Volume 28, Issue 4 (December 2024)                   Physiol Pharmacol 2024, 28(4): 465-475 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ferdous M R, Yang M, Azam M S, Song Y, Zhang H, panday V. Histone methyltransferase G9a inhibitor (UNC0631) reinforces mitochondrial function and upregulates UCP1 in brown adipocytes and screening of epigenetic libraries. Physiol Pharmacol 2024; 28 (4) : 9
URL: http://ppj.phypha.ir/article-1-2029-en.html
Abstract:   (1148 Views)

Introduction: Obesity leads to massive death worldwide by initiating numerous illnesses like Nonalcoholic Steatohepatitis (NASH), liver disease, and cardiovascular diseases. Developing new therapeutics against obesity is an emergency need. Targeting mitochondrial uncoupling protein 1 (UCP1) will provide new therapeutic strategies for drug discovery research against obesity and obesity-related disorders. 
Methods: We screened UCP1 up-regulators from epigenetic drug libraries by using a previously developed Ucp1-A-GFP cellular GFP screening platform, ATP production, and mitochondrial DNA quantification. 
Results: We discovered that the histone methyltransferase G9a inhibitor UNC0631 has a considerable effect on the expression of UCP1 in adipocytes when used in vitro. Here, we discovered that UNC0631 is crucial for controlling mitochondrial activity and anti-obesity. The UNC0631-treated fat cells have higher UCP1 expression at the cellular level. Taken together, in our studies, we have established an efficient in vitro cell experiment system to study the metabolic regulation of UCP1. Enhanced mitochondrial DNA, ATP synthesis, and cell survival showed that UNC0631 had a benign impact on the HEK293T cell line. As a result, UNC0631 reveals a promising therapeutic option for the treatment of diseases associated with obesity and metabolic disorders.
Conclusion: In this study, we make a list of potent drug candidates from epigenetic drug libraries that can upregulate mitochondrial UCP1 gene expression and promote thermogenesis. UNC0631 improves mitochondrial function and would be an effective drug candidate to treat metabolic diseases and obesity-related diseases. Further investigation will require both the human and animal models to reveal new insight into the mechanism against obesity, metabolic diseases, or mitochondrial dysfunction-related diseases.

Supplementary Files

Article number: 9
Full-Text [PDF 760 kb]   (103 Downloads)    

References
1. Abe Y, Fujiwara Y, Takahashi H, Matsumura Y, Sawada T, Jiang S, et al. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat Commun 2018; 9: 1566. [DOI:10.1038/s41467-018-03868-8]
2. Abe Y, Rozqie R, Matsumura Y, Kawamura T, Nakaki R, Tsurutani Y, et al. JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis. Nat Commun 2015; 6: 7052. [DOI:10.1038/ncomms8052]
3. Afanas’ev I. New nucleophilic mechanisms of ros-dependent epigenetic modifications: comparison of aging and cancer. Aging Dis 2014; 5: 52-62. [DOI:10.14336/ad.2014.050052]
4. Azam M S, Wahiduzzaman M, Reyad-Ul-Ferdous M, Islam M N, Roy M. Inhibition of insulin degrading enzyme to control diabetes mellitus and its applications on some other chronic disease: a critical review. Pharm Res 2022; 39: 611-629. [DOI:10.1007/s11095-022-03237-7]
5. Bao Y, Chen Q, Xie Y, Tao Z, Jin K, Chen S, et al. Ferulic acid attenuates oxidative DNA damage and inflammatory responses in microglia induced by benzo(a)pyrene. Int Immunopharmacol 2019: 105980. [DOI:10.1016/j.intimp.2019.105980]
6. Betz M J, Enerback S. Human brown adipose tissue: what we have learned so far. Diabetes 2015; 64: 2352-2360. [DOI:10.2337/db15-0146]
7. Chang S H, Song N J, Choi J H, Yun U J, Park K W. Mechanisms underlying UCP1 dependent and independent adipocyte thermogenesis. Obes Rev 2019; 20: 241-251. [DOI:10.1111/obr.12796]
8. Chouchani E T, Kazak L, Jedrychowski M P, Lu G Z, Erickson B K, Szpyt J, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 2016; 532: 112-116. [DOI:10.1038/nature17399]
9. Chouchani E T, Kazak L, Spiegelman B M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell metabolism 2019; 29: 27-37. [DOI:10.1016/j.cmet.2018.11.002]
10. Cypess A M, Lehman S, Williams G, Tal I, Rodman D, Goldfine A B, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509-1517. [DOI:10.1056/NEJMoa0810780]
11. Dempersmier J, Sambeat A, Gulyaeva O, Paul S M, Hudak C S, Raposo H F, et al. Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Mol Cell 2015; 57: 235-246. [DOI:10.1016/j.molcel.2014.12.005]
12. Ferdous M R, Abdalla M, Yang M, Xiaoling L, Song Y. Berberine chloride (dual topoisomerase I and II inhibitor) modulate mitochondrial uncoupling protein (UCP1) in molecular docking and dynamic with in-vitro cytotoxic and mitochondrial ATP production. J Biomol Struct Dyn 2022: 1-11. [DOI:10.1080/07391102.2021.2024255]
13. Gnad T, Scheibler S, von Kugelgen I, Scheele C, Kilic A, Glode A, et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 2014; 516: 395-399. [DOI:10.1038/nature13816]
14. Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674. [DOI:10.1016/j.cell.2011.02.013]
15. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013; 19: 1252-1263. [DOI:10.1038/nm.3361]
16. Jastroch M, Divakaruni A S, Mookerjee S, Treberg J R, Brand M D. Mitochondrial proton and electron leaks. Essays Biochem 2010; 47: 53-67. [DOI:10.1042/bse0470053]
17. Jonckheere A I, Smeitink J A, Rodenburg R J. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 2012; 35: 211-225. [DOI:10.1007/s10545-011-9382-9]
18. Kelly A D, Issa J J. The promise of epigenetic therapy: reprogramming the cancer epigenome. Curr Opin Genet Dev 2017; 42: 68-77. [DOI:10.1016/j.gde.2017.03.015]
19. Kose M, Emet S, Akpinar T S, Ilhan M, Gok A F, Dadashov M, et al. An unexpected result of obesity treatment: orlistat-related acute pancreatitis. Case Rep Gastroenterol 2015; 9: 152-155. [DOI:10.1159/000430433]
20. Kreuz S, Fischle W. Oxidative stress signaling to chromatin in health and disease. Epigenomics 2016; 8: 843-862. [DOI:10.2217/epi-2016-0002]
21. Kwak S H, Park K S, Lee K U, Lee H K. Mitochondrial metabolism and diabetes. J Diabetes Investig 2010; 1: 161-169. [DOI:10.1111/j.2040-1124.2010.00047.x]
22. Li X, Yang M, Sun H, Ferdous M R U, Gao L, Zhao J, et al. Liver cyclophilin D deficiency inhibits the progression of early NASH by ameliorating steatosis and inflammation. Biochem Biophys Res Commun 2022; 594: 168-176. [DOI:10.1016/j.bbrc.2022.01.059]
23. Mailloux R J, Adjeitey C N, Xuan J Y, Harper M E. Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. Faseb j 2012; 26: 363-375. [DOI:10.1096/fj.11-189639]
24. Mu M, Zuo S, Wu R M, Deng K S, Lu S, Zhu J J, et al. Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-beta/Smad signaling pathway. Drug Des Devel Ther 2018; 12: 4107-4115. [DOI:10.2147/DDDT.S186726]
25. Nicholls D G. The physiological regulation of uncoupling proteins. Biochim Biophys Acta 2006; 1757: 459-466. [DOI:10.1016/j.bbabio.2006.02.005]
26. Peng L, Yuan Z, Ling H, Fukasawa K, Robertson K, Olashaw N, et al. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol 2011; 31: 4720-4734. [DOI:10.1128/MCB.06147-11]
27. Perrio M J, Wilton L V, Shakir S A. The safety profiles of orlistat and sibutramine: results of prescription-event monitoring studies in England. Obesity (Silver Spring) 2007; 15: 2712-2722. [DOI:10.1038/oby.2007.323]
28. Qi Q, Wang Y, Wang X, Yang J, Xie Y, Zhou J, et al. Histone demethylase KDM4A regulates adipogenic and osteogenic differentiation via epigenetic regulation of C/EBPalpha and canonical Wnt signaling. Cell Mol Life Sci 2019; 77: 2407-2421. [DOI:10.1007/s00018-019-03289-w]
29. Qiu Y, Sun Y, Xu D, Yang Y, Liu X, Wei Y, et al. Screening of FDA-approved drugs identifies sutent as a modulator of UCP1 expression in brown adipose tissue. EBioMedicine 2018; 37: 344-355. [DOI:10.1016/j.ebiom.2018.10.019]
30. Quintana-Cabrera R, Quirin C, Glytsou C, Corrado M, Urbani A, Pellattiero A, et al. The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function. Nat Commun 2018; 9: 3399. [DOI:10.1038/s41467-018-05655-x]
31. Reyad-ul-Ferdous M, Alam T T, Islam M A, Khan M Z, Tasnim F. Ex-vivo cardioprotective and cytotoxic screening of fruits of parmentiera cereifera seem. Biology and Medicine 2014; 6: 219. [DOI:10.4172/0974-8369.1000219]
32. Reyad-ul-Ferdous M, Abdalla M, Song Y. Glycyrrhizin (Glycyrrhizic Acid) HMGB1 (high mobility group box 1) inhibitor upregulate mitochondrial function in adipocyte, cell viability and in-silico study. J Saudi Chem Soc 2022a; 26: 101454. [DOI:10.1016/j.jscs.2022.101454]
33. Reyad-ul-Ferdous M, Abdalla M, Yang M, Xiaoling L, Bian W, Xie J, et al. Epigenetic drug (XL019) JAK2 inhibitor increases mitochondrial function in brown adipocytes by upregulating mitochondrial uncoupling protein 1 (UCP1), screening of epigenetic drug libraries, cell viability, and in-silico studies. J J Saudi Chem Soc 2022b; 26: 101516. [DOI:10.1016/j.jscs.2022.101516]
34. Reyad-ul-ferdous M, Azam S. Cardiac disease: Current approaches to gene therapy. 2020: 62-75.
35. Reyad-Ul-Ferdous M, Song Y. Baicalein modulates mitochondrial function by upregulating mitochondrial uncoupling protein-1 (UCP1) expression in brown adipocytes, cytotoxicity, and computational studies. Int J Biol Macromol 2022; 222: 1963-1973. [DOI:10.1016/j.ijbiomac.2022.09.285]
36. Rosen E D, Spiegelman B M. What we talk about when we talk about fat. Cell 2014; 156: 20-44. [DOI:10.1016/j.cell.2013.12.012]
37. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009; 58: 1526-1531. [DOI:10.2337/db09-0530]
38. Sambeat A, Gulyaeva O, Dempersmier J, Tharp K M, Stahl A, Paul S M, et al. LSD1 Interacts with Zfp516 to Promote UCP1 Transcription and Brown Fat Program. Cell Rep 2016; 15: 2536-49. [DOI:10.1016/j.celrep.2016.05.019]
39. Stier A, Bize P, Habold C, Bouillaud F, Massemin S, Criscuolo F. Mitochondrial uncoupling prevents cold-induced oxidative stress: a case study using UCP1 knockout mice. J Exp Biol 2014; 217: 624-630. [DOI:10.1242/jeb.092700]
40. Virtanen K A, Lidell M E, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518-1525. [DOI:10.1056/NEJMoa0808949]
41. Wu X, Wang Y, Wang Y, Wang X, Li J, Chang K, et al. GSK126 alleviates the obesity phenotype by promoting the differentiation of thermogenic beige adipocytes in diet-induced obese mice. Biochem Biophys Res Commun 2018; 501: 9-15. [DOI:10.1016/j.bbrc.2018.04.073]
42. Yin C L, Lu R G, Zhu J F, Huang H M, Liu X, Li Q F, et al. The study of neuroprotective effect of ferulic acid based on cell metabolomics. Eur J Pharmacol 2019; 864: 172694. [DOI:10.1016/j.ejphar.2019.172694]
43. Young A, Gardiner D, Brosnan M E, Brosnan J T, Mailloux R J. Physiological levels of formate activate mitochondrial superoxide/hydrogen peroxide release from mouse liver mitochondria. FEBS Lett 2017; 591: 2426-2438. [DOI:10.1002/1873-3468.12777]
44. Zhang Z, Falk M J. Integrated transcriptome analysis across mitochondrial disease etiologies and tissues improves understanding of common cellular adaptations to respiratory chain dysfunction. Int J Biochem Cell Biol 2014; 50: 106-111. [DOI:10.1016/j.biocel.2014.02.012]
45. Zhao Z, Liu Q, Wu C, Guo W, Li J. Expression of G9a in breast cancer and its effect on proliferation of breast cancer cells in vitro. Nan fang yi ke da xue xue bao = Journal of Southern Medical University 2019; 39: 477-484.
46. Zhou W, Tian D, He J, Wang Y, Zhang L, Cui L, et al. Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget 2016; 7: 20691-20703. [DOI:10.18632/oncotarget.7842]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.