Volume 28, Issue 1 (March 2024)                   Physiol Pharmacol 2024, 28(1): 80-90 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadzadeh A, Dastan K, Ghorbani N. Designing a novel multi-epitope chimeric vaccine candidate for human papillomavirus by vaccinomic approach. Physiol Pharmacol 2024; 28 (1) : 10
URL: http://ppj.phypha.ir/article-1-2197-en.html
Abstract:   (978 Views)
Introduction: Human Papillomavirus (HPV) with small size and double-stranded DNA is the most important cause of sexually transmitted infections and cervical carcinoma. Controlling the spread of papillomavirus infection and protecting people against the pathogenicity of this virus are key steps in reducing the number of cervical cancer patients. One of the effective ways to achieve this goal is to design a suitable vaccine. In the present study, computer-aided methods were used to suggest a potential vaccine candidate against HPV.
Methods: Oncoproteins L1 and E5 of the high-risk strain HPV 16 were utilized to predict the linear B-cell epitopes, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) epitopes. From the obtained epitopes, non-allergenic and non-toxic peptides with acceptable antigenicity were selected and subsequently converted into 3D structures. The epitopes were subjected to molecular docking using the PDB format. In the next step, short amino acid sequences as spacers were used to join peptides together. Finally, computational analysis including allergenicity and antigenicity studies, physicochemical properties, secondary and tertiary structure prediction, molecular interaction pattern, and cloning analyses were conducted for the vaccine construct.
Results: Our findings revealed that the designed vaccine with suitable antigenicity and physicochemical properties, shows proper interaction with four types of Toll-like receptors (TLR3, TLR4, TLR5, and TLR8), and Escherichia coli (strain K12) is the suitable host for it.
Conclusion: Overall, the vaccine designed in the present study showed a promising immune response. However, further validation through laboratory investigations is required.
Article number: 10
Full-Text [PDF 939 kb]   (178 Downloads)    
Type of Manuscript: Experimental research article | Subject: Others

References
1. Araldi R P, Sant’Ana T A, Módolo D G, de Melo T C, Spadacci-Morena D D, de Cassia Stocco R, et al. The human papillomavirus (HPV)-related cancer biology: An overview. Biomed Pharmacother 2018; 106: 1537-1556. [DOI:10.1016/j.biopha.2018.06.149]
2. Asadzadeh A, Abbasi M, Nodeh Z P, Mahmoudi F. studying the inhibitory effects of some chalcone derivatives on streptococcus mutans sortase A to prevent dental caries: An in silico approach. Avicenna J Clin Microbiol Infect 2023;10(1): 13-19. [DOI:10.34172/ajcmi.2023.3433]
3. Asadzadeh A, Fassihi A, Yaghmaei P, Pourfarzam M. In silico approach for designing potent inhibitors against tyrosinase. Biosci Biotech Res Asia 2015; 12: 181-187. [DOI:10.13005/bbra/2188]
4. Bhasin M, Raghava G P. Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 2004; 22: 3195-3204. [DOI:10.1016/j.vaccine.2004.02.005]
5. Choi S, Ismail A, Pappas-Gogos G, Boussios S. HPV and cervical cancer: A review of epidemiology and screening uptake in the UK. Pathogens 2023; 12: 298. [DOI:10.3390/pathogens12020298]
6. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 1988; 16: 10881-10890. [DOI:10.1093/nar/16.22.10881]
7. Faridi R, Zahra A, Khan K, Idrees M. Oncogenic potential of human papillomavirus (HPV) and its relation with cervical cancer. Virol J 2011; 8: 1-8. [DOI:10.1186/1743-422X-8-269]
8. Giroglou T, Florin L, Schäfer F, Streeck R E, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. Virol J 2001; 75: 1565-1570. [DOI:10.1128/JVI.75.3.1565-1570.2001]
9. Graham S V. Keratinocyte differentiation-dependent human papillomavirus gene regulation. Viruses 2017; 9: 245. [DOI:10.3390/v9090245]
10. Hagensee M E, Yaegashi N, Galloway D. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol 1993; 67: 315-322. [DOI:10.1128/jvi.67.1.315-322.1993]
11. Haghshenas M R, Mousavi T, Kheradmand M, Afshari M, Moosazadeh M. Efficacy of human papillomavirus l1 protein vaccines (cervarix and gardasil) in reducing the risk of cervical intraepithelial neoplasia: a meta-analysis. Int J Prev Med 2017; 8. [DOI:10.4103/ijpvm.IJPVM_413_16]
12. Kawai T, Akira S. TLR signaling. Semin Immunol 2007; 19: 24-32. [DOI:10.1016/j.smim.2006.12.004]
13. Kim M-K, Kim H S, Kim S-H, Oh J-M, Han J Y, Lim J M, et al. Human papillomavirus type 16 E5 oncoprotein as a new target for cervical cancer treatment. Biochem Pharmacol 2010; 80: 1930-1935. [DOI:10.1016/j.bcp.2010.07.013]
14. Leechanachai P, Banks L, Moreau F, Matlashewski G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 1992; 7: 19-25.
15. Milano G, Guarducci G, Nante N, Montomoli E, Manini I. Human papillomavirus epidemiology and prevention: Is there still a gender gap? Vaccines 2023; 11: 1060. [DOI:10.3390/vaccines11061060]
16. Monie A, Hung C-F, Roden R, Wu T C. Cervarix™: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biol: Targets Ther 2008; 2: 107-113. [DOI:10.2147/BTT.S1877]
17. Morshed K, Polz-Gruszka D, Szymański M, Polz-Dacewicz M. Human papillomavirus (HPV)-structure, epidemiology and pathogenesis. Otolaryngologia Polska 2014; 68: 213-219. [DOI:10.1016/j.otpol.2014.06.001]
18. Mosalanezhad F, Asadzadeh A, Ghanbariasad A, Naderpoor M, Bordbar R, Ghavamizadeh M, et al. The evaluation of the anti-histone deacetylase, antibacterial, antioxidant and cytotoxic activities of Synthetic N, N’-ethylenebis (α methylsalicylideneiminate) schiff base derivatives. Iran J Chem Chem Eng 2022; 41: 1856-1869.
19. Oli A N, Obialor W O, Ifeanyichukwu M O, Odimegwu D C, Okoyeh J N, Emechebe G O, et al. Immunoinformatics and vaccine development: an overview. ImmunoTargets and therapy 2020: 13-30. [DOI:10.2147/ITT.S241064]
20. Panatto D, Amicizia D, Trucchi C, Casabona F, Lai P L, Bonanni P, et al. Sexual behaviour and risk factors for the acquisition of human papillomavirus infections in young people in Italy: Suggestions for future vaccination policies. BMC public health 2012; 12: 1-9. [DOI:10.1186/1471-2458-12-623]
21. Ratanasiripong N T. A review of human papillomavirus (HPV) infection and HPV vaccine-related attitudes and sexual behaviors among college-aged women in the United States. J Am Coll Health 2012; 60: 461-470. [DOI:10.1080/07448481.2012.684365]
22. Sabroe I, Parker L, Dower S, Whyte M. The role of TLR activation in inflammation. J Pathol 2008; 214: 126-135. [DOI:10.1002/path.2264]
23. Saha S, Raghava G P S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006; 65: 40-48. [DOI:10.1002/prot.21078]
24. Shams Moattar F, Asadzadeh A, Esnaashari F. Designing multi-epitope subunit vaccine candidate for zika virus utilizing in silico tools. Research in Molecular Medicine 2022; 10: 0-0. [DOI:10.32598/rmm.10.1.1249.1]
25. Shojaei Barjouei M, Norouzi S, Bernoos P, Mokhtari K, Asadzadeh A. Comparison of the inhibitory activity of bioactive compounds of salvia officinalis with antidiabetic drugs, voglibose and miglitol, in suppression of alpha-glucosidase enzyme by in silico method. Iran J Diabetes Obes 2022; 22: 145-154.
26. Sholehvar F, Asadzadeh A, Seyedhosseini H. Molecular docking studies of some hydroxy nitrodiphenyl ether analogues as tyrosinase inhibitors. J Fasa Univ Med Scis 2017; 6: 548-555.
27. Shukla S, Bharti A C, Mahata S, Hussain S, Kumar R, Hedau S, et al. Infection of human papillomaviruses in cancers of different human organ sites. Indian J Med Res 2009; 130: 222-233.
28. Soheili M, Keyvani H, Soheili M, Nasseri S. Human papilloma virus: A review study of epidemiology, carcinogenesis, diagnostic methods, and treatment of all HPV-related cancers. Med J Islam Repub Iran 2021; 35: 65. [DOI:10.47176/mjiri.35.65]
29. Stanley M A. Epithelial cell responses to infection with human papillomavirus. Clin Microbiol Rev 2012; 25: 215-222. [DOI:10.1128/CMR.05028-11]
30. Van Duin D, Medzhitov R, Shaw A C. Triggering TLR signaling in vaccination. Trends Immunol 2006; 27: 49-55. [DOI:10.1016/j.it.2005.11.005]
31. Zaravinos A, Mammas I N, Sourvinos G, Spandidos D A. Molecular detection methods of human papillomavirus (HPV). Int J Biol Markers 2009; 24: 215-222. [DOI:10.1177/172460080902400401]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.