Volume 29, Issue 1 (March 2025)                   Physiol Pharmacol 2025, 29(1): 35-43 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azimi P, Ahmadiani A. Construction and evaluation of different glioblastoma prognosis scores based on gene expression databases. Physiol Pharmacol 2025; 29 (1) : 4
URL: http://ppj.phypha.ir/article-1-2358-en.html
Abstract:   (1037 Views)

Introduction: Glioblastoma (GBM) is the most common malignant brain tumor, and the prognosis of GBM pa-tients is unfavorable. More studies are needed to develop new prognostic tools for predicting GBM patients’ prognosis. This study aims to construct generisk score (GRS) models based on gene expression databases.

Methods: Genomic data of GBM were downloaded from the CGGA, TCGA, MYO, and CPTAC. Patients were divided into two groups with overall survival (OS) of more or less than 15 months. Top 31 genes from our previous study and clinical data such as age, gender, and IDH wildtype/mutant were used to develop two GRS models. Cox methods in SPSS v26 were applied in this study.

Results: A total of 551 (334 male, mean age 55.5 ± 13.3 years) cases were used. Fourgene (TGFB1, CCL2, CD274, and TNFRSF1A; from the combination of four databases) and eight-gene (EGFR, TGFB1, SPP1, AGT, TNFRSF1A, CDK1, FOXO3, and CEP55; from CGGA) risk scores were developed. Two models could separate OS samples into high and low-risk groups, and AUCs of 0.984 and, 0.998 were achieved that showed excellent discriminating power at the training set (all: p < 0.0001). For the 8-GRS model, the OS of cases in the high-risk group was poorer than that in the low-risk group when used on another’s datasets at the validation set, however, it was not significant.

Conclusion: Four- and eight-gene prognostic signatures were identified and constructed to predict OS in GBM patients. This study may provide innovative insights into the treatment of GBM.

Supplementary File 

Article number: 4
Full-Text [PDF 459 kb]   (99 Downloads)    
Type of Manuscript: Clinical research article | Subject: Others

References
1. Arimappamagan A, Somasundaram K, Thennarasu K, Peddagangannagari S, Srinivasan H, Shailaja B C, et al. A fourteen gene GBM prognostic signature identifies association of immune response pathway and mesenchymal subtype with high risk group. PLoS One 2013; 8. [DOI:10.1371/journal.pone.0062042]
2. Azimi P, Yazdanian T, Ahmadiani A. mRNA markers for survival prediction in glioblastoma multiforme patients: a systematic review with bioinformatic analyses. BMC Cancer 2024; 24(1), 612. [DOI: 10.1186/s12885-024-12345-z]
3. Azimi P, Karimpour M, Yazdanian T, Totonchi M, Ahmadiani A. Cancer/testis antigens FBXO39 and CEP55 expression correlates with survival in GBM patients. PLoS ONE 2024, Under review.
4. Cao M, Cai J, Yuan Y, Shi Y, Wu H, Liu Q, et al. A four-gene signature-derived risk score for glioblastoma: prospects for prognostic and response predictive analyses. Cancer Biol Med 2019; 16(3): 595-605. [DOI:10.20892/j.issn.2095-3941.2018.0277]
5. Cheng Q, Huang C, Cao H, Lin J, Gong X, Li J, et al. A Novel prognostic signature of transcription factors for the prediction in patients with GBM. Front Genet 2019; 10: 906. [DOI:10.3389/fgene.2019.00906]
6. DiDomenico J, Lamano J B, Oyon D, Li Y, Veliceasa D, Kaur G, et al. The immune checkpoint protein PD-L1 induces and maintains regulatory T cells in glioblastoma. Oncoimmunology 2018; 7(7): e1448329. [DOI:10.1080/2162402X.2018.1448329]
7. Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of glioblastoma multiforme-literature review. Cancers (Basel) 2022; 14(10): 2412. [DOI:10.3390/cancers14102412]
8. Hsu J B, Chang T H, Lee G A, Lee T Y, Chen CY. Identification of potential biomarkers related to glioma survival by gene expression profile analysis. BMC Med Genomics 2019; 11: 34. [DOI:10.1186/s12920-019-0479-6]
9. Kijewska M, Kocyk M, Kloss M, Stepniak K, Korwek Z, Polakowska R, et al. The embryonic type of SPP1 transcriptional regulation is re-activated in glioblastoma. Oncotarget 2017; 8(10): 16340-16355. [DOI:10.18632/oncotarget.14092]
10. Li F, Jin D, Guan L, Zhang CC, Wu T, Wang Y J, et al. CEP55 promoted the migration, invasion and neuroshpere formation of the glioma cell line U251. Neurosci Lett 2019; 705: 80-86. [DOI:10.1016/j.neulet.2019.04.038]
11. Li F, Jin D, Tang C, Gao D. CEP55 promotes cell proliferation and inhibits apoptosis via the PI3K/Akt/p21 signaling pathway in human glioma U251 cells. Oncol Lett. 2018; 15(4):4789-4796. [DOI:10.3892/ol.2018.7934]
12. Li J, Feng L, Lu Y. Glioblastoma multiforme: Diagnosis, treatment, and invasion. J Biomed Res 2022; 37(1): 47-58. [DOI:10.7555/JBR.36.20220156]
13. Louis D N, Perry A, Wesseling P, Brat D J, Cree I A, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021; 23(8): 1231-1251. [DOI:10.1093/neuonc/noab106]
14. Micheletti C, Bonetti G, Madeo G, Gadler M, Benedetti S, Guerri G, et al. Omics sciences and precision medicine in glioblastoma. Clin Ter 2023; 174: 77-84. [DOI:10.7417/CT.2023.2474]
15. Prasad B, Tian Y, Li X. Large-scale analysis reveals gene signature for survival prediction in primary glioblastoma. Mol Neurobiol 2020 ;57(12): 5235-5246. [DOI:10.1007/s12035-020-02088-w]
16. Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res 2022;41(1): 142. [DOI:10.1186/s13046-022-02349-7]
17. Sunayama J, Sato A, Matsuda K, et al. FoxO3a functions as a key integrator of cellular signals that control glioblastoma stem-like cell differentiation and tumorigenicity. Stem Cells 2011; 29(9): 1327-1337. [DOI:10.1002/stem.696]
18. Vaubel R A, Tian S, Remonde D, Schroeder M A, Mladek A C, Kitange G J, et al. Genomic and phenotypic characterization of a broad panel of patient-derived xenografts reflects the diversity of glioblastoma. Clin Cancer Res 2020; 26(5): 1094–1104. [DOI:10.1158/1078-0432.CCR-19-0909]
19. Wang Z, Gao L, Guo X, Feng C, Lian W, Deng K, Xing B. Development and validation of a nomogram with an autophagy-related gene signature for predicting survival in patients with glioblastoma. Aging (Albany NY) 2019; 11(24): 12246-12269. [DOI:10.18632/aging.102566]
20. Yang B, Pan Y B, Ma Y B, Chu S H. Integrated transcriptome analyses and experimental verifications of mesenchymal-associated TNFRSF1A as a diagnostic and prognostic biomarker in gliomas. Front Oncol 2020; 10: 250. [DOI:10.3389/fonc.2020.00250]
21. Yin W, Tang G, Zhou Q, Cao Y, Li H, Fu X, et al. Expression profile analysis identifies a novel five-gene signature to improve prognosis prediction of glioblastoma. Front Genet 2019; 10: 419. [DOI:10.3389/fgene.2019.00419]
22. Yoon H G, Cheong J H, Ryu JI, Won YD, Min KW, Han MH. The genes significantly associated with an improved prognosis and long-term survival of glioblastoma. PLoS One 2023; 18(11): e0295061. [DOI:10.1371/journal.pone.0295061]
23. Zhang B, Xie L, Liu J, Liu A, He M. Construction and validation of a cuproptosis-related prognostic model for glioblastoma. Front Immunol 2023; 14: 1082974. [DOI:10.3389/fimmu.2023.1082974]
24. Zhang Y, Xia Q, Lin J. Identification of the potential oncogenes in glioblastoma based on bioinformatic analysis and elucidation of the underlying mechanisms. Oncol Rep 2018;40(2):715-725. [DOI:10.3892/or.2018.6483]
25. Zuo S, Zhang X, Wang L. A RNA sequencing-based six-gene signature for survival prediction in patients with glioblastoma. Sci Rep 2019; 9(1): 1–10. [DOI:10.1038/s41598-019-39273-4]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.