, Baringhaus K H. Artificial intelligence in drug design. Molecules. 2018; 23(10): 2520. [
DOI:10.3390/molecules23102520]
28. Hu M, Ge X, Chen X, Mao W, Qian X, Yuan W E. Micro/nanorobot: a promising targeted drug delivery system. Pharmaceutics. 2020; 12(7): 665. [
DOI:10.3390/pharmaceutics12070665]
29. Jang I J. Artificial intelligence in drug development: clinical pharmacologist perspective. Transl Clin Pharmacol. 2019; 27(3): 87-88. [
DOI:10.12793/tcp.2019.27.3.87]
30. Jecker N S. Sociable robots for later life: Carebots, friendbots and sexbots. Sex robots: Social impact and the future of human relations 2021: 25-40. [
DOI:10.1007/978-3-030-82280-4_2]
31. Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin Drug Discov. 2021; 16(9): 949-959. [
DOI:10.1080/17460441.2021.1909567]
32. Kalinin A A, Higgins G A, Reamaroon N, Soroushmehr S, Allyn-Feuer A, Dinov I D, et al. Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics. 2018; 19(7): 629-650. [
DOI:10.2217/pgs-2018-0008]
33. Keskinbora K H. Medical ethics considerations on artificial intelligence. J Clin Neurosci. 2019; 64: 277-282. [
DOI:10.1016/j.jocn.2019.03.001]
34. Khanzode K C, Sarode R D. Advantages and disadvantages of artificial intelligence and machine learning: aliterature review. International Journal of Library & Information Science (IJLIS). 2020; 9(1):3.
35. Kompa B, Hakim J B, Palepu A, Kompa K G, Smith M, Bain P A, et al. Artificial intelligence based on machine learning in pharmacovigilance: a scoping review. Drug Safety. 2022; 45(5): 477-491. [
DOI:10.1007/s40264-022-01176-1]
36. Kornegay J G, Leone K A, Wallner C, Hansen M, Yarris L M. Development and implementation of an asynchronous emergency medicine residency curriculum using a web-based platform. Intern Emerg Med. 2016; 11(8): 1115-1120. [
DOI:10.1007/s11739-016-1418-6]
37. Lake F. Artificial intelligence in drug discovery: What is new, and what is next? Advances in clinical immunology, medical microbiology, COVID-19, and big data: Jenny Stanford Publishing, 2021: 539-545.
38. Lavan A H, O’Mahony D, Gallagher P, Fordham R, Flanagan E, Dahly D, et al. The effect of SENATOR (Software ENgine for the Assessment and optimisation of drug and non-drug Therapy in Older peRsons) on incident adverse drug reactions (ADRs) in an older hospital cohort - Trial Protocol. BMC Geriatr. 2019; 19(1): 40. [
DOI:10.1186/s12877-019-1047-9]
39. Lin E, Kuo P H, Liu Y L, Yu Y W, Yang A C, Tsai S J. Prediction of antidepressant treatment response and remission using an ensemble machine learning framework. Pharmaceuticals (Basel). 2020; 13(10): 305. [
DOI:10.3390/ph13100305]
40. Lociciro A, Guillon A, Bodet-Contentin L. A telepresence robot in the room of a COVID-19 patient can provide virtual family presence. Can J Anaesth. 2021; 68(11): 1705-1706. [
DOI:10.1007/s12630-021-02039-6]
41. Lysenko A, Sharma A, Boroevich KA, Tsunoda T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci Alliance. 2018; 1(6): e201800098. [
DOI:10.26508/lsa.201800098]
42. Mak K K and Pichika M R. Artificial intelligence in drug development: present status and future prospects, Drug Discovery Today, 2019, 24(3): 773-780. [
DOI:10.1016/j.drudis.2018.11.014]
43. Masters K. Artificial intelligence in medical education. Med Teach. 2019; 41(9): 976-980. [
DOI:10.1080/0142159X.2019.1595557]
44. McDonald E G, Wu P E, Rashidi B, Wilson M G, Bortolussi-Courval É, Atique A, et al. The medsafer study-electronic decision support for deprescribing in hospitalized older adults: a cluster randomized clinical trial. JAMA Intern Med. 2022; 182(3): 265-273. [
DOI:10.1001/jamainternmed.2021.7429]
45. Meenakshi K, Safa M, Karthick T, Sivaranjani N. A novel study of machine learning algorithms for classifying health care data. Research J Pharm and Tech. 2017; 10(5): 1429-1432. [
DOI:10.5958/0974-360X.2017.00253.0]
46. Mockute R, Desai S, Perera S, Assuncao B, Danysz K, Tetarenko N, et al. Artificial intelligence within pharmacovigilance: a means to identify cognitive services and the framework for their validation. Pharmaceut Med. 2019; 33(2): 109-120. [
DOI:10.1007/s40290-019-00269-0]
47. Müller-Staub M, de Graaf-Waar H, Paans W. An internationally consented standard for nursing process-clinical decision support systems in electronic health records. Comput Inform Nurs. 2016; 34(11): 493-502. [
DOI:10.1097/CIN.0000000000000277]
48. Kotni M, Kaur S, Prakash A, Medhi B. Artificial intelligence in pharmacovigilance: practical utility. Indian Journal of Pharmacology. 2019; 51(6): 373-376. [
DOI:10.4103/ijp.IJP_814_19]
49. Nelson G S. Bias in artificial intelligence. North Carolina medical journal 2019; 80: 220-222. [
DOI:10.18043/ncm.80.4.220]
50. Ngiam K Y, Khor I W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019; 20(5): 262-273. [
DOI:10.1016/S1470-2045(19)30149-4]
51. Ong E, Cooke M F, Huffman A, Xiang Z, Wong M U, Wang H, et al. Vaxign2: The second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Research. 2021;49(W1): 671-678. [
DOI:10.1093/nar/gkab279]
52. Palanica A, Docktor M J, Lieberman M, Fossat Y. The need for artificial intelligence in digital therapeutics. Digit Biomark. 2020; 4(1): 21-25. [
DOI:10.1159/000506861]
53. Paranjape K, Schinkel M, Nannan Panday R, Car J, Nanayakkara P. Introducing artificial intelligence training in medical education. JMIR Med Educ. 2019; 5(2): e16048. [
DOI:10.2196/16048]
54. Parikh R B, Teeple S, Navathe A S. Addressing bias in artificial intelligence in health care. JAMA. 2019; 322(24): 2377-2378. [
DOI:10.1001/jama.2019.18058]
55. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade R K. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021; 26(1): 80-93. [
DOI:10.1016/j.drudis.2020.10.010]
56. Rodrigues P P, Ferreira-Santos D, Silva A, Polónia J, Ribeiro-Vaz I. Causality assessment of adverse drug reaction reports using an expert-defined Bayesian network. Artif Intell Med. 2018; 91: 12-22. [
DOI:10.1016/j.artmed.2018.07.005]
57. Shakshuki E, Reid M. Multi-agent system applications in healthcare: current technology and future roadmap. Procedia Computer Science. 2015; 52: 252-261. [
DOI:10.1016/j.procs.2015.05.071]
58. Silva P, Jacobs D, Kriak J, Abu-Baker A, Udeani G, Neal G, et al. Implementation of pharmacogenomics and artificial intelligence tools for chronic disease management in primary care setting. J Pers Med. 2021; 11(6): 443. [
DOI:10.3390/jpm11060443]
59. Sirois C, Khoury R, Durand A, Deziel P L, Bukhtiyarova O, Chiu Y, et al. Exploring polypharmacy with artificial intelligence: data analysis protocol. BMC Med Inform Decis Mak. 2021; 21(1): 219. [
DOI:10.1186/s12911-021-01583-x]
60. Smith J, Stein V. SPORCalc: A development of a database analysis that provides putative metabolic enzyme reactions for ligand-based drug design. Comput Biol Chem. 2009; 33(2): 149-159. [
DOI:10.1016/j.compbiolchem.2008.11.002]
61. Souri EA, Laddach R, Karagiannis SN, Papageorgiou LG, Tsoka S. A computational approach to predict drug-target interactions using machine learning. BMC Bioinformatics. 2022 Apr 4;23(121).
62. Suhail M, Khan A, Rahim M A, Naeem A, Fahad M, Badshah S F, Jabar A, Janakiraman AK. Micro and nanorobot-based drug delivery: an overview. J Drug Target. 2022; 30(4): 349-358. [
DOI:10.1080/1061186X.2021.1999962]
63. Sun H, Scott D O. Structure-based drug metabolism predictions for drug design. Chem Biol Drug Des. 2010; 75(1): 3-17. [
DOI:10.1111/j.1747-0285.2009.00899.x]
64. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019; 18(6): 463-477. [
DOI:10.1038/s41573-019-0024-5]
65. Vanhaelen Q, Lin YC, Zhavoronkov A. The advent of generative chemistry. ACS Med Chem Lett. 2020; 11(8): 1496-1505. [
DOI:10.1021/acsmedchemlett.0c00088]
66. Vermeer N S, Straus S M, Mantel-Teeuwisse A K, Domergue F, Egberts T C, Leufkens H G, et al. Traceability of biopharmaceuticals in spontaneous reporting systems: a cross-sectional study in the FDA Adverse Event Reporting System (FAERS) and Eudra Vigilance databases. Drug Saf. 2013; 36(8): 617-625. [
DOI:10.1007/s40264-013-0073-3]
67. Whirl-Carrillo M, McDonagh E M, Hebert J M, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012; 92(4): 414-417. [
DOI:10.1038/clpt.2012.96]
68. Wilfling D, Hinz A, Steinhäuser J. Big data analysis techniques to address polypharmacy in patients - a scoping review. BMC Fam Pract. 2020; 21(1): 180. [
DOI:10.1186/s12875-020-01247-1]
69. Wolbrink T A, Burns J P. Internet-based learning and applications for critical care medicine. J Intensive Care Med. 2012; 27(5): 322-332. [
DOI:10.1177/0885066611429539]
70. Yang X, Bian J, Gong Y, Hogan W R, Wu Y. MADEx: A system for detecting medications, adverse drug events, and their relations from clinical notes. Drug Saf. 2019; 42(1): 123-133. [
DOI:10.1007/s40264-018-0761-0]
71. Yew G C K. Trust in and ethical design of carebots: the case for ethics of care. Int J Soc Robot. 2021; 13(4): 629-645. [
DOI:10.1007/s12369-020-00653-w]
72. Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017; 22(11): 1680-1685. [
DOI:10.1016/j.drudis.2017.08.010]
73. Zhao Z, Ma Y, Mushtaq A, Rajper A M A, Shehab M, Heybourne A, et al. Applications of robotics, artificial intelligence, and digital technologies during COVID-19: A Review. Disaster Med Public Health Prep. 2021: 1-11. [
DOI:10.1017/dmp.2021.9]
74. Zhou XY, Guo Y, Shen M, Yang G Z. Application of artificial intelligence in surgery. Front Med. 2020; 14(4): 417-430. [
DOI:10.1007/s11684-020-0770-0]