Volume 28, Issue 3 (September 2024)                   Physiol Pharmacol 2024, 28(3): 314-323 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vahdatipur Dizaj M, Ghotaslou R, Yekani M, Moaddab S R, Naghili B, Nabizadeh E et al . Effect of RND-efflux pumps inhibitor on the synergy of different antibiotics combinations against carbapenem-resistant Pseudomonas aeruginosa. Physiol Pharmacol 2024; 28 (3) : 8
URL: http://ppj.phypha.ir/article-1-2201-en.html
Abstract:   (1967 Views)

Introduction: The high-level antimicrobial resistance, particularly carbapenem resistance, in Pseudomonas aeruginosa is a global health challenge. The combination of antibiotics and synergy effects is beneficial in control of drug-resistant P. aeruginosa. The synergic interaction of antimicrobial agents is af-fected by the mechanisms of antimicrobial resistance. The aim of the current study was to evaluate the effect of efflux pump inhibition on the synergy of antibiotics against carbapenem-resistant P. aeruginosa.
Methods: The antibiotics’ minimum inhibitory concentration (MIC) was determined by the microbroth dilu-tion method. The synergy effect of antibiotics was determined using the checkerboard assay with-out and with Resistance-Nodulation- Division (RND) efflux pump inhibitor phenylalanine-arginine beta-naphthylamide (PAβN).
Results: The highest levels of synergistic effects were found between cefepime/tobramycin and meropenem/tobramycin combinations in 35.3% of isolates. After adding PAβN, the most frequent synergistic effects were observed between the meropenem/ciprofloxacin and cefepime/ciprofloxacin combinations, found in 64.7% of isolates. The adding PAβN led to an increase in the synergy of all combinations except tobramycin/colistin. The highest effect of PAβN on the synergy effects of antibiotics combination was observed in meropenem/ciprofloxacin, cefepime/ciprofloxacin, and ciprofloxacin/colistin (an increase of 41.2%). 
Conclusion: RND efflux pump inhibition has a noticeable effect on the results of synergy tests of some antimi-crobial agent combinations. Given the drug- and strain-dependent effects of PAβN on synergy re-sults, the effects of efflux pump inhibitors should be studied on different combinations of drugs and a large population of bacterial strains. 

Article number: 8
Full-Text [PDF 819 kb]   (251 Downloads)    
Type of Manuscript: Experimental research article | Subject: Others

References
1. Balke B, Hogardt M, Schmoldt S, Hoy L, Weissbrodt H, Häussler S. Evaluation of the E test for the assessment of synergy of antibiotic combinations against multiresistant Pseudomonas aeruginosa isolates from cystic fibrosis patients. European Journal of Clinical Microbiology and Infectious Diseases 2006; 25: 25-30. [DOI:10.1007/s10096-005-0076-9]
2. Bayat M, Nahand J S, Farsad-Akhatr N, Memar M Y. Bile effects on the Pseudomonas aeruginosa pathogenesis in cystic fibrosis patients with gastroesophageal reflux. Heliyon 2023. [DOI:10.1016/j.heliyon.2023.e22111]
3. Britt N S, Ritchie D J, Kollef M H, Burnham C-A D, Durkin M J, Hampton N B, et al. Importance of site of infection and antibiotic selection in the treatment of carbapenem-resistant Pseudomonas aeruginosa sepsis. Antimicrobial agents and chemotherapy 2018; 62: e02400-17. [DOI:10.1128/AAC.02400-17]
4. Campana S, Taccetti G, Farina S, Ravenni N, Martino M D. Antimicrobial susceptibility mand synergistic activity of meropenem against Gram-negative non-fermentative bacteria isolated from cystic fibrosis patients. Journal of chemotherapy 2003; 15: 551-554. [DOI:10.1179/joc.2003.15.6.551]
5. Ghorbani H, Memar M Y, Sefidan F Y, Yekani M, Ghotaslou R. In vitro synergy of antibiotic combinations against planktonic and biofilm Pseudomonas aeruginosa. GMS hygiene and infection control 2017; 12.
6. Ghotaslou R, Yekani M, Memar M Y. The role of efflux pumps in Bacteroides fragilis resistance to antibiotics. Microbiological research 2018; 210: 1-5. [DOI:10.1016/j.micres.2018.02.007]
7. Japoni A, Alborzi A, Kalani M, Nasiri J, Hayati M, Farshad S. Susceptibility patterns and cross-resistance of antibiotics against Pseudomonas aeruginosa isolated from burn patients in the South of Iran. Burns 2006; 32: 343-347. [DOI:10.1016/j.burns.2005.10.017]
8. Khalili Y, Memar M Y, Farajnia S, Adibkia K, Kafil H S, Ghotaslou R. Molecular epidemiology and carbapenem resistance of Pseudomonas aeruginosa isolated from patients with burns. Journal of Wound Care 2021; 30: 135-141. [DOI:10.12968/jowc.2021.30.2.135]
9. Khalili Y, Yekani M, Goli H R, Memar M Y. Characterization of carbapenem-resistant but cephalosporin-susceptible Pseudomonas aeruginosa. Acta microbiologica et immunologica Hungarica 2019; 66: 529-540. [DOI:10.1556/030.66.2019.036]
10. Khuntayaporn P, Montakantikul P, Santanirand P, Kiratisin P, Chomnawang M T. Molecular investigation of carbapenem resistance among multidrug-resistant Pseudomonas aeruginosa isolated clinically in Thailand. Microbiology and immunology 2013; 57: 170-178. [DOI:10.1111/1348-0421.12021]
11. Leite G C, Oliveira M S, Perdigao-Neto L V, Rocha C K D, Guimaraes T, Rizek C, et al. Antimicrobial combinations against pan-resistant Acinetobacter baumannii isolates with different resistance mechanisms. PloS one 2016; 11: e0151270. [DOI:10.1371/journal.pone.0151270]
12. Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clinical microbiology reviews 2015; 28: 337-418. [DOI:10.1128/CMR.00117-14]
13. Lomovskaya O, Warren M S, Lee A, Galazzo J, Fronko R, Lee M, et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrobial agents and chemotherapy 2001; 45: 105-116. [DOI:10.1128/AAC.45.1.105-116.2001]
14. Memar M Y, Adibkia K, Farajnia S, Kafil H S, Khalili Y, Azargun R, et al. In-vitro effect of imipenem, fosfomycin, colistin, and gentamicin combination against carbapenem-resistant and biofilm-forming Pseudomonas aeruginosa isolated from burn patients. Iranian Journal of Pharmaceutical Research: IJPR 2021; 20: 286.
15. Memar M Y, Pormehrali R, Alizadeh N, Ghotaslou R, Bannazadeh B H. Colistin, an option for treatment of multiple drug resistant Pseudomonas aeruginosa. 2016.
16. Mirakhur A, Gallagher M, Ledson M, Hart C, Walshaw M. Fosfomycin therapy for multiresistant Pseudomonas aeruginosa in cystic fibrosis. Journal of Cystic Fibrosis 2003; 2: 19-24. [DOI:10.1016/S1569-1993(02)00143-1]
17. Mobaraki S, Aghazadeh M, Barhaghi M H S, Memar M Y, Goli H R, Gholizadeh P, et al. Prevalence of integrons 1, 2, 3 associated with antibiotic resistance in Pseudomonas aeruginosa isolates from Northwest of Iran. BioMedicine 2018; 8. [DOI:10.1051/bmdcn/2018080102]
18. Montero M M, Ochoa S D, López-Causapé C, VanScoy B, Luque S, Sorlí L, et al. Colistin plus meropenem combination is synergistic in vitro against extensively drug-resistant Pseudomonas aeruginosa, including high-risk clones. Journal of Global Antimicrobial Resistance 2019; 18: 37-44. [DOI:10.1016/j.jgar.2019.04.012]
19. Pan Y-p, Xu Y-h, Wang Z-x, Fang Y-p, Shen J-l. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa. Archives of microbiology 2016; 198: 565-571. [DOI:10.1007/s00203-016-1215-7]
20. Rampioni G, Pillai C R, Longo F, Bondì R, Baldelli V, Messina M, et al. Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence. Scientific reports 2017; 7: 1-14. [DOI:10.1038/s41598-017-11892-9]
21. Saderi H, Owlia P. Detection of multidrug resistant (MDR) and extremely drug resistant (XDR) P. aeruginosa isolated from patients in Tehran, Iran. Iranian journal of pathology 2015; 10: 265.
22. Tschudin-Sutter S, Fosse N, Frei R, Widmer A F. Combination therapy for treatment of Pseudomonas aeruginosa bloodstream infections. PLoS One 2018; 13: e0203295. [DOI:10.1371/journal.pone.0203295]
23. Uechi K, Tada T, Shimada K, Kuwahara-Arai K, Arakaki M, Tome T, et al. A modified carbapenem inactivation method, CIMTris, for carbapenemase production in Acinetobacter and Pseudomonas species. Journal of Clinical Microbiology 2017; 55: 3405-3410. [DOI:10.1128/JCM.00893-17]
24. Ugwuanyi F C, Ajayi A, Ojo D A, Adeleye A I, Smith S I. Evaluation of efflux pump activity and biofilm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in Nigeria. Annals of Clinical Microbiology and Antimicrobials 2021; 20: 1-7. [DOI:10.1186/s12941-021-00417-y]
25. Wang Y, Venter H, Ma S. Efflux pump inhibitors: a novel approach to combat efflux-mediated drug resistance in bacteria. Current drug targets 2016; 17: 702-719. [DOI:10.2174/1389450116666151001103948]
26. Weinstein M, Patel J, Bobenchik A, Campeau S, Cullen S, Galas M, et al. M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI supplement for global application. Performance standards for antimicrobial susceptibility testing performance standards for antimicrobial susceptibility testing 2020.
27. Wikler M. Methods for dilution antimicrobial susceptibility test s for bacteria that grow aerobically: approved standard, CLSI (NCCLS), 26 (2006) M7-A7. Citation: NK Soliman 2019.
28. Yekani M, Azargun R, Sharifi S, Nabizadeh E, Nahand J S, Ansari N K, et al. Collateral sensitivity: An evolutionary trade-off between antibiotic resistance mechanisms, attractive for dealing with drug-resistance crisis. Health Science Reports 2023; 6: e1418. [DOI:10.1002/hsr2.1418]
29. Yoneda K, Chikumi H, Murata T, Gotoh N, Yamamoto H, Fujiwara H, et al. Measurement of Pseudomonas aeruginosa multidrug efflux pumps by quantitative real-time polymerase chain reaction. FEMS microbiology letters 2005; 243: 125-131. [DOI:10.1016/j.femsle.2004.11.048]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.