Volume 28, Issue 2 (July 2024)                   Physiol Pharmacol 2024, 28(2): 190-205 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kharazmi F, Pourshanazari A, Nematbakhsh M. The role of the AT1 receptor antagonist on renal hemodynamic responses to angiotensin 1-7 in acute sympathectomized male and female rats. Physiol Pharmacol 2024; 28 (2) : 9
URL: http://ppj.phypha.ir/article-1-2126-en.html
Abstract:   (1175 Views)

Introduction: The sympathetic nervous system and the renin-angiotensin system (RAS) are the most pivotal vasoactive systems in regulating renal hemodynamics. The main objective of this study was to determine the role of the angiotensin II (Ang II) type 1 receptor (AT1R) antagonist on renal hemodynamic responses to Ang 1-7 infusion in innervated and denervated male and female rats.
Methods: Male and female Wistar rats underwent unilateral nephrectomy. Four weeks later, they were divided into two groups: innervated and acutely denervated groups. Subsequently, the anesthetized and catheterized rats in both groups were treated with saline as a vehicle and losartan infusion. Mean arterial pressure (MAP), renal blood flow (RBF), renal perfusion pressure (RPP), and renal vascular resistance (RVR) responses to Ang 1-7 (100, 300, and 1000 ng kg−1 min−1 ) were then measured at controlled RPP.
Results: Basal MAP, RPP, RBF, and RVR did not show significant differences between the intact and denervated groups. Losartan significantly decreased MAP, RPP, and RVR in both innervated and denervated male and female rats (P<0.001), while RBF increased only in innervated and denervated female rats (P<0.004). However, following Ang 1-7 administration, the RBF response to Ang 1-7 infusion differed significantly between intact and denervated male rats treated with losartan (P<0.04). This response was not observed in female rats.
Conclusion: These data suggest a synergistic effect of losartan and Ang 1-7 on increased RBF in the presence of renal sympathetic nerves in male rats.

Article number: 9
Full-Text [PDF 1011 kb]   (106 Downloads)    

References
1. Abdulla M, Sattar M, Abdullah N, Hazim A, Anand Swarup K, Rathore H, et al. Inhibition of Ang II and renal sympathetic nerve influence dopamine-and isoprenaline-induced renal haemodynamic changes in normal Wistar-Kyoto and spontaneously hypertensive rats. Autonomic and Autacoid Pharmacology 2008a; 28: 95-101. [DOI:10.1111/j.1474-8673.2008.00422.x]
2. Abdulla M, Sattar M, Salman I, Abdullah N, Ameer O, Khan M A, et al. Effect of acute unilateral renal denervation on renal hemodynamics in spontaneously hypertensive rats. Autonomic and Autacoid Pharmacology 2008b; 28: 87-94. [DOI:10.1111/j.1474-8673.2008.00421.x]
3. Abdulla M H, Sattar M, Khan M A, Abdullah N A, Johns E. Influence of sympathetic and AT1-receptor blockade on angiotensin II and adrenergic agonist-induced renal vasoconstrictions in spontaneously hypertensive rats. Acta Physiologica 2009; 195: 397-404. [DOI:10.1111/j.1748-1716.2008.01895.x]
4. Abildgaard U, Holstein-rathlou N H, Leyssac P P. Effect of renal nerve activity on tubular sodium and water reabsorption in dog kidneys as determined by the lithium clearance method. Acta Physiologica Scandinavica 1986; 126: 251-257. [DOI:10.1111/j.1748-1716.1986.tb07812.x]
5. Abu-Amarah I, Ajikobi D O, Bachelard H, Cupples W A, Salevsky F C. Responses of mesenteric and renal blood flow dynamics to acute denervation in anesthetized rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1998; 275: R1543-R1552. [DOI:10.1152/ajpregu.1998.275.5.R1543]
6. Ajayi A F, Akhigbe R E. Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertility Research and Practice 2020; 6: 1-15. [DOI:10.1186/s40738-020-00074-3]
7. Almeida A, Frábregas B, Madureira M, Santos R, Campagnole-Santos M, Santos R. Angiotensin-(1-7) potentiates the coronary vasodilatatory effect of bradykinin in the isolated rat heart. Brazilian Journal of Medical and Biological Research 2000; 33: 709-713. [DOI:10.1590/S0100-879X2000000600012]
8. Armando I. Jezova M, Juorio AV, Terrón JA, Falcón-Neri A, Semino-Mora C, Imboden H, and Saavedra JM. Estrogen upregulates renal angiotensin II AT. American Journal of Physiology. Renal Physiology 2002; 2. [DOI:10.1152/ajprenal.00145.2002]
9. Azadbakht M K, Nematbakhsh M. Angiotensin 1-7 administration alters baroreflex sensitivity and renal function in sympathectomized rats. Journal of Nephropathology 2017; 7: 79-82. [DOI:10.15171/jnp.2018.19]
10. Barry E F, O’Neill J, Abdulla M H, Johns E J. The renal excretory responses to acute renal interstitial angiotensin (1-7) infusion in anaesthetised spontaneously hypertensive rats. Clinical and Experimental Pharmacology and Physiology 2021; 48: 1674-1684. [DOI:10.1111/1440-1681.13570]
11. Bello-Reuss E, Colindres R, Pastoriza-Munoz E, Mueller R, Gottschalk C. Effects of acute unilateral renal denervation in the rat. The Journal of Clinical Investigation 1975; 56: 208-217. [DOI:10.1172/JCI108069]
12. Bohlender J M, Nussberger J, Birkhäuser F, Grouzmann E, Thalmann G N, Imboden H. Resetting of renal tissular renin-angiotensin and bradykinin-kallikrein systems after unilateral kidney denervation in rats. Histochemistry and Cell Biology 2017; 147: 585-593. [DOI:10.1007/s00418-017-1543-y]
13. Braga A N G, da Silva Lemos M, Da Silva J R, Fontes W R P, Augusto Souza Dos Santos R. Effects of angiotensins on day-night fluctuations and stress-induced changes in blood pressure. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2002; 282: 1663-1671. [DOI:10.1152/ajpregu.00583.2001]
14. Bürgelová M, Kramer H J, Teplan V, Veličková G, Vítko Š, Heller J, et al. Intrarenal infusion of angiotensin-(1-7) modulates renal functional responses to exogenous angiotensin II in the rat. Kidney and Blood Pressure Research 2002; 25: 202-210. [DOI:10.1159/000066340]
15. Cai X-N, Wang C-Y, Cai Y, Peng F. Effects of renal denervation on blood-pressure response to hemorrhagic shock in spontaneously hypertensive rats. Chinese Journal of Traumatology 2018; 21: 293-300. [DOI:10.1016/j.cjtee.2018.09.001]
16. Caplea A, Seachrist D, Daneshvar H, Dunphy G, Ely D. Noradrenergic content and turnover rate in kidney and heart shows gender and strain differences. Journal of Applied Physiology 2002; 92: 567-571. [DOI:10.1152/japplphysiol.00557.2001]
17. Carey R M. The intrarenal renin-angiotensin system in hypertension. Advances in Chronic Kidney Disease 2015; 22: 204-210. [DOI:10.1053/j.ackd.2014.11.004]
18. Carey R M, Siragy H M. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocrine Reviews 2003; 24: 261-271. [DOI:10.1210/er.2003-0001]
19. Chappell M C, Modrall J G, Diz D I, Ferrario C M. Novel aspects of the renal renin-angiotensin system: angiotensin-(1-7), ACE2 and blood pressure regulation. Contributions to Nephrology 2004; 143: 77-89. [DOI:10.1159/000078713]
20. Collister J P, Hendel M D. The role of Ang (1-7) in mediating the chronic hypotensive effects of losartan in normal rats. Journal of the Renin-Angiotensin-Aldosterone System 2003; 4: 176-179. [DOI:10.3317/jraas.2003.028]
21. Crackower M A, Sarao R, Oudit G Y, Yagil C, Kozieradzki I, Scanga S E, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417: 822-828. [DOI:10.1038/nature00786]
22. De Moura R S, Resende A, Emiliano A, Tano T, Mendes-Ribeiro A, Correia M, et al. The role of bradykinin, AT2 and angiotensin 1-7 receptors in the EDRF-dependent vasodilator effect of angiotensin II on the isolated mesenteric vascular bed of the rat. British Journal of Pharmacology 2004; 141: 860-866. [DOI:10.1038/sj.bjp.0705669]
23. Dibona G F. Peripheral and central interactions between the renin-angiotensin system and the renal sympathetic nerves in control of renal function. Annals of the New York Academy of Sciences 2001; 940: 395-406. [DOI:10.1111/j.1749-6632.2001.tb03693.x]
24. DiBona G F, Rios L L. Renal nerves in compensatory renal response to contralateral renal denervation. American Journal of Physiology-Renal Physiology 1980; 238: F26-F30. [DOI:10.1152/ajprenal.1980.238.1.F26]
25. Dibona G F, Sawin L L. Effect of renal denervation on dynamic autoregulation of renal blood flow. American Journal of Physiology-Renal Physiology 2004; 286: F1209-F1218. [DOI:10.1152/ajprenal.00010.2004]
26. Dilauro M, Burns K D. Angiotensin-(1-7) and its effects in the kidney. The Scientific World Journal 2009; 9: 522-535. [DOI:10.1100/tsw.2009.70]
27. e Silva A S, Pinheiro S V, Pereira R M, Ferreira A J, Santos R A. The therapeutic potential of angiotensin-(1-7) as a novel renin-angiotensin system mediator. Mini Reviews in Medicinal Chemistry 2006; 6: 603. [DOI:10.2174/138955706776876203]
28. Fernandes L, Fortes Z B, Nigro D, Tostes R C, Santos R A, Catelli de Carvalho M H. Potentiation of bradykinin by angiotensin-(1-7) on arterioles of spontaneously hypertensive rats studied in vivo. Hypertension 2001; 37: 703-709. [DOI:10.1161/01.HYP.37.2.703]
29. Ferrario C, Chappell M. What’s new in the renin-angiotensin system? Cellular and Molecular Life Sciences CMLS 2004; 61: 2720-2727. [DOI:10.1007/s00018-004-4243-4]
30. Fountain J H, Kaur J, Lappin S L. Physiology, renin angiotensin system. Stat Pearls [Internet]: Stat Pearls Publishing, 2023.
31. Gorelik G, Carbini L, Scicli A. Angiotensin 1-7 induces bradykinin-mediated relaxation in porcine coronary artery. Journal of Pharmacology and Experimental Therapeutics 1998; 286: 403-410.
32. Grady H C, Bullivant E. Renal blood flow varies during normal activity in conscious unrestrained rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1992; 262: R926-R932. [DOI:10.1152/ajpregu.1992.262.5.R926]
33. Handa R, Johns E J. Interaction of the renin-angiotensin system and the renal nerves in the regulation of rat kidney function. The Journal of Physiology 1985; 369: 311-321. [DOI:10.1113/jphysiol.1985.sp015903]
34. Handa R K. Binding and signaling of angiotensin-(1-7) in bovine kidney epithelial cells involves the AT4 receptor. Peptides 2000; 21: 729-736. [DOI:10.1016/S0196-9781(00)00188-1]
35. Handa R K, Ferrario C M, Strandhoy J W. Renal actions of angiotensin-(1-7): in vivo and in vitro studies. American Journal of Physiology-Renal Physiology 1996; 270: F141-F147. [DOI:10.1152/ajprenal.1996.270.1.F141]
36. Heller J, Kramer H, Malý J, Červenka L, Horáček V. Effect of intrarenal infusion of angiotensin-(1-7) in the dog. Kidney and Blood Pressure Research 2000; 23: 89-94. [DOI:10.1159/000025959]
37. Hilgers K F, Mann J F. ACE inhibitors versus AT1 receptor antagonists in patients with chronic renal disease. Journal of the American Society of Nephrology 2002; 13: 1100-1108. [DOI:10.1681/ASN.V1341100]
38. Iyer S N, Chappell M C, Averill D B, Diz D I, Ferrario C M. Vasodepressor actions of angiotensin-(1-7) unmasked during combined treatment with lisinopril and losartan. Hypertension 1998; 31: 699-705. [DOI:10.1161/01.HYP.31.2.699]
39. Joyner M J, Barnes J N, Hart E C, Wallin B G, Charkoudian N. Neural control of the circulation: how sex and age differences interact in humans. Comprehensive Physiology 2015; 5: 193. [DOI:10.1002/cphy.c140005]
40. Just A, Wittmann U, Ehmke H, Kirchheim H R. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback. The Journal of Physiology 1998; 506: 275-290. [DOI:10.1111/j.1469-7793.1998.275bx.x]
41. Kacem K, Sercombe R. Differing influence of sympathectomy on smooth muscle cells and fibroblasts in cerebral and peripheral muscular arteries. Autonomic Neuroscience 2006; 124: 38-48. [DOI:10.1016/j.autneu.2005.11.003]
42. Kassab K, Soni R, Kassier A, Fischell T A. The potential role of renal denervation in the management of heart failure. Journal of Clinical Medicine 2022; 11: 4147. [DOI:10.3390/jcm11144147]
43. Katsurada K, Shinohara K, Aoki J, Nanto S, Kario K. Renal denervation: basic and clinical evidence. Hypertension Research 2022; 45: 198-209. [DOI:10.1038/s41440-021-00827-7]
44. Kazi A. Renal functional & haemodynamic changes following acute unilateral renal denervation in Sprague Dawley rats. Indian Journal of Medical Research 2010; 131: 76-82.
45. Khan S A, Sattar M A, Rathore H A, Abdulla M H, Ud Din Ahmad F, Ahmad A, et al. Renal denervation restores the baroreflex control of renal sympathetic nerve activity and heart rate in Wistar-Kyoto rats with cisplatin-induced renal failure. Acta Physiologica 2014; 210: 690-700. [DOI:10.1111/apha.12237]
46. Kobori H, Nangaku M, Navar L G, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacological Reviews 2007; 59: 251-287. [DOI:10.1124/pr.59.3.3]
47. Komukai K, Mochizuki S, Yoshimura M. Gender and the renin-angiotensin-aldosterone system. Fundamental & Clinical Pharmacology 2010; 24: 687-698. [DOI:10.1111/j.1472-8206.2010.00854.x]
48. Kopp U C, DiBona G F. Neural control of renal function. Reflex Control of the Circulation: CRC Press, 2020: 493-528. [DOI:10.1201/9780367813338-17]
49. Kuczeriszka M, Kompanowska-Jezierska E, Sadowski J, Prieto M C, Navar L G. Modulating role of Ang1-7 in control of blood pressure and renal function in AngII-infused hypertensive rats. American Journal of Hypertension 2018; 31: 504-511. [DOI:10.1093/ajh/hpy006]
50. Liao W, Wu J. The ACE2/Ang (1-7)/MasR axis as an emerging target for antihypertensive peptides. Critical Reviews in Food Science and Nutrition 2021; 61: 2572-2586. [DOI:10.1080/10408398.2020.1781049]
51. Liu L, Barajas L. The rat renal nerves during development. Anatomy and Embryology 1993; 188: 345-361. [DOI:10.1007/BF00185944]
52. Lovick T A, Zangrossi Jr H. Effect of estrous cycle on behavior of females in rodent tests of anxiety. Frontiers in Psychiatry 2021; 12: 711065. [DOI:10.3389/fpsyt.2021.711065]
53. Luippold G, Beilharz M, Mühlbauer B. Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats. Nephrology Dialysis Transplantation 2004; 19: 342-347. [DOI:10.1093/ndt/gfg584]
54. Magaldi A J, Cesar K R, de Araújo M, Simões e Silva A C, Santos R A. Angiotensin-(1-7) stimulates water transport in rat inner medullary collecting duct: evidence for involvement of vasopressin V2 receptors. Pflügers Archiv 2003; 447: 223-230. [DOI:10.1007/s00424-003-1173-1]
55. MALPAS S, EVANS R. Do different levels and patterns of sympathetic activation all provoke renal vasoconstriction? Journal of the Autonomic Nervous System 1998; 69: 72-82. [DOI:10.1016/S0165-1838(98)00010-1]
56. Malpas S C, Evans R G, Head G A, Lukoshkova E V. Contribution of renal nerves to renal blood flow variability during hemorrhage. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1998; 274: R1283-R1294. [DOI:10.1152/ajpregu.1998.274.5.R1283]
57. Medina D, Mehay D, Arnold A C. Sex differences in cardiovascular actions of the renin-angiotensin system. Clinical Autonomic Research 2020; 30: 393-408. [DOI:10.1007/s10286-020-00720-2]
58. Messerli F H, Bangalore S. Renal denervation for resistant hypertension. New England Journal of Medicine 2014; 370: 1454-7. [DOI:10.1056/NEJMe1402388]
59. Moon J-Y. ACE2 and angiotensin-(1-7) in hypertensive renal disease. Electrolytes & Blood Pressure 2011; 9: 41-44. [DOI:10.5049/EBP.2011.9.2.41]
60. Navar L, Inscho E, Majid S, Imig J, Harrison-Bernard L, Mitchell K. Paracrine regulation of the renal microcirculation. Physiological Reviews 1996; 76: 425-536. [DOI:10.1152/physrev.1996.76.2.425]
61. Nematbakhsh M, Mansouri A. Renal vascular response to angiotensin 1-7 in rats: the role of Mas receptor. Research in Pharmaceutical Sciences 2018; 13: 177. [DOI:10.4103/1735-5362.223803]
62. Nematbakhsh M, Safari T. Role of Mas receptor in renal blood flow response to angiotensin (1-7) in male and female rats. General Physiology and Biophysics 2014; 33: 365-372. [DOI:10.4149/gpb_2014008]
63. Neves L A, Averill D B, Chappell M C, Aschner J L, Walkup M P, Brosnihan K B, et al. Characterization of angiotensin-(1-7) receptor subtype in mesenteric arteries. Peptides 2003; 24: 455-462. [DOI:10.1016/S0196-9781(03)00062-7]
64. Neves L A, Averill D B, Ferrario C M, Aschner J L, Brosnihan K B. Vascular responses to angiotensin-(1-7) during the estrous cycle. Endocrine 2004; 24: 161-165. [DOI:10.1385/ENDO:24:2:161]
65. O’Neill J, Corbett A, Johns E J. Dietary sodium intake modulates renal excretory responses to intrarenal angiotensin (1-7) administration in anesthetized rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2013; 304: R260-R266. [DOI:10.1152/ajpregu.00583.2011]
66. O’Neill J, Healy V, Johns E J. Intrarenal Mas and AT1 receptors play a role in mediating the excretory actions of renal interstitial angiotensin-(1-7) infusion in anaesthetized rats. Experimental Physiology 2017; 102: 1700-1715. [DOI:10.1113/EP086513]
67. Osborn J L, Francisco L L, DiBona G F. Effect of renal nerve stimulation on renal blood flow autoregulation and antinatriuresis during reductions in renal perfusion pressure. Proceedings of the Society for Experimental Biology and Medicine 1981; 168: 77-81. [DOI:10.3181/00379727-168-41238]
68. Oudit G Y, Kassiri Z, Patel M P, Chappell M, Butany J, Backx P H, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovascular Research 2007; 75: 29-39. [DOI:10.1016/j.cardiores.2007.04.007]
69. Pinheiro S V B, Simões e Silva A C. Angiotensin converting enzyme 2, Angiotensin-(1-7), and receptor MAS axis in the kidney. International Journal of Hypertension 2012; 2012. [DOI:10.1155/2012/414128]
70. Potthoff S A, Fähling M, Clasen T, Mende S, Ishak B, Suvorava T, et al. Angiotensin-(1-7) modulates renal vascular resistance through inhibition of p38 mitogen-activated protein kinase in apolipoprotein E-deficient mice. Hypertension 2014; 63: 265-272. [DOI:10.1161/HYPERTENSIONAHA.113.02289]
71. Povlsen A L, Grimm D, Wehland M, Infanger M, Krüger M. The vasoactive Mas receptor in essential hypertension. Journal of Clinical Medicine 2020; 9: 267. [DOI:10.3390/jcm9010267]
72. Ren Y, Garvin J L, Carretero O A. Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertension 2002; 39: 799-802. [DOI:10.1161/hy0302.104673]
73. Rudd M A, Grippo R S, Arendshorst W J. Acute renal denervation produces a diuresis and natriuresis in young SHR but not WKY rats. American Journal of Physiology-Renal Physiology 1986; 251: F655-F661. [DOI:10.1152/ajprenal.1986.251.4.F655]
74. Saberi S, Dehghani A, Nematbakhsh M. Role of Mas receptor in renal blood flow response to angiotensin-(1-7) in ovariectomized estradiol treated rats. Research in Pharmaceutical Sciences 2016; 11: 65. [DOI:10.1155/2015/801053]
75. Sadowski J, Kurkus J, Gellert R. Denervated and intact kidney responses to saline load in awake and anesthetized dogs. American Journal of Physiology-Renal Physiology 1979; 237: F262-F267. [DOI:10.1152/ajprenal.1979.237.4.F262]
76. Safari T, Shahraki M R, Miri S, Bakhshani N M, Niazi A A, Komeili G R, et al. The effect of angiotensin 1-7 and losartan on renal ischemic/reperfusion injury in male rats. Research in Pharmaceutical Sciences 2019; 14: 441. [DOI:10.4103/1735-5362.268205]
77. Sampson A K, Moritz K M, Denton K M. Postnatal ontogeny of angiotensin receptors and ACE2 in male and female rats. Gender Medicine 2012; 9: 21-32. [DOI:10.1016/j.genm.2011.12.003]
78. Sampson A K, Widdop R E, Denton K M. Sex-differences in circadian blood pressure variations in response to chronic angiotensin II infusion in rats. Clinical and Experimental Pharmacology and Physiology 2008; 35: 391-395. [DOI:10.1111/j.1440-1681.2008.04884.x]
79. Sandberg K, Umans J G, Work G t G C C. Recommendations concerning the new US National Institutes of Health initiative to balance the sex of cells and animals in preclinical research. The FASEB Journal 2015; 29: 1646-1652. [DOI:10.1096/fj.14-269548]
80. Santos R, Ferreira A J, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. Journal of Endocrinology 2013; 216: R1-R17. [DOI:10.1530/JOE-12-0341]
81. Santos R A. Angiotensin-(1-7). Hypertension 2014; 63: 1138-1147. [DOI:10.1161/HYPERTENSIONAHA.113.01274]
82. Santos R A, e Silva A C S, Maric C, Silva D M, Machado R P, de Buhr I, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proceedings of the National Academy of Sciences 2003; 100: 8258-8263. [DOI:10.1073/pnas.1432869100]
83. Scalise F, Sole A, Singh G, Sorropago A, Sorropago G, Ballabeni C, et al. Renal denervation in patients with end-stage renal disease and resistant hypertension on long-term haemodialysis. Journal of Hypertension 2020; 38: 936-942. [DOI:10.1097/HJH.0000000000002358]
84. Schlaich M P, Hering D, Sobotka P A, Krum H, Esler M D. Renal denervation in human hypertension: mechanisms, current findings, and future prospects. Current Hypertension Reports 2012; 14: 247-253. [DOI:10.1007/s11906-012-0264-9]
85. Simões e Silva A, Silveira K, Ferreira A, Teixeira M. ACE2, angiotensin-(1-7) and M as receptor axis in inflammation and fibrosis. British Journal of Pharmacology 2013; 169: 477-492. [DOI:10.1111/bph.12159]
86. Siragy H M, Inagami T, Ichiki T, Carey R M. Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proceedings of the National Academy of Sciences 1999; 96: 6506-6510. [DOI:10.1073/pnas.96.11.6506]
87. Sobrino A, Vallejo S, Novella S, Lázaro-Franco M, Mompeón A, Bueno-Betí C, et al. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation. Biochemical Pharmacology 2017; 129: 67-72. [DOI:10.1016/j.bcp.2017.01.012]
88. Souza Á P, Sobrinho D B, Almeida J F, Alves G M, Macedo L M, Porto J E, et al. Angiotensin II type 1 receptor blockade restores angiotensin-(1-7)-induced coronary vasodilation in hypertrophic rat hearts. Clinical Science 2013; 125: 449-459. [DOI:10.1042/CS20120519]
89. Stegbauer J, Oberhauser V, Vonend O, Rump L C. Angiotensin-(1-7) modulates vascular resistance and sympathetic neurotransmission in kidneys of spontaneously hypertensive rats. Cardiovascular Research 2004; 61: 352-359. [DOI:10.1016/j.cardiores.2003.11.017]
90. Stegbauer J, Vonend O, Oberhauser V, Rump L C. Effects of angiotensin-(1-7) and other bioactive components of the renin-angiotensin system on vascular resistance and noradrenaline release in rat kidney. Journal of Hypertension 2003; 21: 1391-1399. [DOI:10.1097/00004872-200307000-00030]
91. Sullivan J C. Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2008; 294: R1220-R1226. [DOI:10.1152/ajpregu.00864.2007]
92. Sun H-J, Li P, Chen W-W, Xiong X-Q, Han Y. Angiotensin II and angiotensin-(1-7) in paraventricular nucleus modulate cardiac sympathetic afferent reflex in renovascular hypertensive rats. PLoS One 2012; 7: e52557. [DOI:10.1371/journal.pone.0052557]
93. Takabatake T, Ushiogi Y, Ohta K, Hattori N. Attenuation of enhanced tubuloglomerular feedback activity in SHR by renal denervation. American Journal of Physiology-Renal Physiology 1990; 258: F980-F985. [DOI:10.1152/ajprenal.1990.258.4.F980]
94. Tsutsumi Y, Matsubara H, Masaki H, Kurihara H, Murasawa S, Takai S, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. The Journal of Clinical Investigation 1999; 104: 925-935. [DOI:10.1172/JCI7886]
95. Ueda S, Masumori-Maemoto S, Wada A, Ishii M, Brosnihan K B, Umemura S. Angiotensin (1-7) potentiates bradykinin-induced vasodilatation in man. Journal of Hypertension 2001; 19. [DOI:10.1097/00004872-200111000-00010]
96. Unger T. The role of the renin-angiotensin system in the development of cardiovascular disease. The American Journal of Cardiology 2002; 89: 3-9. [DOI:10.1016/S0002-9149(01)02321-9]
97. Urushihara M, Kagami S. Role of the intrarenal renin-angiotensin system in the progression of renal disease. Pediatric Nephrology 2017; 32: 1471-1479. [DOI:10.1007/s00467-016-3449-7]
98. Vallon V, Heyne N, Richter K, Khosla M C, Fechter K. [7-D-ALA]-angiotensin 1-7 blocks renal actions of angiotensin 1-7 in the anesthetized rat. Journal of Cardiovascular Pharmacology 1998; 32: 164-167. [DOI:10.1097/00005344-199807000-00025]
99. van der Wouden E A, Ochodnický P, van Dokkum R P, Roks A J, Deelman L E, de Zeeuw D, et al. The role of angiotensin (1-7) in renal vasculature of the rat. Journal of Hypertension 2006; 24: 1971-1978. [DOI:10.1097/01.hjh.0000244945.42169.c0]
100. Veiga A C, Milanez M I, Campos R R, Bergamaschi C T, Nishi E E. The involvement of renal afferents in the maintenance of cardiorenal diseases. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2021; 320: R88-R93. [DOI:10.1152/ajpregu.00225.2020]
101. Velez J C Q, Ryan K J, Harbeson C E, Bland A M, Budisavljevic M N, Arthur J M, et al. Angiotensin I is largely converted to angiotensin (1-7) and angiotensin (2-10) by isolated rat glomeruli. Hypertension 2009; 53: 790-797. [DOI:10.1161/HYPERTENSIONAHA.109.128819]
102. Xue B, Johnson A, Hay M. Sex differences in angiotensin II-induced hypertension. Brazilian Journal of Medical and Biological Research 2007; 40: 727-734. [DOI:10.1590/S0100-879X2007000500018]
103. Yousif M H, Benter I F, Diz D I, Chappell M C. Angiotensin-(1-7)-dependent vasorelaxation of the renal artery exhibits unique angiotensin and bradykinin receptor selectivity. Peptides 2017; 90: 10-16. [DOI:10.1016/j.peptides.2017.02.001]
104. Zalups R K. Autometallographic localization of inorganic mercury in the kidneys of rats: Effect of unilateral nephrectomy and compensatory renal growth. Experimental and Molecular Pathology 1991; 54: 10-21. [DOI:10.1016/0014-4800(91)90039-Z]
105. Zhang Z, Chen L, Zhong J, Gao P, Oudit G Y. ACE2/Ang-(1-7) signaling and vascular remodeling. Science China Life Sciences 2014; 57: 802-808. [DOI:10.1007/s11427-014-4693-3]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.