Volume 26, Issue 1 (March 2022)                   Physiol Pharmacol 2022, 26(1): 30-38 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahidani S, Rajaei Z, Alaei H, Mohammadzadeh S. The impact of sesamol and exercise on striatal TNF-α level, motor behavior, aversive memory and oxidative stress status in 6-hydroxydopamine-lesioned rats. Physiol Pharmacol. 2022; 26 (1) :30-38
URL: http://ppj.phypha.ir/article-1-1722-en.html
Abstract:   (1274 Views)
Introduction: Neuroinflammation and oxidative stress play critical roles in the pathophysiology of Parkinson’s disease (PD), and neuroprotective agents could be helpful to slow down the dopaminergic neurodegeneration. Neuroprotective and antioxidant properties of exercise and sesamol have been previously reported. The current research evaluated the influences of sesamol and exercise on memory and motor impairments, oxidative stress and inflammatory markers in an experimental model of PD. Methods: 6-hydroxydopamine (6-OHDA) was microinjected into the medial forebrain bundle of male rats. Treatment with sesamol (50mg/kg) or treadmill exercise was performed for 7 weeks. Behavioral and biochemical assessments were performed at the end of 6th week after 6-OHDA injection. Results: Net number of rotations and tumor necrosis factor (TNF)-α level was significantly enhanced in 6-OHDA group in comparison with sham group. Also, step-through latency was decreased in this group along with increased lipid peroxidation and decreased total thiol levels in the hippocampus. Moreover, sesamol and exercise, alone or in combination, improved rotational behavior, which was accompanied by decreased striatal TNF-α level. However, sesamol and/or treadmill exercise had no effect on aversive memory, although exercise enhanced hippocampal total thiol level. Conclusion: Beneficial properties of sesamol and treadmill exercise for amelioration of motor impairments might be due to their anti-inflammatory activities.
Full-Text [PDF 1168 kb]   (471 Downloads)    

1. Aguiar AS, Speck AE, Prediger RD, Kapczinski F, Pinho RA. Downhill training upregulates mice hippocampal and striatal brain-derived neurotrophic factor levels. J Neural Transm 2008; 115: 1251-5. [DOI:10.1007/s00702-008-0071-2]
2. Aguiar AS, Tristão FSM, Amar M, Chevarin C, Glaser V, de Paula Martins R, et al. Six weeks of voluntary exercise don't protect C57BL/6 mice against neurotoxicity of MPTP and MPP+. Neurotox Res 2014; 25: 147-52. [DOI:10.1007/s12640-013-9412-5]
3. Bjørklund G, Peana M, Maes M, Dadar M, Severin B. The glutathione system in Parkinson's disease and its progression. Neurosci Biobehav Rev 2021; 120: 470-8. [DOI:10.1016/j.neubiorev.2020.10.004]
4. Campos FL, Carvalho MM, Cristovão AC, Je G, Baltazar G, Salgado AJ, et al. Rodent models of Parkinson's disease: beyond the motor symptomatology. Front Behav Neurosci 2013; 7: 175. [DOI:10.3389/fnbeh.2013.00175]
5. Chopra K, Tiwari V, Arora V, Kuhad A. Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy. J Pain 2010; 11: 950-7. [DOI:10.1016/j.jpain.2010.01.006]
6. Cicchetti F, Brownell A, Williams K, Chen Y, Livni E, Isacson O. Neuroinflammation of the nigrostriatal pathway during progressive 6‐OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 2002; 15: 991-8. [DOI:10.1046/j.1460-9568.2002.01938.x]
7. Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 2013; 62: 132-44. [DOI:10.1016/j.freeradbiomed.2013.01.018]
8. Getz SJ, Levin B. Cognitive and neuropsychiatric features of early Parkinson's disease. Arch Clin Neuropsychol 2017; 32: 769-85. [DOI:10.1093/arclin/acx091]
9. Goodwin VA, Richards SH, Taylor RS, Taylor AH, Campbell JL. The effectiveness of exercise interventions for people with Parkinson's disease: A systematic review and meta‐analysis. Mov Disord 2008; 23 :631-40. [DOI:10.1002/mds.21922 12]
10. Haddadi H, Rajaei Z, Alaei H, Shahidani S. Chronic treatment with carvacrol improves passive avoidance memory in a rat model of Parkinson's disease. Arq Neuropsiquiatr 2018; 76: 71-7. [DOI:10.1590/0004-282x20170193]
11. Hamzehloei L, Rezvani ME, Rajaei Z. Effects of carvacrol and physical exercise on motor and memory impairments associated with Parkinson's disease. Arq Neuropsiquiatr 2019; 77: 493- 500. [DOI:10.1590/0004-282x20190079]
12. Hanrott K, Gudmunsen L, O'Neill MJ, Wonnacott S. 6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cδ. J Biol Chem 2006; 281: 5373-82. [DOI:10.1074/jbc.M511560200]
13. Hirsch EC, Hunot S. Neuroinflammation in Parkinson's disease: A target for neuroprotection? Lancet Neurol 2009; 8: 382-97. [DOI:10.1016/S1474-4422(09)70062-6]
14. Hosseini H, Rajaei Z, Alaei H, Tajadini M. The effects of crocin on 6-OHDA-induced oxidative/nitrosative damage and motor behaviour in hemiparkinsonian rats. Malays J Med Sci 2016; 23: 35-43. [DOI:10.21315/mjms2016.23.6.4]
15. Hsu DZ, Chien SP, Chen KT, Liu MY. The effect of sesamol on systemic oxidative stress and hepatic dysfunction in acutely iron-intoxicated mice. Shock 2007; 28: 596-601. [DOI:10.1097/shk.0b013e31804d4474]
16. Khadira Sereen A, Vijayalakshmi K, Nagappan P, Balima S. Effect of sesamol in association with folic acid on 6-OHDA induced parkinsonian animals-biochemical, neurochemical and histopathological evidence. Asian J Clin Res 2017; 10: 46-50. [DOI:10.22159/ajpcr.2017.v10i4.12961]
17. Kuhad A, Chopra K. Effect of sesamol on diabetes-associated cognitive decline in rats. Exp Brain Res 2008; 185: 411-20. [DOI:10.1007/s00221-007-1166-y]
18. Kumar P, Kalonia H, Kumar A. Sesamol attenuate 3-nitropropionic acid-induced Huntingtonlike behavioral, biochemical, and cellular alterations in rats. J Asian Nat Prod Res 2009; 11: 439- 50. [DOI:10.1080/10286020902862194]
19. Kumar P, Kalonia H, Kumar A. Protective effect of sesamol against 3-nitropropionic acidinduced cognitive dysfunction and altered glutathione redox balance in rats. Basic Clin Pharmacol Toxicol 2010; 107: 577-82. [DOI:10.1111/j.1742-7843.2010.00537.x]
20. Lang AE, Lozano AM. Parkinson disease, first of two parts. N Engl J Med 1998; 339: 1044-53. [DOI:10.1056/NEJM199810083391506]
21. Lee JK, Tran T, Tansey MG. Neuroinflammation in Parkinson's disease. J Neuroimmune Pharmacol 2009; 4: 419-29. [DOI:10.1007/s11481-009-9176-0]
22. Lee HJ, Kim C, Lee SJ. Alpha-synuclein stimulation of astrocytes: potential role for neuroinflammation and neuroprotection. Oxid Med Cell Longev 2010; 3. [DOI:10.4161/oxim.3.4.12809]
23. Long-Smith CM, Sullivan AM, Nolan YM. The influence of microglia on the pathogenesis of Parkinson's disease. Prog Neurobiol 2009; 89: 277-87. [DOI:10.1016/j.pneurobio.2009.08.001]
24. Macêdo PFCd, de Melo JSV, Costa LAR, Braz GRF, de Sousa SM, Lagranha CJ, et al. Fish oil and treadmill exercise have age-dependent effects on episodic memory and oxidative state of the hippocampus. Appl Physiol Nutr Metab 2017; 42: 503-10. [DOI:10.1139/apnm-2016-0454]
25. Mokry J. Experimental models and behavioural tests used in the study of Parkinson's disease. Physiol Res 1995; 44: 143-50.
26. Nagatsu T, Sawada M. Inflammatory process in Parkinson's disease: role for cytokines. Curr Pharm Design 2005; 11: 999-1016. [DOI:10.2174/1381612053381620]
27. Niranjan R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson's disease: focus on astrocytes. Mol Neurobiol 2014; 49: 28-38. [DOI:10.1007/s12035-013-8483-x]
28. Parihar VK, Prabhakar K, Veerapur VP, Kumar MS, Reddy YR, Joshi R, et al. Effect of sesamol on radiation-induced cytotoxicity in Swiss albino mice. Mutat Res-Gen Tox Environ Mutat 2006; 611: 9-16. [DOI:10.1016/j.mrgentox.2006.06.037]
29. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Burlington (MA). San Diego (CA), London (UK): Elsevier Academic Press; 2005.
30. Pieper HC, Evert BO, Kaut O, Riederer PF, Waha A, Wüllner U. Different methylation of the TNF-alpha promoter in cortex and substantia nigra: implications for selective neuronal vulnerability. Neurobiol Dis 2008; 32: 521-7. [DOI:10.1016/j.nbd.2008.09.010]
31. Prasad NR, Mahesh T, Menon VP, Jeevanram R, Pugalendi KV. Photoprotective effect of sesamol on UVB-radiation induced oxidative stress in human blood lymphocytes in vitro. Environ Toxicol Pharmacol 2005; 20: 1-5. [DOI:10.1016/j.etap.2004.09.009]
32. Qian L, Flood PM, Hong JS. Neuroinflammation is a key player in Parkinson's disease and a primetarget for therapy. J Neural Transm 2010; 117: 971-9. [DOI:10.1007/s00702-010-0428-1]
33. Rajaei Z, Hosseini M, Alaei H. Effects of crocin on brain oxidative damage and aversivememory in a 6-OHDA model of Parkinson's disease. Arq Neuropsiquiatr 2016; 74: 723-29. [DOI:10.1590/0004-282X20160131]
34. Ren B, Yuan T, Zhang X, Wang L, Pan J, Liu Y, et al. Protective effects of sesamol on systemic inflammation and cognitive impairment in aging mice. J Agric Food Chem 2020; 68: 3099-111. [DOI:10.1021/acs.jafc.9b07598]
35. Schapira AH. The clinical relevance of levodopa toxicity in the treatment of Parkinson's disease. Mov Disord 2008; 23: S515-S20. [DOI:10.1002/mds.22146]
36. Schwarting R, Huston J. Behavioral and neurochemical dynamics of neurotoxic meso-striatal dopamine lesions. Neurotoxicology 1997; 18: 689-708. S
37. hahidani S, Rajaei Z, Alaei H. Pretreatment with crocin along with treadmill exercise ameliorates motor and memory deficits in hemiparkinsonian rats by anti-inflammatory and antioxidant mechanisms. Metab Brain Dis 2019; 34: 459-68. [DOI:10.1007/s11011-018-0379-z S]
38. hi K, Liu X, Hou L, Qiao D, Lin X. Effects of exercise on mGluR-mediated glutamatergic transmission in the striatum of hemiparkinsonian rats. Neurosci Lett 2019; 705: 143-50. [DOI:10.1016/j.neulet.2019.04.052]
39. Shulman JM, De Jager PL, Feany MB. Parkinson's disease: genetics and pathogenesis. Ann Rev Pathol 2011; 6: 193-222. [DOI:10.1146/annurev-pathol-011110-130242]
40. Sonia Angeline M, Sarkar A, Anand K, Ambasta RK, Kumar P. Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience 2013; 254: 379-94. [DOI:10.1016/j.neuroscience.2013.09.029]
41. Speck AE, Schamne MG, S Aguiar A Jr, Cunha RA, Prediger RD. Treadmill exercise attenuates L-DOPA-induced dyskinesia and increases striatal levels of glial cell-derived neurotrophic factor (GDNF) in hemiparkinsonian mice. Mol Neurobiol 2019; 56: 2944-51. [DOI:10.1007/s12035-018-1278-3]
42. Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog Neurobiol 2013; 106: 17-32. [DOI:10.1016/j.pneurobio.2013.04.004]
43. Sung YH. Effects of treadmill exercise on hippocampal neurogenesis in an MPTP/probenecidinduced Parkinson's disease mouse model. J Phys Ther Sci 2015; 27: 3203-6. [DOI:10.1589/jpts.27.3203]
44. Tajiri N, Yasuhara T, ShingoT, Kondo A, Yuan W, Kadota T, et al. Exercise exerts neuroprotective effects on Parkinson's disease model of rats. Brain Res 2010; 1310: 200-7. [DOI:10.1016/j.brainres.2009.10.075]
45. Tuon T, Souza PS, Santos MF, Pereira FT, Pedroso GS, Luciano TF, et al. Physical training regulates mitochondrial parameters and neuroinflammatory mechanisms in an experimental model of Parkinson's disease. Oxid Med Cell Longev 2015; 2015. [DOI:10.1155/2015/261809]
46. Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, et al. Exercise training acts as a therapeutic strategy forreduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model. Int J Mol Med 2008; 22: 529-39.
47. Zaman V, Shields DC, Shams R, Drasites KP, Matzelle D, Haque A, et al. Cellular and molecular pathophysiology in the progression of Parkinson's disease. Metab Brain Dis 2021. [DOI:10.1007/s11011-021-00689-5]
48. Zhang P, Wang Y, Wang H, Cao J. Sesamol alleviates chronic intermittent hypoxia-induced cognitive deficits via inhibiting oxidative stress and inflammation in rats. Neuroreport 2021; 32: 105-11. [DOI:10.1097/WNR.0000000000001564]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.