Volume 29, Issue 1 (March 2025)                   Physiol Pharmacol 2025, 29(1): 74-83 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Afshar A, Aghajanpour F, Soltani R, Vafaei-Nezhad S, Ezi S, Azad N, et al . Upregulation of heat shock proteins 70 and 90 induced by transient scrotal hyperthermia in mice. Physiol Pharmacol 2025; 29 (1) : 8
URL: http://ppj.phypha.ir/article-1-2331-en.html
Abstract:   (1095 Views)

Introduction: It is now accepted that scrotal heat stress could adversely affect spermatogenesis. This high thermal condition can cause a reduced male fertility potential. Nowadays, insufficient research exists on the impact of transient scrotal hyperthermia on heat shock proteins 70 and 90 in murine subjects. In the current study, we investigated the effects of scrotal hyperthermia on the expression of heat shock proteins, stereological parameters, and semen quality in mice.

Methods: In this examination, a total of 18 healthy adult male NMRI mice were divided equally into two groups: control and scrotal hyperthermia. Scrotal heat stress was induced by placing the lower parts of mice bodies into the water bath for three consecutive days (43°C, 20 min/day). Then, epididymis and testicular samples were collected for evaluation of sperm parameters, stereological study, mRNA, and protein expression of HSP70 and HSP90.

Results: Our results revealed that scrotal hyperthermia could strikingly increase the level of mRNA and protein expression of HSP70 and HSP90 in the samples. In addition, stereological parameters and semen quality significantly decreased in transient scrotal hyperthermia-induced mice compared to the control group.

Conclusion: Our research indicates that transient hyperthermia on the scrotum can lead to increased expression of HSP70 and HSP90 at both mRNA and protein levels, subsequently affecting male fertility.

Article number: 8
Full-Text [PDF 1783 kb]   (106 Downloads)    
Type of Manuscript: Experimental research article | Subject: Others

References
1. Abd El-Emam M M, Ray M N, Ozono M, Kogure K. Heat stress disrupts spermatogenesis via modulation of sperm-specific calcium channels in rats. Journal of Thermal Biology 2023; 112: 103465. [DOI:10.1016/j.jtherbio.2023.103465]
2. Agarwal A, Durairajanayagam D, Halabi J, Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility. Reproductive Biomedicine Online 2014; 29: 32-58. [DOI:10.1016/j.rbmo.2014.02.013]
3. Aghajanpour F, Soltani R, Afshar A, Abbaszadeh H-A, Fathabadi F F, Moeinian N, et al. Sertoli cell-conditioned medium can improve blood-testis-barrier function and spermatogenesis in azoospermia mice induced by scrotal hyperthermia: An experimental study. International Journal of Reproductive Biomedicine 2024; 22: 17. [DOI:10.18502/ijrm.v22i1.15238]
4. Aldahhan R A, Stanton P G. Heat stress response of somatic cells in the testis. Molecular and Cellular Endocrinology 2021; 527: 111216. [DOI:10.1016/j.mce.2021.111216]
5. Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. Journal of Clinical and Diagnostic Research: JCDR 2017; 11: IE01. [DOI:10.7860/JCDR/2017/23927.9886]
6. Bedford J M. Human spermatozoa and temperature: the elephant in the room. Biology of Reproduction 2015; 93: 97, 1-5. [DOI:10.1095/biolreprod.115.130658]
7. Bohush A, Bieganowski P, Filipek A. Hsp90 and its co-chaperones in neurodegenerative diseases. International Journal of Molecular Sciences 2019; 20: 4976. [DOI:10.3390/ijms20204976]
8. Bozhedomov V, Rohlikov I, Tretyakov A, Lipatov N. Vinogradov IV. Andrology aspects of childless marriage. Medical Council 2013; 8: 13-17.
9. Chen M, Yuan J X, Shi Y Q, Zhang X S, Hu Z Y, Gao F, et al. Effect of 43 C treatment on expression of heat shock proteins 105, 70 and 60 in cultured monkey Sertoli cells. Asian Journal of Andrology 2008; 10: 474-485. [DOI:10.1111/j.1745-7262.2008.00391.x]
10. Durairajanayagam D, Agarwal A, Ong C, Prashast P. Lycopene and male infertility. Asian journal of andrology 2014; 16: 420-425. [DOI:10.4103/1008-682X.126384]
11. Einer-Jensen N, Hunter R. Counter-current transfer in reproductive biology. Reproduction 2005; 129: 9-18. [DOI:10.1530/rep.1.00278]
12. Ghuman N, Ramalingam M. Male infertility. Obstetrics, gynaecology & reproductive medicine 2018; 28: 7-14. [DOI:10.1016/j.ogrm.2017.10.007]
13. Grad I, Cederroth C R, Walicki J, Grey C, Barluenga S, Winssinger N, et al. The molecular chaperone Hsp90α is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PloS one 2010; 5: e15770. [DOI:10.1371/journal.pone.0015770]
14. Gu Z, Li L, Wu F, Zhao P, Yang H, Liu Y, et al. Heat stress induced apoptosis is triggered by transcription-independent p53, Ca2+ dyshomeostasis and the subsequent Bax mitochondrial translocation. Scientific reports 2015; 5: 11497. [DOI:10.1038/srep11497]
15. Gundersen H, BENDTSEN T F, KORBO L, MARCUSSEN N, Møller A, Nielsen K, et al. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Apmis 1988; 96: 379-394. [DOI:10.1111/j.1699-0463.1988.tb05320.x]
16. Hasani A, Khosravi A, Rahimi K, Afshar A, Fadaei-Fathabadi F, Raoofi A, et al. Photobiomodulation restores spermatogenesis in the transient scrotal hyperthermia-induced mice. Life Sciences 2020; 254: 117767. [DOI:10.1016/j.lfs.2020.117767]
17. He Y, Yu S, Hu J, Cui Y, Liu P. Changes in the anatomic and microscopic structure and the expression of HIF-1α and VEGF of the yak heart with aging and hypoxia. PloS one 2016; 11: e0149947. [DOI:10.1371/journal.pone.0149947]
18. Hess R A, De Franca L R. Spermatogenesis and cycle of the seminiferous epithelium. Molecular Mechanisms in Spermatogenesis 2009: 1-15. [DOI:10.1007/978-0-387-09597-4_1]
19. Hirano K, Nonami Y, Nakamura Y, Sato T, Sato T, Ishiguro K-i, et al. Temperature sensitivity of DNA double-strand break repair underpins heat-induced meiotic failure in mouse spermatogenesis. Communications Biology 2022; 5: 504. [DOI:10.1038/s42003-022-03449-y]
20. Hou Y, Wang X, Lei Z, Ping J, Liu J, Ma Z, et al. Heat-stress-induced metabolic changes and altered male reproductive function. Journal of Proteome Research 2015; 14: 1495-1503. [DOI:10.1021/pr501312t]
21. Hu S, Liu D, Liu S, Li C, Guo J. Lycium barbarum polysaccharide ameliorates heat-stress-induced impairment of primary Sertoli cells and the blood-testis barrier in rat via androgen receptor and Akt phosphorylation. Evidence-Based Complementary and Alternative Medicine 2021; 2021: 5574202. [DOI:10.1155/2021/5574202]
22. Ilkhani S, Moradi A, Aliaghaei A, Norouzian M, Abdi S, Rojhani E, et al. Spatial arrangement of testicular cells disrupted by transient scrotal hyperthermia and subsequent impairment of spermatogenesis. Andrologia 2020; 52: e13664. [DOI:10.1111/and.13664]
23. Im K, Mareninov S, Diaz M F P, Yong W H. An introduction to performing immunofluorescence staining: Springer, 2019. [DOI:10.1007/978-1-4939-8935-5_26]
24. Jerng U M, Jo J-Y, Lee S, Lee J-M, Kwon O. The effectiveness and safety of acupuncture for poor semen quality in infertile males: a systematic review and meta-analysis. Asian Journal of Andrology 2014; 16: 884-891. [DOI:10.4103/1008-682X.129130]
25. Jha K N, Coleman A R, Wong L, Salicioni A M, Howcroft E, Johnson G R. Heat shock protein 90 functions to stabilize and activate the testis-specific serine/threonine kinases, a family of kinases essential for male fertility. Journal of Biological Chemistry 2013; 288: 16308-16320. [DOI:10.1074/jbc.M112.400978]
26. Kanter M, Aktas C, Erboga M. Heat stress decreases testicular germ cell proliferation and increases apoptosis in short term: an immunohistochemical and ultrastructural study. Toxicology and Industrial Health 2013; 29: 99-113. [DOI:10.1177/0748233711425082]
27. Khorsandi L, Mirhoseini M, Mohamadpour M, Orazizadeh M, Khaghani S. Effect of curcumin on dexamethasone-induced testicular toxicity in mice. Pharmaceutical Biology 2013; 51: 206-212. [DOI:10.3109/13880209.2012.716854]
28. Khosravi A, Hasani A, Behnam P, Piryaei A, Pirani M, Aliaghaei A, et al. An effective method for establishing animal models of azoospermia and oligospermia. Andrologia 2021; 53: e14095. [DOI:10.1111/and.14095]
29. Kong W H, Gu Z, Lu J N, Tso J K. Temperature dependent expression of cdc2 and cyclin B1 in spermatogenic cells during spermatogenesis. Cell Research 2000; 10: 289-302. [DOI:10.1038/sj.cr.7290056]
30. Li X-X, Chen S-R, Shen B, Yang J-L, Ji S-Y, Wen Q, et al. The heat-induced reversible change in the blood-testis barrier (BTB) is regulated by the androgen receptor (AR) via the partitioning-defective protein (Par) polarity complex in the mouse. Biology of Reproduction 2013; 89: 12, 1-10. [DOI:10.1095/biolreprod.113.109405]
31. Moscatelli N, Lunetti P, Braccia C, Armirotti A, Pisanello F, De Vittorio M, et al. Comparative proteomic analysis of proteins involved in bioenergetics pathways associated with human sperm motility. International Journal of Molecular Sciences 2019; 20: 3000. [DOI:10.3390/ijms20123000]
32. Panggalih A, Susilowati S, Maslachah L, Ratnani H, Suprayogi T W. The effect of watermelon (Citrullus lanatus) rind ethanolic extract on the number of Leydig, Sertoli, and spermatogenic cells of rat (Rattus novergicus) exposed to heat. Ovozoa 2021; 10: 7-11. [DOI:10.20473/ovz.v10i1.2021.7-11]
33. Qiao N, Chen H, Du P, Kang Z, Pang C, Liu B, et al. Acetyl-L-carnitine induces autophagy to promote mouse spermatogonia cell recovery after heat stress damage. BioMed Research International 2021; 2021: 8871328. [DOI:10.1155/2021/8871328]
34. Rizzoto G, Boe-Hansen G, Klein C, Thundathil J, Kastelic J. Acute mild heat stress alters gene expression in testes and reduces sperm quality in mice. Theriogenology 2020; 158: 375-381. [DOI:10.1016/j.theriogenology.2020.10.002]
35. Setchell B. The effects of heat on the testes of mammals. Animal Reproduction (AR) 2018; 3: 81-91.
36. Sharma R, Agarwal A. Spermatogenesis: an overview. Sperm chromatin: biological and clinical applications in male infertility and assisted reproduction. 2011: 19-44. [DOI:10.1007/978-1-4419-6857-9_2]
37. Shen H, Fan X, Zhang Z, Xi H, Ji R, Liu Y, et al. Effects of elevated ambient temperature and local testicular heating on the expressions of heat shock protein 70 and androgen receptor in boar testes. Acta Histochemica 2019; 121: 297-302. [DOI:10.1016/j.acthis.2019.01.009]
38. Tabatabaee F, Darabi S, Soltani R, Aghajanpour F, Afshar A, Abbaszadeh H A, et al. Therapeutic effects of exosome therapy and photobiomodulation therapy on the spermatogenesis arrest in male mice after scrotum hyperthermia. Journal of Lasers in Medical Sciences 2024; 15. [DOI:10.34172/jlms.2024.03]
39. Zhao J, Zhang Y, Hao L, Wang J, Zhang J, Liu S, et al. Effects of a mild heat treatment on mouse testicular gene expression and sperm quality. Animal Cells and Systems 2010; 14: 267-274. [DOI:10.1080/19768354.2010.525830]
40. Zhu B, Walker S, Oakey H, Setchell B, Maddocks S. Effect of paternal heat stress on the development in vitro of preimplantation embryos in the mouse. Andrologia 2004; 36: 384-394. [DOI:10.1111/j.1439-0272.2004.00635.x]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.