1. Amici F, Röder S, Kiess W, Borte M, Zenclussen A C, Widdig A, et al. Maternal stress, child behavior and the promotive role of older siblings. BMC Public Health 2022; 22: 863. [
DOI:10.1186/s12889-022-13261-2]
2. Arletti R, Bertolini A. Oxytocin acts as an antidepressant in two animal models of depression. Life Sci 1987; 41: 1725-1730. [
DOI:10.1016/0024-3205(87)90600-X]
3. Bartz J A, Zaki J, Bolger N, Ochsner K N. Social effects of oxytocin in humans: context and person matter. Trends Cogn Sci 2011; 15: 301-309. [
DOI:10.1016/j.tics.2011.05.002]
4. Beal M F, Brouillet E, Jenkins B G, Ferrante R J, Kowall N W, Miller J M, et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 1993; 13: 4181-4192. [
DOI:10.1523/JNEUROSCI.13-10-04181.1993]
5. Bernhardt L K, Madhyastha S, Bairy L, Kishore A. Status of the brain antioxidant system at different growing periods after prenatal stress and N -acetyl cysteine administration. Folia Neuropathol 2017; 55: 38-48. [
DOI:10.5114/fn.2017.66712]
6. Bertero E, Maack C. Calcium signaling and reactive oxygen species in mitochondria. Circ Res 2018; 122: 1460-1478. [
DOI:10.1161/CIRCRESAHA.118.310082]
7. Borlongan C V, Koutouzis T K, Sanberg P R. 3-Nitropropionic acid animal model and Huntington’s disease. Neuroscience & Biobehavioral Reviews 1997; 21: 289-293. [
DOI:10.1016/S0149-7634(96)00027-9]
8. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 1976; 72: 248-254. [
DOI:10.1016/0003-2697(76)90527-3]
9. Brouillet E. The 3-NP model of striatal neurodegeneration. Current Protocols in Neuroscience 2014; 67: 1-9. https: //doi.org/10.1002/0471142301.ns0948s67
10. Cao K, Zheng A, Xu J, Li H, Liu J, Peng Y, et al. AMPK activation prevents prenatal stress-induced cognitive impairment: modulation of mitochondrial content and oxidative stress. Free Radic Biol Med 2014; 75: 156-166. [
DOI:10.1016/j.freeradbiomed.2014.07.029]
11. Cardoso C, Valkanas H, Serravalle L, Ellenbogen M A. Oxytocin and social context moderate social support seeking in women during negative memory recall. Psychoneuroendocrinology 2016; 70: 63-69. [
DOI:10.1016/j.psyneuen.2016.05.001]
12. Charil A, Laplante D P, Vaillancourt C, King S. Prenatal stress and brain development. Brain research reviews 2010; 65: 56-79. [
DOI:10.1016/j.brainresrev.2010.06.002]
13. Charney D S, Deutch A. A functional neuroanatomy of anxiety and fear: implications for the pathophysiology and treatment of anxiety disorders. Crit Rev Neurobiol 1996; 10: 419-446. [
DOI:10.1615/CritRevNeurobiol.v10.i3-4.70]
14. Costa V, Scorrano L. Shaping the role of mitochondria in the pathogenesis of Huntington’s disease. EMBO J 2012; 31: 1853-1564. [
DOI:10.1038/emboj.2012.65]
15. de Boo G M, Tibben A, Lanser J B, Jennekens-Schinkel A, Hermans J, Maat-Kievit A, et al. Early cognitive and motor symptoms in identified carriers of the gene for Huntington disease. Arch Neurol 1997; 54: 1353-1357. [
DOI:10.1001/archneur.1997.00550230030012]
16. De Cagna F, Fusar-Poli L, Damiani S, Rocchetti M, Giovanna G, Mori A, et al. The role of intranasal oxytocin in anxiety and depressive disorders: a systematic review of randomized controlled trials. Clin Psychopharmacol Neurosci 2019; 17: 1-11. [
DOI:10.9758/cpn.2019.17.1.1]
17. Dowell J, Elser B A, Schroeder R E, Stevens H E. Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci Lett 2019; 709: 134368. [
DOI:10.1016/j.neulet.2019.134368]
18. Drevets W C. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 2000; 126: 413-431. [
DOI:10.1016/S0079-6123(00)26027-5]
19. Drevets W C, Price J L, Furey M L. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 2008; 213: 93-118. [
DOI:10.1007/s00429-008-0189-x]
20. Duff K, Paulsen J S, Beglinger L J, Langbehn D R, Stout J C, Predict H D I o t H S G. Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry 2007; 62: 1341-1346. [
DOI:10.1016/j.biopsych.2006.11.034]
21. Ellman G L. Tissue sulfhydryl groups. Archives of biochemistry and biophysics 1959; 82: 70-77. [
DOI:10.1016/0003-9861(59)90090-6]
22. Engin E, Treit D. The role of hippocampus in anxiety: intracerebral infusion studies. Behav Pharmacol 2007; 18: 365-374. [
DOI:10.1097/FBP.0b013e3282de7929]
23. Gravina F S, Jobling P, Kerr K P, de Oliveira R B, Parkington H C, van Helden D F. Oxytocin depolarizes mitochondria in isolated myometrial cells. Exp Physiol 2011; 96: 949-956. [
DOI:10.1113/expphysiol.2011.058388]
24. Griffiths E J, Rutter G A. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta 2009; 1787: 1324-1333. [
DOI:10.1016/j.bbabio.2009.01.019]
25. Hamilton B F, Gould D H. Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: a type of hypoxic (energy deficient) brain damage. Acta Neuropathol 1987; 72: 286-297. [
DOI:10.1007/BF00691103]
26. Hamilton J M, Salmon D P, Corey-Bloom J, Gamst A, Paulsen J S, Jerkins S, et al. Behavioural abnormalities contribute to functional decline in Huntington’s disease. J Neurol Neurosurg Psychiatry 2003; 74: 120-122. [
DOI:10.1136/jnnp.74.1.120]
27. Julien C L, Thompson J C, Wild S, Yardumian P, Snowden J S, Turner G, et al. Psychiatric disorders in preclinical Huntington’s disease. J Neurol Neurosurg Psychiatry 2007; 78: 939-943. [
DOI:10.1136/jnnp.2006.103309]
28. Khodagholi F, Maleki A, Motamedi F, Mousavi M A, Rafiei S, Moslemi M. Oxytocin prevents the development of 3-NP-induced anxiety and depression in male and female rats: possible interaction of OXTR and mGluR2. Cellular and Molecular Neurobiology 2022: 1-19.
29. Kim J, Moody J P, Edgerly C K, Bordiuk O L, Cormier K, Smith K, et al. Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet 2010; 19: 3919-3935. [
DOI:10.1093/hmg/ddq306]
30. Kinsella M T, Monk C. Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clin Obstet Gynecol 2009; 52: 425-440. [
DOI:10.1097/GRF.0b013e3181b52df1]
31. Kumar P, Kalonia H, Kumar A. Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity. European journal of pharmacology 2012; 674: 265-274. [
DOI:10.1016/j.ejphar.2011.11.030]
32. La Fontaine M A, Geddes J W, Banks A, Butterfield D A. 3-nitropropionic acid induced in vivo protein oxidation in striatal and cortical synaptosomes: insights into Huntington’s disease. Brain Res 2000; 858: 356-362. [
DOI:10.1016/S0006-8993(00)01948-X]
33. Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, Bossy-Wetzel E. Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ 2009; 16: 899-909. [
DOI:10.1038/cdd.2009.22]
34. Ma X, Zhao W, Luo R, Zhou F, Geng Y, Xu L, et al. Sex- and context-dependent effects of oxytocin on social sharing. Neuroimage 2018; 183: 62-72. [
DOI:10.1016/j.neuroimage.2018.08.004]
35. Maikoo S, Wilkins A, Qulu L. The effect of oxytocin and an enriched environment on anxiety-like behaviour and corticosterone levels in a prenatally stressed febrile seizure rat model. IBRO Neuroscience Reports 2022; 13: 47-56. [
DOI:10.1016/j.ibneur.2022.05.001]
36. Mairesse J, Gatta E, Reynaert M L, Marrocco J, Morley-Fletcher S, Soichot M, et al. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats. Psychoneuroendocrinology 2015; 62: 36-46. [
DOI:10.1016/j.psyneuen.2015.07.005]
37. Morley-Fletcher S, Mairesse J, Soumier A, Banasr M, Fagioli F, Gabriel C, et al. Chronic agomelatine treatment corrects behavioral, cellular, and biochemical abnormalities induced by prenatal stress in rats. Psychopharmacology (Berl) 2011; 217: 301-313. [
DOI:10.1007/s00213-011-2280-x]
38. Moslemi M, Khodagholi F, Asadi S, Rafiei S, Motamedi F. Oxytocin protects against 3-NP induced learning and memory impairment in rats: Sex differences in behavioral and molecular responses to the context of prenatal stress. Behav Brain Res 2020; 379: 112354. [
DOI:10.1016/j.bbr.2019.112354]
39. Nolvi S, Merz E C, Kataja E-L, Parsons C E. Prenatal stress and the developing brain: Postnatal environments promoting resilience. Biological Psychiatry 2023; 93: 942-952. [
DOI:10.1016/j.biopsych.2022.11.023]
40. O’Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 2004; 94: 420-432. [
DOI:10.1161/01.RES.0000117583.66950.43]
41. Paggio A, Checchetto V, Campo A, Menabo R, Di Marco G, Di Lisa F, et al. Identification of an ATP-sensitive potassium channel in mitochondria. Nature 2019; 572: 609-613. [
DOI:10.1038/s41586-019-1498-3]
42. Paoli R A, Botturi A, Ciammola A, Silani V, Prunas C, Lucchiari C, et al. Neuropsychiatric Burden in Huntington’s Disease. Brain Sci 2017; 7. [
DOI:10.3390/brainsci7060067]
43. Pellow S, Chopin P, File S E, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14: 149-167. [
DOI:10.1016/0165-0270(85)90031-7]
44. Pereira-Figueiredo I, Sancho C, Carro J, Castellano O, Lopez D E. The effects of sertraline administration from adolescence to adulthood on physiological and emotional development in prenatally stressed rats of both sexes. Front Behav Neurosci 2014; 8: 260. [
DOI:10.3389/fnbeh.2014.00260]
45. Porsolt R D, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 1978; 47: 379-391. [
DOI:10.1016/0014-2999(78)90118-8]
46. Roos R A. Huntington’s disease: a clinical review. Orphanet J Rare Dis 2010; 5: 40. [
DOI:10.1186/1750-1172-5-40]
47. Sari Y. Huntington’s Disease: From mutant huntingtin protein to neurotrophic factor therapy. Int J Biomed Sci 2011; 7: 89-100. [
DOI:10.59566/IJBS.2011.7089]
48. Sickmann H, Arentzen T, Dyrby T, Plath N, Kristensen M. Prenatal stress produces sex-specific changes in depression-like behavior in rats: implications for increased vulnerability in females. Journal of Developmental Origins of Health and Disease 2015; 6: 462-474. [
DOI:10.1017/S2040174415001282]
49. Siddiqui A, Rivera-Sanchez S, Castro Mdel R, Acevedo-Torres K, Rane A, Torres-Ramos C A, et al. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington’s disease. Free Radic Biol Med 2012; 53: 1478-1488. [
DOI:10.1016/j.freeradbiomed.2012.06.008]
50. Solberg O K, Filkukova P, Frich J C, Feragen K J B. Age at death and causes of death in patients with Huntington disease in norway in 1986-2015. J Huntingtons Dis 2018; 7: 77-86. [
DOI:10.3233/JHD-170270]
51. Uvnas-Moberg K, Ahlenius S, Hillegaart V, Alster P. High doses of oxytocin cause sedation and low doses cause an anxiolytic-like effect in male rats. Pharmacol Biochem Behav 1994; 49: 101-106. [
DOI:10.1016/0091-3057(94)90462-6]
52. Vallee M, Mayo W, Dellu F, Le Moal M, Simon H, Maccari S. Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 1997; 17: 2626-2636. [
DOI:10.1523/JNEUROSCI.17-07-02626.1997]
53. Van den Hove D, Leibold N, Strackx E, Martinez-Claros M, Lesch K, Steinbusch H, et al. Prenatal stress and subsequent exposure to chronic mild stress in rats; interdependent effects on emotional behavior and the serotonergic system. European Neuropsychopharmacology 2014; 24: 595-607. [
DOI:10.1016/j.euroneuro.2013.09.006]
54. Walker F O. Huntington’s disease. The Lancet 2007; 369: 218-228. [
DOI:10.1016/S0140-6736(07)60111-1]
55. Wheelock V L, Tempkin T, Marder K, Nance M, Myers R H, Zhao H, et al. Predictors of nursing home placement in Huntington disease. Neurology 2003; 60: 998-1001. [
DOI:10.1212/01.WNL.0000052992.58107.67]
56. Wu Y, De Asis-Cruz J, Limperopoulos C. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy. Molecular Psychiatry 2024: 1-18. [
DOI:10.1038/s41380-024-02449-0]
57. Yamagishi A, Okada M, Masuda M, Sato N. Oxytocin administration modulates rats’ helping behavior depending on social context. Neurosci Res 2020; 153: 56-61. [
DOI:10.1016/j.neures.2019.04.001]
58. Yoshida M, Takayanagi Y, Inoue K, Kimura T, Young L J, Onaka T, et al. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 2009; 29: 2259-2271. [
DOI:10.1523/JNEUROSCI.5593-08.2009]
59. Zhu Z, Li X, Chen W, Zhao Y, Li H, Qing C, et al. Prenatal stress causes gender-dependent neuronal loss and oxidative stress in rat hippocampus. J Neurosci Res 2004; 78: 837-844. [
DOI:10.1002/jnr.20338]