Volume 26, Issue 3 (September 2022)                   Physiol Pharmacol 2022, 26(3): 288-298 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taslimi Z, Sarihi A, Karimi S, Haghparast A. Changes in the electrical activity of prefrontal neurons following methamphetamine-induced conditioned place preference in the rat. Physiol Pharmacol. 2022; 26 (3) :288-298
URL: http://ppj.phypha.ir/article-1-1764-en.html
Abstract:   (845 Views)
Introduction: Methamphetamine (METH) addiction is an epidemic-growing problem globally. Studies confirmed a solid linkage between the prefrontal cortex (PFC) and drug seeking. The present study aimed to investigate PFC neural activity changes after injection of METH following METH-induced conditioned place preference (CPP) in the rats. Methods: After the development of CPP (0.5mg/kg METH for three days, SC), in vivo single-unit recordings were carried out the day after the post-test (post-conditioning day). On recording day, after stabilization and baseline recording (a 10-min period), the injection of METH (0.5mg/kg, SC) was performed and then, PFC neural activity was recorded for a 30-min period. Results: The results revealed that the injection of METH on the post-conditioning test significantly increases PFC neurons’ firing rate in animals that received METH during the CPP paradigm. Conclusion: It seems that maybe, PFC neurons appear to be implicated in the associated METH reward pathway and repeated exposure to METH affected the sensitivity of neurons in this area.
Full-Text [PDF 944 kb]   (8 Downloads)    
Types of Manuscript: Experimental research article | Subject: Blood and Immune System

References
1. Attarzadeh-Yazdi G, Karimi S, Azizi P, Yazdi-Ravandi S, Hesam S, Haghparast A. Inhibitory effects of forced swim stress and corticosterone on the acquisition but not expression of morphine-induced conditioned place preference: involvement of glucocorticoid receptor in the basolateral amygdala. Behav Brain Res 2013; 252: 339-346. [DOI:10.1016/j.bbr.2013.06.018]
2. Baptista S, Lasgi C, Benstaali C, Milhazes N, Borges F, Fontes-Ribeiro C, et al. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate. Stem Cell Res 2014; 13: 329-341. [DOI:10.1016/j.scr.2014.08.003]
3. Bellomo R, Cole L, Ronco C. Hemodynamic support and the role of dopamine. Kidney Int Suppl 1998; 66: 71-74.
4. Bernheim A, See RE, Reichel CM. Chronic methamphetamine self-administration disrupts cortical control of cognition. Neurosci Biobehav Rev 2016; 69: 36-48. [DOI:10.1016/j.neubiorev.2016.07.020]
5. Berry JN, Neugebauer NM, Bardo MT. Reinstatement of methamphetamine conditioned place preference in nicotine-sensitized rats. Behav Brain Res 2012; 235: 158-165. [DOI:10.1016/j.bbr.2012.07.043]
6. Broom SL, Yamamoto BK. Effects of subchronic methamphetamine exposure on basal dopamine and stress-induced dopamine release in the nucleus accumbens shell of rats. Psychopharmacology (Berl) 2005; 181: 467-476. [DOI:10.1007/s00213-005-0007-6]
7. Bustamante D, You ZB, Castel MN, Johansson S, Goiny M, Terenius L, et al. Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat. J Neurochem 2002; 83: 645-654. [DOI:10.1046/j.1471- 4159.2002.01171.x]
8. Cadet JL, Bisagno V. The primacy of cognition in the manifestations of substance use disorders. Front Neurol 2013; 4: 189 . [DOI:10.3389/fneur.2013.00189]
9. Cao G, Zhu J, Zhong Q, Shi C, Dang Y, Han W, et al. Distinct roles of methamphetamine in modulating spatial memory consolidation, retrieval, reconsolidation and the accompanying changes of ERK and CREB activation in hippocampus and prefrontal cortex. Neuropharmacology 2013; 67: 144-154. [DOI:10.1016/j.neuropharm.2012.10.020]
10. Capriles N, Rodaros D, Sorge RE, Stewart J. A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2003; 168: 66-74. [DOI:10.1007/s00213-002-1283-z]
11. Chang L, Alicata D, Ernst T, Volkow N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 2007; 102 Suppl 1: 16-32. [DOI:10.1111/j.1360-0443.2006.01782.x]
12. Cunningham CL, Noble D. Methamphetamine-induced conditioned place preference or aversion depending on dose and presence of drug. Ann N Y Acad Sci 1992; 654: 431-433. [DOI:10.1111/j.1749-6632.1992.tb25989.x]
13. Daglish MR, Nutt DJ. Brain imaging studies in human addicts. Eur Neuropsychopharmacol 2003; 13: 453-458. [DOI:10.1016/j.euroneuro.2003.08.006]
14. Etaee F, Asadbegi M, Taslimi Z, Shahidi S, Sarihi A, Soleimani Asl S, et al. The effects of methamphetamine and buprenorphine, and their interaction on anxiety-like behavior and locomotion in male rats. Neurosci Lett 2017; 655: 172-178. [DOI:10.1016/j.neulet.2017.04.043]
15. Fallon JH, Moore RY. Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 1978; 180: 545-480. [DOI:10.1002/cne.901800310]
16. Fowler JS, Volkow ND, Logan J, Alexoff D, Telang F, Wang GJ, et al. Fast uptake and longlasting binding of methamphetamine in the human brain: comparison with cocaine. Neuroimage 2008; 43: 756-763. [DOI:10.1016/j.neuroimage.2008.07.020]
17. Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH, et al. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 2005; 30: 296-309. [DOI:10.1038/sj.npp.1300579]
18. Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, et al. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 2000; 157: 1789-1798. [DOI:10.1176/appi.ajp.157.11.1789]
19. Garske AK, Lawyer CR, Peterson BM, Illig KR. Adolescent changes in dopamine D1 receptor expression in orbitofrontal cortex and piriform cortex accompany an associative learning deficit. PLoS One 2013; 8: e56191. [DOI:10.1371/journal.pone.0056191]
20. Gerfen CR. The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. Science 1989; 246: 385-8. [DOI:10.1126/science.2799392]
21. Goncalves J, Baptista S, Silva AP. Psychostimulants and brain dysfunction: a review of the relevant neurotoxic effects. Neuropharmacology 2014; 87: 135-149. [DOI:10.1016/j.neuropharm.2014.01.006]
22. Gonzales R, Mooney L, Rawson RA. The methamphetamine problem in the United States. Annu Rev Public Health 2010; 31: 385-398. [DOI:10.1146/annurev.publhealth.012809.103600]
23. González B, Torres OV, Jayanthi S, Gomez N, Sosa MH, Bernardi A, et al. The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88: 222-234. [DOI:10.1016/j.pnpbp.2018.07.019]
24. Grant BF, Dawson DA. Alcohol and drug use, abuse, and dependence among welfare recipients. Am J Public Health 1996; 86: 1450-1454. [DOI:10.2105/AJPH.86.10.1450]
25. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 2010; 35: 4-26. [DOI:10.1038/npp.2009.129]
26. Hori N, Kadota T, Akaike N. Functional changes in piriform cortex pyramidal neurons in the chronic methamphetamine-treated rat. Gen Physiol Biophys 2015; 34: 5-12. [DOI:10.4149/gpb_2014024]
27. Huang M, Bai M, Zhang Z, Ge L, Lu K, Li X, et al. Downregulation of thioredoxin-1 in the ventral tegmental area delays extinction of methamphetamine-induced conditioned place preference. 2018; 32: 1037-1046. [DOI:10.1177/0269881118791523]
28. Janetsian SS, Linsenbardt DN, Lapish CC. Memory impairment and alterations in prefrontal cortex gamma band activity following methamphetamine sensitization. Psychopharmacology (Berl) 2015; 232: 2083-2095. [DOI:10.1007/s00213-014-3840-7]
29. Jang J, Ha HJ, Kim YB, Chung YK, Jung MW. Effects of methamphetamine on single unit activity in rat medial prefrontal cortex in vivo. Neural Plast 2007; 2007: 29821. [DOI:10.1155/2007/29821]
30. Jones HW, Dean AC, Price KA, London ED. Increased self-reported impulsivity in methamphetamine users maintaining drug abstinence. Am J Drug Alcohol Abuse 2016; 42: 500-506. [DOI:10.1080/00952990.2016.1192639]
31. Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. Brain Res Rev 2009; 60: 379-407. [DOI:10.1016/j.brainresrev.2009.03.002]
32. LaLumiere RT, Kalivas PW. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 2008; 28: 3170-3177. [DOI:10.1523/JNEUROSCI.5129- 07.2008]
33. Lasseter HC, Xie X, Ramirez DR, Fuchs RA. Prefrontal cortical regulation of drug seeking in animal models of drug relapse. Curr Top Behav Neurosci 2010; 3: 101-117. [DOI:10.1007/7854_2009_19]
34. Ling W, Rawson R, Shoptaw S, Ling W. Management of methamphetamine abuse and dependence. Curr Psychiatry Rep 2006; 8: 345-354. [DOI:10.1007/s11920-006-0035- x]
35. Lominac KD, Quadir SG, Barrett HM, McKenna CL, Schwartz LM, Ruiz PN, et al. Prefrontal glutamate correlates of methamphetamine sensitization and preference. Eur J Neurosci 2016; 43: 689-702. [DOI:10.1111/ejn.13159]
36. Lominac KD, Sacramento AD, Szumlinski KK, Kippin TE. Distinct neurochemical adaptations within the nucleus accumbens produced by a history of self-administered vs non-contingently administered intravenous methamphetamine. Neuropsychopharmacology 2012; 37: 707-722. [DOI:10.1038/npp.2011.248]
37. London ED, Simon SL, Berman SM, Mandelkern MA, Lichtman AM, Bramen J, et al. Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers. Arch Gen Psychiatry 2004; 61: 73-84. [DOI:10.1001/archpsyc.61.1.73]
38. Maviel T, Durkin TP, Menzaghi F, Bontempi B. Sites of neocortical reorganization critical for remote spatial memory. Science 2004; 305: 96-99. [DOI:10.1126/science.1098180]
39. McFarland K, Kalivas PW. The circuitry mediating cocaine-induced reinstatement of drugseeking behavior. J Neurosci 2001; 21: 8655-8663. [DOI:10.1523/JNEUROSCI.21- 21-08655.2001]
40. McFarland K, Lapish CC, Kalivas PW. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 2003; 23: 3531-3537. [DOI:10.1523/JNEUROSCI.23-08-03531.2003]
41. McLaughlin J, See RE. Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaineseeking behavior in rats. Psychopharmacology (Berl) 2003; 168: 57-65. [DOI:10.1007/s00213-002-1196-x]
42. Miguel-Hidalgo JJ. The Role of Glial Cells in Drug Abuse. Curr Drug Abuse Rev 2009; 2: 76- 82. [DOI:10.2174/1874473710902010076]
43. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001; 24: 167-202. [DOI:10.1146/annurev.neuro.24.1.167]
44. Mishra D, Pena-Bravo JI, Leong KC, Lavin A, Reichel CM. Methamphetamine selfadministration modulates glutamate neurophysiology. Brain Struct Funct 2017; 222: 2031- 2039. [DOI:10.1007/s00429-016-1322-x]
45. Mulder AB, Nordquist R, Orgüt O, Pennartz CM. Plasticity of neuronal firing in deep layers of the medial prefrontal cortex in rats engaged in operant conditioning. Prog Brain Res 2000; 126: 287-301. [DOI:10.1016/S0079-6123(00)26020-2]
46. Palombo P, Leao RM, Bianchi PC, de Oliveira PEC, Planeta CDS, Cruz FC. Inactivation of the Prelimbic Cortex Impairs the Context-Induced Reinstatement of Ethanol Seeking. Front Pharmacol 2017; 8: 725. [DOI:10.3389/fphar.2017.00725]
47. Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer WG, et al. Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend 2013; 129: 167-179. [DOI:10.1016/j.drugalcdep.2012.11.016]
48. Parsegian A, Glen WB, Jr., Lavin A, See RE. Methamphetamine self-administration produces attentional set-shifting deficits and alters prefrontal cortical neurophysiology in rats. Biol Psychiatry 2011; 69: 253-259. [DOI:10.1016/j.biopsych.2010.09.003]
49. Parsegian A, See RE. Dysregulation of dopamine and glutamate release in the prefrontal cortex and nucleus accumbens following methamphetamine self-administration and during reinstatement in rats. Neuropsychopharmacology 2014; 39: 811-822. [DOI:10.1038/npp.2013.231]
50. Parvishan A, Taslimil Z, Ebrahimzadeh M, Haghparast A. Capsazepine, a transient receptor potential vanilloid type 1 (TRPV1) antagonist, attenuates antinociceptive effect of CB1 receptor agonist, WIN55, 212-2, in the rat nucleus cuneiformis. Basic and Clinical Neuroscience 2011; 2: 19-26. [DOI:10.1016/j.brainres.2011.08.028]
51. Paxinos G, Watson C. The rat brain in stereotaxic coordinates: hard cover edition: Elsevier, 2006.
52. Rocha A, Kalivas PW. Role of the prefrontal cortex and nucleus accumbens in reinstating methamphetamine seeking. Eur J Neurosci 2010; 31: 903-9-9. [DOI:10.1111/j.1460- 9568.2010.07134.x]
53. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci 2013; 14: 609-625. [DOI:10.1038/nrn3381]
54. Rusyniak DE. Neurologic manifestations of chronic methamphetamine abuse. Psychiatr Clin North Am 2013; 36: 261-275. [DOI:10.1016/j.psc.2013.02.005]
55. See RE. Neural substrates of cocaine-cue associations that trigger relapse. Eur J Pharmacol 2005; 526: 140-146. [DOI:10.1016/j.ejphar.2005.09.034]
56. Sell LA, Morris JS, Bearn J, Frackowiak RS, Friston KJ, Dolan RJ. Neural responses associated with cue evoked emotional states and heroin in opiate addicts. Drug Alcohol Depend 2000; 60: 207-216. [DOI:10.1016/S0376-8716(99)00158-1]
57. Sora I, Komatsu H, Igari M, Ide S, Ikeda K, Shimoyama N. Side effects of opioid and gene variants. Masui 2009; 58: 1109-1111.
58. Stephans SE, Yamamoto BY. Effect of repeated methamphetamine administrations on dopamine and glutamate efflux in rat prefrontal cortex. Brain Res 1995; 700: 99-106. [DOI:10.1016/0006-8993(95)00938-M]
59. Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 1995; 15: 4102-4108. [DOI:10.1523/JNEUROSCI.15-05-04102.1995]
60. Takahashi K, Toyoshima M, Ichitani Y, Yamada K. Enhanced methamphetamine-induced conditioned place preference in risk-taking rats. Behav Brain Res 2020; 378: 112299. [DOI:10.1016/j.bbr.2 019.112299]
61. Tapert SF, Cheung EH, Brown GG, Frank LR, Paulus MP, Schweinsburg AD, et al. Neural response to alcohol stimuli in adolescents with alcohol use disorder. Arch Gen Psychiatry 2003; 60: 727-735. [DOI:10.1001/archpsyc.60.7.727]
62. Taslimi Z, Komaki A, Haghparast A, Sarihi A. Effects of Acute and Chronic Restraint Stress on Reinstatement of Extinguished Methamphetamine-induced Conditioned Place Preference in Rats. Basic Clin Neurosci 2018a; 9: 157-166. [DOI:10.29252/nirp.bcn.9.3.157]
63. Taslimi Z, Komaki A, Sarihi A, Haghparast A. Effect of acute and chronic restraint stress on electrical activity of prefrontal cortex neurons in the reinstatement of extinguished methamphetamine-induced conditioned place preference: An electrophysiological study. Brain Res Bull 2019; 146: 237-243. [DOI:10.1016/j.brainresbull.2019.01.013]
64. Taslimi Z, Sarihi A, Haghparast A. Glucocorticoid receptors in the basolateral amygdala mediated the restraint stress-induced reinstatement of methamphetamine-seeking behaviors in rats. Behav Brain Res 2018b; 348: 150-159. [DOI:10.1016/j.bbr.2018.04.022]
65. Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 2004; 24: 6028-6036. [DOI:10.1523/JNEUROSCI.0713-04.2004]
66. Tzschentke TM. Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 1998; 56: 613-672. [DOI:10.1016/S0301-0082(98)00060-4]
67. Van den Oever MC, Spijker S, Smit AB, De Vries TJ. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev 2010; 35: 276-284. [DOI:10.1016/j.neubiorev.2009.11.016]
68. Volkow ND, Fowler JS, Wang GJ, Goldstein RZ. Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem 2002; 78: 610-624. [DOI:10.1006/nlme.2002.4099]
69. Volkow P, Tellez O, Allende S, Vazquez C. Drug abuse through a long-indwelling catheter cared for by an intravenous team. Am J Infect Control 1999; 27: 459. [DOI:10.1016/S0196-6553(99)70016-7]
70. Wilson SJ, Sayette MA, Fiez JA. Prefrontal responses to drug cues: a neurocognitive analysis. Nat Neurosci 2004; 7: 211-214. [DOI:10.1038/nn1200]
71. Yazdi-Ravandi S, Razavi Y, Haghparast A, Goudarzvand M, Haghparast A. Orexin A induced antinociception in the ventral tegmental area involves D1 and D2 receptors in the nucleus accumbens. Pharmacol Biochem Behav 2014; 126: 1-6. [DOI:10.1016/j.pbb.2014.08.009]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.