1. Arimappamagan A, Somasundaram K, Thennarasu K, Peddagangannagari S, Srinivasan H, Shailaja B C, et al. A fourteen gene GBM prognostic signature identifies association of immune response pathway and mesenchymal subtype with high risk group. PLoS One 2013; 8. [
DOI:10.1371/journal.pone.0062042]
2. Azimi P, Yazdanian T, Ahmadiani A. mRNA markers for survival prediction in glioblastoma multiforme patients: a systematic review with bioinformatic analyses. BMC Cancer 2024; 24(1), 612. [
DOI: 10.1186/s12885-024-12345-z]
3. Azimi P, Karimpour M, Yazdanian T, Totonchi M, Ahmadiani A. Cancer/testis antigens FBXO39 and CEP55 expression correlates with survival in GBM patients. PLoS ONE 2024, Under review.
4. Cao M, Cai J, Yuan Y, Shi Y, Wu H, Liu Q, et al. A four-gene signature-derived risk score for glioblastoma: prospects for prognostic and response predictive analyses. Cancer Biol Med 2019; 16(3): 595-605. [
DOI:10.20892/j.issn.2095-3941.2018.0277]
5. Cheng Q, Huang C, Cao H, Lin J, Gong X, Li J, et al. A Novel prognostic signature of transcription factors for the prediction in patients with GBM. Front Genet 2019; 10: 906. [
DOI:10.3389/fgene.2019.00906]
6. DiDomenico J, Lamano J B, Oyon D, Li Y, Veliceasa D, Kaur G, et al. The immune checkpoint protein PD-L1 induces and maintains regulatory T cells in glioblastoma. Oncoimmunology 2018; 7(7): e1448329. [
DOI:10.1080/2162402X.2018.1448329]
7. Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of glioblastoma multiforme-literature review. Cancers (Basel) 2022; 14(10): 2412. [
DOI:10.3390/cancers14102412]
8. Hsu J B, Chang T H, Lee G A, Lee T Y, Chen CY. Identification of potential biomarkers related to glioma survival by gene expression profile analysis. BMC Med Genomics 2019; 11: 34. [
DOI:10.1186/s12920-019-0479-6]
9. Kijewska M, Kocyk M, Kloss M, Stepniak K, Korwek Z, Polakowska R, et al. The embryonic type of SPP1 transcriptional regulation is re-activated in glioblastoma. Oncotarget 2017; 8(10): 16340-16355. [
DOI:10.18632/oncotarget.14092]
10. Li F, Jin D, Guan L, Zhang CC, Wu T, Wang Y J, et al. CEP55 promoted the migration, invasion and neuroshpere formation of the glioma cell line U251. Neurosci Lett 2019; 705: 80-86. [
DOI:10.1016/j.neulet.2019.04.038]
11. Li F, Jin D, Tang C, Gao D. CEP55 promotes cell proliferation and inhibits apoptosis via the PI3K/Akt/p21 signaling pathway in human glioma U251 cells. Oncol Lett. 2018; 15(4):4789-4796. [
DOI:10.3892/ol.2018.7934]
12. Li J, Feng L, Lu Y. Glioblastoma multiforme: Diagnosis, treatment, and invasion. J Biomed Res 2022; 37(1): 47-58. [
DOI:10.7555/JBR.36.20220156]
13. Louis D N, Perry A, Wesseling P, Brat D J, Cree I A, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021; 23(8): 1231-1251. [
DOI:10.1093/neuonc/noab106]
14. Micheletti C, Bonetti G, Madeo G, Gadler M, Benedetti S, Guerri G, et al. Omics sciences and precision medicine in glioblastoma. Clin Ter 2023; 174: 77-84. [
DOI:10.7417/CT.2023.2474]
15. Prasad B, Tian Y, Li X. Large-scale analysis reveals gene signature for survival prediction in primary glioblastoma. Mol Neurobiol 2020 ;57(12): 5235-5246. [
DOI:10.1007/s12035-020-02088-w]
16. Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res 2022;41(1): 142. [
DOI:10.1186/s13046-022-02349-7]
17. Sunayama J, Sato A, Matsuda K, et al. FoxO3a functions as a key integrator of cellular signals that control glioblastoma stem-like cell differentiation and tumorigenicity. Stem Cells 2011; 29(9): 1327-1337. [
DOI:10.1002/stem.696]
18. Vaubel R A, Tian S, Remonde D, Schroeder M A, Mladek A C, Kitange G J, et al. Genomic and phenotypic characterization of a broad panel of patient-derived xenografts reflects the diversity of glioblastoma. Clin Cancer Res 2020; 26(5): 1094–1104. [
DOI:10.1158/1078-0432.CCR-19-0909]
19. Wang Z, Gao L, Guo X, Feng C, Lian W, Deng K, Xing B. Development and validation of a nomogram with an autophagy-related gene signature for predicting survival in patients with glioblastoma. Aging (Albany NY) 2019; 11(24): 12246-12269. [
DOI:10.18632/aging.102566]
20. Yang B, Pan Y B, Ma Y B, Chu S H. Integrated transcriptome analyses and experimental verifications of mesenchymal-associated TNFRSF1A as a diagnostic and prognostic biomarker in gliomas. Front Oncol 2020; 10: 250. [
DOI:10.3389/fonc.2020.00250]
21. Yin W, Tang G, Zhou Q, Cao Y, Li H, Fu X, et al. Expression profile analysis identifies a novel five-gene signature to improve prognosis prediction of glioblastoma. Front Genet 2019; 10: 419. [
DOI:10.3389/fgene.2019.00419]
22. Yoon H G, Cheong J H, Ryu JI, Won YD, Min KW, Han MH. The genes significantly associated with an improved prognosis and long-term survival of glioblastoma. PLoS One 2023; 18(11): e0295061. [
DOI:10.1371/journal.pone.0295061]
23. Zhang B, Xie L, Liu J, Liu A, He M. Construction and validation of a cuproptosis-related prognostic model for glioblastoma. Front Immunol 2023; 14: 1082974. [
DOI:10.3389/fimmu.2023.1082974]
24. Zhang Y, Xia Q, Lin J. Identification of the potential oncogenes in glioblastoma based on bioinformatic analysis and elucidation of the underlying mechanisms. Oncol Rep 2018;40(2):715-725. [
DOI:10.3892/or.2018.6483]
25. Zuo S, Zhang X, Wang L. A RNA sequencing-based six-gene signature for survival prediction in patients with glioblastoma. Sci Rep 2019; 9(1): 1–10. [
DOI:10.1038/s41598-019-39273-4]