1. Abdulla M, Sattar M, Abdullah N, Hazim A, Anand Swarup K, Rathore H, et al. Inhibition of Ang II and renal sympathetic nerve influence dopamine-and isoprenaline-induced renal haemodynamic changes in normal Wistar-Kyoto and spontaneously hypertensive rats. Autonomic and Autacoid Pharmacology 2008a; 28: 95-101. [
DOI:10.1111/j.1474-8673.2008.00422.x]
2. Abdulla M, Sattar M, Salman I, Abdullah N, Ameer O, Khan M A, et al. Effect of acute unilateral renal denervation on renal hemodynamics in spontaneously hypertensive rats. Autonomic and Autacoid Pharmacology 2008b; 28: 87-94. [
DOI:10.1111/j.1474-8673.2008.00421.x]
3. Abdulla M H, Sattar M, Khan M A, Abdullah N A, Johns E. Influence of sympathetic and AT1-receptor blockade on angiotensin II and adrenergic agonist-induced renal vasoconstrictions in spontaneously hypertensive rats. Acta Physiologica 2009; 195: 397-404. [
DOI:10.1111/j.1748-1716.2008.01895.x]
4. Abildgaard U, Holstein-rathlou N H, Leyssac P P. Effect of renal nerve activity on tubular sodium and water reabsorption in dog kidneys as determined by the lithium clearance method. Acta Physiologica Scandinavica 1986; 126: 251-257. [
DOI:10.1111/j.1748-1716.1986.tb07812.x]
5. Abu-Amarah I, Ajikobi D O, Bachelard H, Cupples W A, Salevsky F C. Responses of mesenteric and renal blood flow dynamics to acute denervation in anesthetized rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1998; 275: R1543-R1552. [
DOI:10.1152/ajpregu.1998.275.5.R1543]
6. Ajayi A F, Akhigbe R E. Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertility Research and Practice 2020; 6: 1-15. [
DOI:10.1186/s40738-020-00074-3]
7. Almeida A, Frábregas B, Madureira M, Santos R, Campagnole-Santos M, Santos R. Angiotensin-(1-7) potentiates the coronary vasodilatatory effect of bradykinin in the isolated rat heart. Brazilian Journal of Medical and Biological Research 2000; 33: 709-713. [
DOI:10.1590/S0100-879X2000000600012]
8. Armando I. Jezova M, Juorio AV, Terrón JA, Falcón-Neri A, Semino-Mora C, Imboden H, and Saavedra JM. Estrogen upregulates renal angiotensin II AT. American Journal of Physiology. Renal Physiology 2002; 2. [
DOI:10.1152/ajprenal.00145.2002]
9. Azadbakht M K, Nematbakhsh M. Angiotensin 1-7 administration alters baroreflex sensitivity and renal function in sympathectomized rats. Journal of Nephropathology 2017; 7: 79-82. [
DOI:10.15171/jnp.2018.19]
10. Barry E F, O’Neill J, Abdulla M H, Johns E J. The renal excretory responses to acute renal interstitial angiotensin (1-7) infusion in anaesthetised spontaneously hypertensive rats. Clinical and Experimental Pharmacology and Physiology 2021; 48: 1674-1684. [
DOI:10.1111/1440-1681.13570]
11. Bello-Reuss E, Colindres R, Pastoriza-Munoz E, Mueller R, Gottschalk C. Effects of acute unilateral renal denervation in the rat. The Journal of Clinical Investigation 1975; 56: 208-217. [
DOI:10.1172/JCI108069]
12. Bohlender J M, Nussberger J, Birkhäuser F, Grouzmann E, Thalmann G N, Imboden H. Resetting of renal tissular renin-angiotensin and bradykinin-kallikrein systems after unilateral kidney denervation in rats. Histochemistry and Cell Biology 2017; 147: 585-593. [
DOI:10.1007/s00418-017-1543-y]
13. Braga A N G, da Silva Lemos M, Da Silva J R, Fontes W R P, Augusto Souza Dos Santos R. Effects of angiotensins on day-night fluctuations and stress-induced changes in blood pressure. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2002; 282: 1663-1671. [
DOI:10.1152/ajpregu.00583.2001]
14. Bürgelová M, Kramer H J, Teplan V, Veličková G, Vítko Š, Heller J, et al. Intrarenal infusion of angiotensin-(1-7) modulates renal functional responses to exogenous angiotensin II in the rat. Kidney and Blood Pressure Research 2002; 25: 202-210. [
DOI:10.1159/000066340]
15. Cai X-N, Wang C-Y, Cai Y, Peng F. Effects of renal denervation on blood-pressure response to hemorrhagic shock in spontaneously hypertensive rats. Chinese Journal of Traumatology 2018; 21: 293-300. [
DOI:10.1016/j.cjtee.2018.09.001]
16. Caplea A, Seachrist D, Daneshvar H, Dunphy G, Ely D. Noradrenergic content and turnover rate in kidney and heart shows gender and strain differences. Journal of Applied Physiology 2002; 92: 567-571. [
DOI:10.1152/japplphysiol.00557.2001]
17. Carey R M. The intrarenal renin-angiotensin system in hypertension. Advances in Chronic Kidney Disease 2015; 22: 204-210. [
DOI:10.1053/j.ackd.2014.11.004]
18. Carey R M, Siragy H M. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocrine Reviews 2003; 24: 261-271. [
DOI:10.1210/er.2003-0001]
19. Chappell M C, Modrall J G, Diz D I, Ferrario C M. Novel aspects of the renal renin-angiotensin system: angiotensin-(1-7), ACE2 and blood pressure regulation. Contributions to Nephrology 2004; 143: 77-89. [
DOI:10.1159/000078713]
20. Collister J P, Hendel M D. The role of Ang (1-7) in mediating the chronic hypotensive effects of losartan in normal rats. Journal of the Renin-Angiotensin-Aldosterone System 2003; 4: 176-179. [
DOI:10.3317/jraas.2003.028]
21. Crackower M A, Sarao R, Oudit G Y, Yagil C, Kozieradzki I, Scanga S E, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417: 822-828. [
DOI:10.1038/nature00786]
22. De Moura R S, Resende A, Emiliano A, Tano T, Mendes-Ribeiro A, Correia M, et al. The role of bradykinin, AT2 and angiotensin 1-7 receptors in the EDRF-dependent vasodilator effect of angiotensin II on the isolated mesenteric vascular bed of the rat. British Journal of Pharmacology 2004; 141: 860-866. [
DOI:10.1038/sj.bjp.0705669]
23. Dibona G F. Peripheral and central interactions between the renin-angiotensin system and the renal sympathetic nerves in control of renal function. Annals of the New York Academy of Sciences 2001; 940: 395-406. [
DOI:10.1111/j.1749-6632.2001.tb03693.x]
24. DiBona G F, Rios L L. Renal nerves in compensatory renal response to contralateral renal denervation. American Journal of Physiology-Renal Physiology 1980; 238: F26-F30. [
DOI:10.1152/ajprenal.1980.238.1.F26]
25. Dibona G F, Sawin L L. Effect of renal denervation on dynamic autoregulation of renal blood flow. American Journal of Physiology-Renal Physiology 2004; 286: F1209-F1218. [
DOI:10.1152/ajprenal.00010.2004]
26. Dilauro M, Burns K D. Angiotensin-(1-7) and its effects in the kidney. The Scientific World Journal 2009; 9: 522-535. [
DOI:10.1100/tsw.2009.70]
27. e Silva A S, Pinheiro S V, Pereira R M, Ferreira A J, Santos R A. The therapeutic potential of angiotensin-(1-7) as a novel renin-angiotensin system mediator. Mini Reviews in Medicinal Chemistry 2006; 6: 603. [
DOI:10.2174/138955706776876203]
28. Fernandes L, Fortes Z B, Nigro D, Tostes R C, Santos R A, Catelli de Carvalho M H. Potentiation of bradykinin by angiotensin-(1-7) on arterioles of spontaneously hypertensive rats studied in vivo. Hypertension 2001; 37: 703-709. [
DOI:10.1161/01.HYP.37.2.703]
29. Ferrario C, Chappell M. What’s new in the renin-angiotensin system? Cellular and Molecular Life Sciences CMLS 2004; 61: 2720-2727. [
DOI:10.1007/s00018-004-4243-4]
30. Fountain J H, Kaur J, Lappin S L. Physiology, renin angiotensin system. Stat Pearls [Internet]: Stat Pearls Publishing, 2023.
31. Gorelik G, Carbini L, Scicli A. Angiotensin 1-7 induces bradykinin-mediated relaxation in porcine coronary artery. Journal of Pharmacology and Experimental Therapeutics 1998; 286: 403-410.
32. Grady H C, Bullivant E. Renal blood flow varies during normal activity in conscious unrestrained rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1992; 262: R926-R932. [
DOI:10.1152/ajpregu.1992.262.5.R926]
33. Handa R, Johns E J. Interaction of the renin-angiotensin system and the renal nerves in the regulation of rat kidney function. The Journal of Physiology 1985; 369: 311-321. [
DOI:10.1113/jphysiol.1985.sp015903]
34. Handa R K. Binding and signaling of angiotensin-(1-7) in bovine kidney epithelial cells involves the AT4 receptor. Peptides 2000; 21: 729-736. [
DOI:10.1016/S0196-9781(00)00188-1]
35. Handa R K, Ferrario C M, Strandhoy J W. Renal actions of angiotensin-(1-7): in vivo and in vitro studies. American Journal of Physiology-Renal Physiology 1996; 270: F141-F147. [
DOI:10.1152/ajprenal.1996.270.1.F141]
36. Heller J, Kramer H, Malý J, Červenka L, Horáček V. Effect of intrarenal infusion of angiotensin-(1-7) in the dog. Kidney and Blood Pressure Research 2000; 23: 89-94. [
DOI:10.1159/000025959]
37. Hilgers K F, Mann J F. ACE inhibitors versus AT1 receptor antagonists in patients with chronic renal disease. Journal of the American Society of Nephrology 2002; 13: 1100-1108. [
DOI:10.1681/ASN.V1341100]
38. Iyer S N, Chappell M C, Averill D B, Diz D I, Ferrario C M. Vasodepressor actions of angiotensin-(1-7) unmasked during combined treatment with lisinopril and losartan. Hypertension 1998; 31: 699-705. [
DOI:10.1161/01.HYP.31.2.699]
39. Joyner M J, Barnes J N, Hart E C, Wallin B G, Charkoudian N. Neural control of the circulation: how sex and age differences interact in humans. Comprehensive Physiology 2015; 5: 193. [
DOI:10.1002/cphy.c140005]
40. Just A, Wittmann U, Ehmke H, Kirchheim H R. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback. The Journal of Physiology 1998; 506: 275-290. [
DOI:10.1111/j.1469-7793.1998.275bx.x]
41. Kacem K, Sercombe R. Differing influence of sympathectomy on smooth muscle cells and fibroblasts in cerebral and peripheral muscular arteries. Autonomic Neuroscience 2006; 124: 38-48. [
DOI:10.1016/j.autneu.2005.11.003]
42. Kassab K, Soni R, Kassier A, Fischell T A. The potential role of renal denervation in the management of heart failure. Journal of Clinical Medicine 2022; 11: 4147. [
DOI:10.3390/jcm11144147]
43. Katsurada K, Shinohara K, Aoki J, Nanto S, Kario K. Renal denervation: basic and clinical evidence. Hypertension Research 2022; 45: 198-209. [
DOI:10.1038/s41440-021-00827-7]
44. Kazi A. Renal functional & haemodynamic changes following acute unilateral renal denervation in Sprague Dawley rats. Indian Journal of Medical Research 2010; 131: 76-82.
45. Khan S A, Sattar M A, Rathore H A, Abdulla M H, Ud Din Ahmad F, Ahmad A, et al. Renal denervation restores the baroreflex control of renal sympathetic nerve activity and heart rate in Wistar-Kyoto rats with cisplatin-induced renal failure. Acta Physiologica 2014; 210: 690-700. [
DOI:10.1111/apha.12237]
46. Kobori H, Nangaku M, Navar L G, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacological Reviews 2007; 59: 251-287. [
DOI:10.1124/pr.59.3.3]
47. Komukai K, Mochizuki S, Yoshimura M. Gender and the renin-angiotensin-aldosterone system. Fundamental & Clinical Pharmacology 2010; 24: 687-698. [
DOI:10.1111/j.1472-8206.2010.00854.x]
48. Kopp U C, DiBona G F. Neural control of renal function. Reflex Control of the Circulation: CRC Press, 2020: 493-528. [
DOI:10.1201/9780367813338-17]
49. Kuczeriszka M, Kompanowska-Jezierska E, Sadowski J, Prieto M C, Navar L G. Modulating role of Ang1-7 in control of blood pressure and renal function in AngII-infused hypertensive rats. American Journal of Hypertension 2018; 31: 504-511. [
DOI:10.1093/ajh/hpy006]
50. Liao W, Wu J. The ACE2/Ang (1-7)/MasR axis as an emerging target for antihypertensive peptides. Critical Reviews in Food Science and Nutrition 2021; 61: 2572-2586. [
DOI:10.1080/10408398.2020.1781049]
51. Liu L, Barajas L. The rat renal nerves during development. Anatomy and Embryology 1993; 188: 345-361. [
DOI:10.1007/BF00185944]
52. Lovick T A, Zangrossi Jr H. Effect of estrous cycle on behavior of females in rodent tests of anxiety. Frontiers in Psychiatry 2021; 12: 711065. [
DOI:10.3389/fpsyt.2021.711065]
53. Luippold G, Beilharz M, Mühlbauer B. Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats. Nephrology Dialysis Transplantation 2004; 19: 342-347. [
DOI:10.1093/ndt/gfg584]
54. Magaldi A J, Cesar K R, de Araújo M, Simões e Silva A C, Santos R A. Angiotensin-(1-7) stimulates water transport in rat inner medullary collecting duct: evidence for involvement of vasopressin V2 receptors. Pflügers Archiv 2003; 447: 223-230. [
DOI:10.1007/s00424-003-1173-1]
55. MALPAS S, EVANS R. Do different levels and patterns of sympathetic activation all provoke renal vasoconstriction? Journal of the Autonomic Nervous System 1998; 69: 72-82. [
DOI:10.1016/S0165-1838(98)00010-1]
56. Malpas S C, Evans R G, Head G A, Lukoshkova E V. Contribution of renal nerves to renal blood flow variability during hemorrhage. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1998; 274: R1283-R1294. [
DOI:10.1152/ajpregu.1998.274.5.R1283]
57. Medina D, Mehay D, Arnold A C. Sex differences in cardiovascular actions of the renin-angiotensin system. Clinical Autonomic Research 2020; 30: 393-408. [
DOI:10.1007/s10286-020-00720-2]
58. Messerli F H, Bangalore S. Renal denervation for resistant hypertension. New England Journal of Medicine 2014; 370: 1454-7. [
DOI:10.1056/NEJMe1402388]
59. Moon J-Y. ACE2 and angiotensin-(1-7) in hypertensive renal disease. Electrolytes & Blood Pressure 2011; 9: 41-44. [
DOI:10.5049/EBP.2011.9.2.41]
60. Navar L, Inscho E, Majid S, Imig J, Harrison-Bernard L, Mitchell K. Paracrine regulation of the renal microcirculation. Physiological Reviews 1996; 76: 425-536. [
DOI:10.1152/physrev.1996.76.2.425]
61. Nematbakhsh M, Mansouri A. Renal vascular response to angiotensin 1-7 in rats: the role of Mas receptor. Research in Pharmaceutical Sciences 2018; 13: 177. [
DOI:10.4103/1735-5362.223803]
62. Nematbakhsh M, Safari T. Role of Mas receptor in renal blood flow response to angiotensin (1-7) in male and female rats. General Physiology and Biophysics 2014; 33: 365-372. [
DOI:10.4149/gpb_2014008]
63. Neves L A, Averill D B, Chappell M C, Aschner J L, Walkup M P, Brosnihan K B, et al. Characterization of angiotensin-(1-7) receptor subtype in mesenteric arteries. Peptides 2003; 24: 455-462. [
DOI:10.1016/S0196-9781(03)00062-7]
64. Neves L A, Averill D B, Ferrario C M, Aschner J L, Brosnihan K B. Vascular responses to angiotensin-(1-7) during the estrous cycle. Endocrine 2004; 24: 161-165. [
DOI:10.1385/ENDO:24:2:161]
65. O’Neill J, Corbett A, Johns E J. Dietary sodium intake modulates renal excretory responses to intrarenal angiotensin (1-7) administration in anesthetized rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2013; 304: R260-R266. [
DOI:10.1152/ajpregu.00583.2011]
66. O’Neill J, Healy V, Johns E J. Intrarenal Mas and AT1 receptors play a role in mediating the excretory actions of renal interstitial angiotensin-(1-7) infusion in anaesthetized rats. Experimental Physiology 2017; 102: 1700-1715. [
DOI:10.1113/EP086513]
67. Osborn J L, Francisco L L, DiBona G F. Effect of renal nerve stimulation on renal blood flow autoregulation and antinatriuresis during reductions in renal perfusion pressure. Proceedings of the Society for Experimental Biology and Medicine 1981; 168: 77-81. [
DOI:10.3181/00379727-168-41238]
68. Oudit G Y, Kassiri Z, Patel M P, Chappell M, Butany J, Backx P H, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovascular Research 2007; 75: 29-39. [
DOI:10.1016/j.cardiores.2007.04.007]
69. Pinheiro S V B, Simões e Silva A C. Angiotensin converting enzyme 2, Angiotensin-(1-7), and receptor MAS axis in the kidney. International Journal of Hypertension 2012; 2012. [
DOI:10.1155/2012/414128]
70. Potthoff S A, Fähling M, Clasen T, Mende S, Ishak B, Suvorava T, et al. Angiotensin-(1-7) modulates renal vascular resistance through inhibition of p38 mitogen-activated protein kinase in apolipoprotein E-deficient mice. Hypertension 2014; 63: 265-272. [
DOI:10.1161/HYPERTENSIONAHA.113.02289]
71. Povlsen A L, Grimm D, Wehland M, Infanger M, Krüger M. The vasoactive Mas receptor in essential hypertension. Journal of Clinical Medicine 2020; 9: 267. [
DOI:10.3390/jcm9010267]
72. Ren Y, Garvin J L, Carretero O A. Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertension 2002; 39: 799-802. [
DOI:10.1161/hy0302.104673]
73. Rudd M A, Grippo R S, Arendshorst W J. Acute renal denervation produces a diuresis and natriuresis in young SHR but not WKY rats. American Journal of Physiology-Renal Physiology 1986; 251: F655-F661. [
DOI:10.1152/ajprenal.1986.251.4.F655]
74. Saberi S, Dehghani A, Nematbakhsh M. Role of Mas receptor in renal blood flow response to angiotensin-(1-7) in ovariectomized estradiol treated rats. Research in Pharmaceutical Sciences 2016; 11: 65. [
DOI:10.1155/2015/801053]
75. Sadowski J, Kurkus J, Gellert R. Denervated and intact kidney responses to saline load in awake and anesthetized dogs. American Journal of Physiology-Renal Physiology 1979; 237: F262-F267. [
DOI:10.1152/ajprenal.1979.237.4.F262]
76. Safari T, Shahraki M R, Miri S, Bakhshani N M, Niazi A A, Komeili G R, et al. The effect of angiotensin 1-7 and losartan on renal ischemic/reperfusion injury in male rats. Research in Pharmaceutical Sciences 2019; 14: 441. [
DOI:10.4103/1735-5362.268205]
77. Sampson A K, Moritz K M, Denton K M. Postnatal ontogeny of angiotensin receptors and ACE2 in male and female rats. Gender Medicine 2012; 9: 21-32. [
DOI:10.1016/j.genm.2011.12.003]
78. Sampson A K, Widdop R E, Denton K M. Sex-differences in circadian blood pressure variations in response to chronic angiotensin II infusion in rats. Clinical and Experimental Pharmacology and Physiology 2008; 35: 391-395. [
DOI:10.1111/j.1440-1681.2008.04884.x]
79. Sandberg K, Umans J G, Work G t G C C. Recommendations concerning the new US National Institutes of Health initiative to balance the sex of cells and animals in preclinical research. The FASEB Journal 2015; 29: 1646-1652. [
DOI:10.1096/fj.14-269548]
80. Santos R, Ferreira A J, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. Journal of Endocrinology 2013; 216: R1-R17. [
DOI:10.1530/JOE-12-0341]
81. Santos R A. Angiotensin-(1-7). Hypertension 2014; 63: 1138-1147. [
DOI:10.1161/HYPERTENSIONAHA.113.01274]
82. Santos R A, e Silva A C S, Maric C, Silva D M, Machado R P, de Buhr I, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proceedings of the National Academy of Sciences 2003; 100: 8258-8263. [
DOI:10.1073/pnas.1432869100]
83. Scalise F, Sole A, Singh G, Sorropago A, Sorropago G, Ballabeni C, et al. Renal denervation in patients with end-stage renal disease and resistant hypertension on long-term haemodialysis. Journal of Hypertension 2020; 38: 936-942. [
DOI:10.1097/HJH.0000000000002358]
84. Schlaich M P, Hering D, Sobotka P A, Krum H, Esler M D. Renal denervation in human hypertension: mechanisms, current findings, and future prospects. Current Hypertension Reports 2012; 14: 247-253. [
DOI:10.1007/s11906-012-0264-9]
85. Simões e Silva A, Silveira K, Ferreira A, Teixeira M. ACE2, angiotensin-(1-7) and M as receptor axis in inflammation and fibrosis. British Journal of Pharmacology 2013; 169: 477-492. [
DOI:10.1111/bph.12159]
86. Siragy H M, Inagami T, Ichiki T, Carey R M. Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proceedings of the National Academy of Sciences 1999; 96: 6506-6510. [
DOI:10.1073/pnas.96.11.6506]
87. Sobrino A, Vallejo S, Novella S, Lázaro-Franco M, Mompeón A, Bueno-Betí C, et al. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation. Biochemical Pharmacology 2017; 129: 67-72. [
DOI:10.1016/j.bcp.2017.01.012]
88. Souza Á P, Sobrinho D B, Almeida J F, Alves G M, Macedo L M, Porto J E, et al. Angiotensin II type 1 receptor blockade restores angiotensin-(1-7)-induced coronary vasodilation in hypertrophic rat hearts. Clinical Science 2013; 125: 449-459. [
DOI:10.1042/CS20120519]
89. Stegbauer J, Oberhauser V, Vonend O, Rump L C. Angiotensin-(1-7) modulates vascular resistance and sympathetic neurotransmission in kidneys of spontaneously hypertensive rats. Cardiovascular Research 2004; 61: 352-359. [
DOI:10.1016/j.cardiores.2003.11.017]
90. Stegbauer J, Vonend O, Oberhauser V, Rump L C. Effects of angiotensin-(1-7) and other bioactive components of the renin-angiotensin system on vascular resistance and noradrenaline release in rat kidney. Journal of Hypertension 2003; 21: 1391-1399. [
DOI:10.1097/00004872-200307000-00030]
91. Sullivan J C. Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2008; 294: R1220-R1226. [
DOI:10.1152/ajpregu.00864.2007]
92. Sun H-J, Li P, Chen W-W, Xiong X-Q, Han Y. Angiotensin II and angiotensin-(1-7) in paraventricular nucleus modulate cardiac sympathetic afferent reflex in renovascular hypertensive rats. PLoS One 2012; 7: e52557. [
DOI:10.1371/journal.pone.0052557]
93. Takabatake T, Ushiogi Y, Ohta K, Hattori N. Attenuation of enhanced tubuloglomerular feedback activity in SHR by renal denervation. American Journal of Physiology-Renal Physiology 1990; 258: F980-F985. [
DOI:10.1152/ajprenal.1990.258.4.F980]
94. Tsutsumi Y, Matsubara H, Masaki H, Kurihara H, Murasawa S, Takai S, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. The Journal of Clinical Investigation 1999; 104: 925-935. [
DOI:10.1172/JCI7886]
95. Ueda S, Masumori-Maemoto S, Wada A, Ishii M, Brosnihan K B, Umemura S. Angiotensin (1-7) potentiates bradykinin-induced vasodilatation in man. Journal of Hypertension 2001; 19. [
DOI:10.1097/00004872-200111000-00010]
96. Unger T. The role of the renin-angiotensin system in the development of cardiovascular disease. The American Journal of Cardiology 2002; 89: 3-9. [
DOI:10.1016/S0002-9149(01)02321-9]
97. Urushihara M, Kagami S. Role of the intrarenal renin-angiotensin system in the progression of renal disease. Pediatric Nephrology 2017; 32: 1471-1479. [
DOI:10.1007/s00467-016-3449-7]
98. Vallon V, Heyne N, Richter K, Khosla M C, Fechter K. [7-D-ALA]-angiotensin 1-7 blocks renal actions of angiotensin 1-7 in the anesthetized rat. Journal of Cardiovascular Pharmacology 1998; 32: 164-167. [
DOI:10.1097/00005344-199807000-00025]
99. van der Wouden E A, Ochodnický P, van Dokkum R P, Roks A J, Deelman L E, de Zeeuw D, et al. The role of angiotensin (1-7) in renal vasculature of the rat. Journal of Hypertension 2006; 24: 1971-1978. [
DOI:10.1097/01.hjh.0000244945.42169.c0]
100. Veiga A C, Milanez M I, Campos R R, Bergamaschi C T, Nishi E E. The involvement of renal afferents in the maintenance of cardiorenal diseases. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2021; 320: R88-R93. [
DOI:10.1152/ajpregu.00225.2020]
101. Velez J C Q, Ryan K J, Harbeson C E, Bland A M, Budisavljevic M N, Arthur J M, et al. Angiotensin I is largely converted to angiotensin (1-7) and angiotensin (2-10) by isolated rat glomeruli. Hypertension 2009; 53: 790-797. [
DOI:10.1161/HYPERTENSIONAHA.109.128819]
102. Xue B, Johnson A, Hay M. Sex differences in angiotensin II-induced hypertension. Brazilian Journal of Medical and Biological Research 2007; 40: 727-734. [
DOI:10.1590/S0100-879X2007000500018]
103. Yousif M H, Benter I F, Diz D I, Chappell M C. Angiotensin-(1-7)-dependent vasorelaxation of the renal artery exhibits unique angiotensin and bradykinin receptor selectivity. Peptides 2017; 90: 10-16. [
DOI:10.1016/j.peptides.2017.02.001]
104. Zalups R K. Autometallographic localization of inorganic mercury in the kidneys of rats: Effect of unilateral nephrectomy and compensatory renal growth. Experimental and Molecular Pathology 1991; 54: 10-21. [
DOI:10.1016/0014-4800(91)90039-Z]
105. Zhang Z, Chen L, Zhong J, Gao P, Oudit G Y. ACE2/Ang-(1-7) signaling and vascular remodeling. Science China Life Sciences 2014; 57: 802-808. [
DOI:10.1007/s11427-014-4693-3]