1. Abdallah D M, Nassar N N, Abd-El-Salam R M. Glibenclamide ameliorates ischemia-reperfusion injury via modulating oxidative stress and inflammatory mediators in the rat. hippocampus. Brain Res 2011; 1385: 257-262. [
DOI:10.1016/j.brainres.2011.02.007]
2. Ajjan RA G P. Cardiovascular disease prevention in patients with type 2 diabetes: the role of oral antidiabetic agents. Diab Vas Dis Res 2006; 3: 147-158. [
DOI:10.3132/dvdr.2006.023]
3. Al-lami H C A, Rizij F A, Hussein A A. Effect of bromocriptine on anthropometric, metabolic and inflammatory parameters in obese women. Thi-Qar Medical Journal 2018; 16.
4. Aljada A, Ghanim H, Mohanty P, Kapur N, Dandona P. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab 2002; 87: 1419-1422. [
DOI:10.1210/jcem.87.3.8462]
5. Association A D. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2020. Diabetes care 2020; 43: S98-S110. [
DOI:10.2337/dc20-S009]
6. Avogaro A, Bonora B, Fadini G P. Managing diabetes in diabetic patients with COVID: where do we start from? Acta Diabetol 2021; 58: 1441-1450. [
DOI:10.1007/s00592-021-01739-1]
7. Baggio L L, Varin E M, Koehler J A, Cao X, Lokhnygina Y, Stevens S R, et al. Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans. Nat Commun 2020; 11: 3766. [
DOI:10.1038/s41467-020-17556-z]
8. Barbarin V. N A, Misson P. The role of pro- and anti-inflammatory responses in silica-induced lung fibrosis Respir Res 2005; 6: 112. [
DOI:10.1186/1465-9921-6-112]
9. Basra R, Whyte M, Karalliedde J, Vas P. What is the impact of microvascular complications of diabetes on severe COVID-19? Microvasc Res 2021: 104310. [
DOI:10.1016/j.mvr.2021.104310]
10. Bassendine MF B S, McCaughan G W, Gorrell M D. COVID-19 and comorbidities: a role for dipeptidyl peptidase 4 (DPP4) in disease severity? J Diabetes 2020; 12: 649_658. [
DOI:10.1111/1753-0407.13052]
11. Batista D V, Vieira C A F d A, Costa T A, Lima E G. COVID-19-associated euglycemic diabetic ketoacidosis in a patient with type 2 diabetes on SGLT2 inhibitor: a case report. Diabetol Int 2021; 12: 313-316. [
DOI:10.1007/s13340-020-00473-3]
12. Belančić A, Kresović A, Troskot Dijan M. Glucagon-like peptide-1 receptor agonists in the era of COVID-19: Friend or foe? Clin Obes 2021; 11: e12439. [
DOI:10.1111/cob.12439]
13. Ben-Chetrit E, Ben-Ya’acov A, Quitina A, Atia O, Regev E, Shteyer E, et al. Anosmia and dysgeusia amongst COVID-19 patients are associated with low levels of serum glucagon-like peptide 1. Int J Clin Pract 2021: e14996. [
DOI:10.22541/au.162580954.40299908/v1]
14. Bharath L P, Nikolajczyk B S. The intersection of metformin and inflammation. Am J Physiol Cell Physiol 2021; 320: C873-C879. [
DOI:10.1152/ajpcell.00604.2020]
15. Bibi N, Farid A, Gul S, Ali J, Amin F, Kalathiya U, et al. Drug repositioning against COVID-19: a first line treatment. J Biomol Struct Dyn 2021: 115. [
DOI:10.1080/07391102.2021.1977698]
16. Birnbaum Y, Bajaj M, Qian J, Ye Y. Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome. BMJ Open Diabetes Res Care 2016; 4: e000227. [
DOI:10.1136/bmjdrc-2016-000227]
17. Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 2020; 583: 469-472. [
DOI:10.1038/s41586-020-2332-7]
18. Bornstein S R, Rubino F, Khunti K, Mingrone G, Hopkins D, Birkenfeld A L, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 2020; 8: 546-550. [
DOI:10.1016/S2213-8587(20)30152-2]
19. Bossi A C, Forloni F, Colombelli P L. Lack of efficacy of SGLT2-i in severe pneumonia related to novel coronavirus (nCoV) infection: no little help from our friends. Diabetes Therapy 2020; 11: 1605-1606. [
DOI:10.1007/s13300-020-00844-8]
20. Cariou B, Hadjadj S, Wargny M, Pichelin M, Al-Salameh A, Allix I, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia 2020; 63: 1500-1515. [
DOI:10.1007/s00125-020-05180-x]
21. Catrinoiu D, Ceriello A, Rizzo M, Serafinceanu C, Montano N, Stoian A P, et al. Diabetes and renin-angiotensin-aldosterone system: implications for covid-19 patients with diabetes treatment management. Farmacia 2020; 68: 377-383. [
DOI:10.31925/farmacia.2020.3.1]
22. Ceriello A, Esposito K, Testa R, Bonfigli A R, Marra M, Giugliano D. The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes care 2011; 34: 697-702. [
DOI:10.2337/dc10-1949]
23. Ceriello A, Standl E, Catrinoiu D, Itzhak B, Lalic N M, Rahelic D, et al. Issues of cardiovascular risk management in people with diabetes in the COVID-19 era. Diabetes Care 2020a; 43: 1427-1432. [
DOI:10.2337/dc20-0941]
24. Ceriello A, Stoian A P, Rizzo M. COVID-19 and diabetes management: What should be considered? Diabetes Res Clin Pract 2020b; 163. [
DOI:10.1016/j.diabres.2020.108151]
25. Chamarthi B, Ezrokhi M, Rutty D, Cincotta A H. Impact of bromocriptine-QR therapy on cardiovascular outcomes in type 2 diabetes mellitus subjects on metformin. Postgrad Med 2016; 128: 761-769. [
DOI:10.1080/00325481.2016.1243003]
26. Chamarthi B, Gaziano J M, Blonde L, Vinik A, Scranton R E, Ezrokhi M, et al. Timed bromocriptine-QR therapy reduces progression of cardiovascular disease and dysglycemia in subjects with well-controlled type 2 diabetes mellitus. J Diabetes Res 2015; 2015. [
DOI:10.1155/2015/157698]
27. Chan J F-W, Chik K K-H, Yuan S, Yip C C-Y, Zhu Z, Tee K-M, et al. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res 2017; 141: 29-37. [
DOI:10.1016/j.antiviral.2017.02.002]
28. Chang Y-S, Ko B-H, Ju J-C, Chang H-H, Huang S-H, Lin C-W. SARS unique domain (SUD) of severe acute respiratory syndrome coronavirus induces NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation. Int J Mol Sci 2020; 21: 317-319. [
DOI:10.3390/ijms21093179]
29. Chaudhuri A, Umpierrez G E. Oxidative stress and inflammation in hyperglycemic crises and resolution with insulin: implications for the acute and chronic complications of hyperglycemia. J Diabetes Complications 2012; 26: 257. [
DOI:10.1016/j.jdiacomp.2012.04.016]
30. Cheema A K, Kaur P, Fadel A, Younes N, Zirie M, Rizk N M. Integrated datasets of proteomic and metabolomic biomarkers to predict its impacts on comorbidities of type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2020; 13: 2409. [
DOI:10.2147/DMSO.S244432]
31. Chen H-Y, Huang J-Y, Siao W-Z, Jong G-P. The association between SGLT2 inhibitors and new-onset arrhythmias: a nationwide population-based longitudinal cohort study. Cardiovasc Diabetol 2020a; 19: 1-8. [
DOI:10.1186/s12933-020-01048-x]
32. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The lancet 2020b; 395: 507-513. [
DOI:10.1016/S0140-6736(20)30211-7]
33. Chen W-R, Shen X-Q, Zhang Y, Chen Y-D, Hu S-Y, Qian G, et al. Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction. Endocrine 2016; 52: 516-526. [
DOI:10.1007/s12020-015-0798-0]
34. Chen Y, Yang D, Cheng B, Chen J, Peng A, Yang C, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes care 2020c; 43: 1399-1407. [
DOI:10.2337/dc20-0660]
35. Cheng F, He M, Jung J U, Lu C, Gao S-J. Suppression of Kaposi’s sarcoma-associated herpesvirus infection and replication by 5′-AMP-activated protein kinase. J Virol 2016; 90: 6515-6525. [
DOI:10.1128/JVI.00624-16]
36. Chisholm-Burns M A, Schwinghammer T L, Malone P M, Kolesar J M, Lee K C, Bookstaver P B. Pharmacotherapy principles and practice: McGraw Hill Professional, 2019.
37. Control D, Group C T R. Hypoglycemia in the diabetes control and complications trial. Diabetes 1997; 46: 271-286. [
DOI:10.2337/diab.46.2.271]
38. Cory T J, Emmons R S, Yarbro J R, Davis K L, Pence B D. Metformin suppresses monocyte immunometabolic activation by SARS-CoV-2 spike protein subunit 1. Front Immunol 2021a; 12: 733921. [
DOI:10.3389/fimmu.2021.733921]
39. Cory T J, Emmons R S, Yarbro J R, Davis K L, Pence B D. Metformin suppresses monocyte immunometabolic activation by SARS-CoV-2 spike protein subunit 1. Front Immunol 2021b: 4785. [
DOI:10.1101/2021.05.27.445991]
40. Cowie M R, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 2020; 17: 761-772. [
DOI:10.1038/s41569-020-0406-8]
41. Crouse A B, Grimes T, Li P, Might M, Ovalle F, Shalev A. Metformin use is associated with reduced mortality in a diverse population with COVID-19 and diabetes. Front Endocrinol 2021: 1081. [
DOI:10.1101/2020.07.29.20164020]
42. Cui W, Zhang S, Cai Z, Hu X, Zhang R, Wang Y, et al. The antidiabetic agent glibenclamide protects airway hyperresponsiveness and inflammation in mice. Inflammation 2015; 38: 835-845. [
DOI:10.1007/s10753-014-9993-z]
43. Cure E C C M. Comment on: “High released lactate by epicardial fat from coronary artery disease patients is reduced by dapagliflozin treatment”. Atherosclerosis 2020; 292, 60-69. [
DOI:10.1016/j.atherosclerosis.2019.11.016]
44. Cure E, Cure M C. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes and Metabolic Syndrome: Clinical Research and Reviews 2020; 14: 405-406. [
DOI:10.1016/j.dsx.2020.04.024]
45. Dalan R, Ang L W, Tan W Y, Fong S-W, Tay W C, Chan Y-H, et al. The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: an observational study. Eur Heart J Cardiovasc Pharmacother 2021; 7: e48-e51. [
DOI:10.1093/ehjcvp/pvaa098]
46. Dandona P, Aljada A, Mohanty P, Ghanim H, Bandyopadhyay A, Chaudhuri A. Insulin suppresses plasma concentration of vascular endothelial growth factor and matrix metalloproteinase-9. Diabetes care 2003; 3310-3314. [
DOI:10.2337/diacare.26.12.3310]
47. Dandona P, Ghanim H. Diabetes, obesity, COVID-19, Insulin, and other antidiabetes drugs. Diabetes care 2021; 44: 1929-1933. [
DOI:10.2337/dci21-0003]
48. Darwish I, Mubareka S, Liles W C. Immunomodulatory therapy for severe influenza. Expert Rev Anti Infect Ther 2011; 9: 807-822. [
DOI:10.1586/eri.11.56]
49. Darwish I M, S.; Liles, W.C. Immunomodulatory therapy for severe influenza. Expert Rev Anti-Infect Ther 2011; 9: 807-822. [
DOI:10.1586/eri.11.56]
50. Davidson M A, Mattison D R, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Critical reviews in toxicology 2018; 48: 52-108. [
DOI:10.1080/10408444.2017.1351420]
51. Donath M Y. Glucose or insulin, which is the culprit in patients with covid-19 and diabetes? Cell Metabolism 2021; 33: 2-4. [
DOI:10.1016/j.cmet.2020.11.015]
52. Dror E, Dalmas E, Meier D T, Wueest S, Thévenet J, Thienel C, et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol 2017; 18: 283-292. [
DOI:10.1038/ni.3659]
53. Erem C O H, Nuhoglu I, Deger O, Civan N, Ersoz H O. Comparison of effects of gliclazide, metformin and pioglitazone monotherapies on glycemic control and cardiovascular risk factors in patients with newly diagnosed uncontrolled type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2014; 122: 295-302. [
DOI:10.1055/s-0034-1370989]
54. Fadini GP M M, Longato E, et al. Exposure to dipeptidylpeptidase 4 inhibitors and COVID-19 among people with type 2 diabetes: a case-control study. Diabetes Obes Metab 2020; 22: 1946-1950. [
DOI:10.1111/dom.14097]
55. Fandiño J, Toba L, González-Matías L C, Diz-Chaves Y, Mallo F. GLP-1 receptor agonist ameliorates experimental lung fibrosis. Sci Rep 2020; 10: 1-15. [
DOI:10.1038/s41598-020-74912-1]
56. Fernandez-Fernandez B, D’Marco L, Górriz J L, Jacobs-Cacha C, Kanbay M, Luis-Lima S, et al. Exploring sodium glucose co-transporter-2 (SGLT2) inhibitors for organ protection in COVID-19. J Clin Med 2020; 9: 2030. [
DOI:10.3390/jcm9072030]
57. Filgueiras L R, Capelozzi V L, Martins J O, Jancar S. Sepsis-induced lung inflammation is modulated by insulin. BMC pulmonary medicine 2014; 14: 1-8. [
DOI:10.1186/1471-2466-14-177]
58. Finfer S, Chittock D, Yu-Shuo S. Intensive versus Conventional Glucose Control in Critically Ill Patients. n engl j med. 2009; 36013360 (26): 1283-1297. [
DOI:10.1056/NEJMoa0810625]
59. Gao M H Z, Zheng Y, Zeng Y, Shen X, Zhong D, He F. Peroxisome proliferator activated receptor c agonist troglitazone inhibits high mobility group box 1 expression in endothelial cells via suppressing transcriptional activity of nuclear factor jB and activator protein 1. Shock 2011; 36: 228-234. [
DOI:10.1097/SHK.0b013e318225b29a]
60. Gao Y, Liu T, Zhong W, Liu R, Zhou H, Huang W, et al. Risk of metformin in patients with type 2 diabetes with COVID-19: a preliminary retrospective report. Clin Transl Res 2020; 13: 1055-1059. [
DOI:10.1111/cts.12897]
61. Gaziano J M, Cincotta A H, O’Connor C M, Ezrokhi M, Rutty D, Ma Z, et al. Randomized clinical trial of quick-release bromocriptine among patients with type 2 diabetes on overall safety and cardiovascular outcomes. Diabetes care 2010; 33: 1503-1508. [
DOI:10.2337/dc09-2009]
62. Gaziano J M, Cincotta A H, Vinik A, Blonde L, Bohannon N, Scranton R. Effect of bromocriptine-QR (a quick-release formulation of bromocriptine mesylate) on major adverse cardiovascular events in type 2 diabetes subjects. J Am Heart Assoc 2012; 1: e002279. [
DOI:10.1161/JAHA.112.002279]
63. Ghanim H, Korzeniewski K, Sia C L, Abuaysheh S, Lohano T, Chaudhuri A, et al. Suppressive effect of insulin infusion on chemokines and chemokine receptors. Diabetes care 2010; 33: 1103-1108. [
DOI:10.2337/dc09-2193]
64. Górriz J L, Navarro-González J F, Ortiz A, Vergara A, Nunez J, Jacobs-Cachá C, et al. Sodium-glucose cotransporter 2 inhibition: towards an indication to treat diabetic kidney disease. Nephrol Dial Transplant 2020; 35: i13-i23. [
DOI:10.1093/ndt/gfz237]
65. Goyal P, Choi J J, Pinheiro L C, Schenck E J, Chen R, Jabri A, et al. Clinical characteristics of Covid-19 in New York city. N Engl J Med 2020; 382: 2372-2374. [
DOI:10.1056/NEJMc2010419]
66. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. Jama 2020; 323: 1574-1581. [
DOI:10.1001/jama.2020.5394]
67. Groop L C, Bonadonna R C, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 1989; 84: 205-213. [
DOI:10.1172/JCI114142]
68. Group A t C C R i D S. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358: 2545-2559. [
DOI:10.1056/NEJMoa0802743]
69. Grzegorowska O, Lorkowski J. Possible correlations between atherosclerosis, acute coronary syndromes and COVID-19. J Clin Med 2020; 9: 3746. [
DOI:10.3390/jcm9113746]
70. Gupta R, Ghosh A, Singh A K, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr 2020; 14: 211-212. [
DOI:10.1016/j.dsx.2020.04.023]
71. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 2020; 9: 1123-1130. [
DOI:10.1080/22221751.2020.1770129]
72. Hariyanto T I, Kurniawan A. Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: a systematic review, meta-analysis, and meta-regression. Journal of Diabetes & Metabolic Disorders 2021; 20: 543-550. [
DOI:10.1007/s40200-021-00777-4]
73. Heerspink H J, Perco P, Mulder S, Leierer J, Hansen M K, Heinzel A, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 2019; 62: 1154-1166. [
DOI:10.1007/s00125-019-4859-4]
74. Hill J R, Coll R C, Sue N, Reid J C, Dou J, Holley C L, et al. Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. Chem Med Chem 2017; 12: 1449-1457. [
DOI:10.1002/cmdc.201700270]
75. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell 2020; 181: 271-280. e8. [
DOI:10.1016/j.cell.2020.02.052]
76. Holman N, Knighton P, Kar P, O’Keefe J, Curley M, Weaver A, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol 2020; 8: 823-833. [
DOI:10.1016/S2213-8587(20)30271-0]
77. Horio T S M, Takamisawa I, Suzuki K, Hiuge A, Yoshimasa Y, Kawano Y. Pioglitazone-induced insulin sensitization improves vascular endothelial function in nondiabetic patients with essential hypertension. Am J Hypertens 2005; 18: 1626-1630. [
DOI:10.1016/j.amjhyper.2005.02.003]
78. Huang I, Pranata R, Lim M A, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis 2020; 14:1753466620937175. [
DOI:10.1177/1753466620937175]
79. Iacobellis G. COVID-19 and diabetes: can DPP4 inhibition play a role? Diabetes Res Clin Pract 2020; 162. [
DOI:10.1016/j.diabres.2020.108125]
80. Inzucchi SE B R, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2012; 55: 1577-1596. [
DOI:10.1007/s00125-012-2534-0]
81. Iqbal A, Prince L R, Novodvorsky P, Bernjak A, Thomas M R, Birch L, et al. Effect of hypoglycemia on inflammatory responses and the response to low-dose endotoxemia in humans. J Clin Endocrinol Metab 2019; 104: 1187-1199. [
DOI:10.1210/jc.2018-01168]
82. Israelsen S B, Pottegård A, Sandholdt H, Madsbad S, Thomsen R W, Benfield T. Comparable COVID-19 outcomes with current use of GLP-1 receptor agonists, DPP-4 inhibitors or SGLT-2 inhibitors among patients with diabetes who tested positive for SARS-CoV-2. Diabetes, Obesity and Metabolism2021; 23: 1397-1401. [
DOI:10.1111/dom.14329]
83. Izzi-Engbeaya C, Distaso W, Amin A, Yang W, Idowu O, Kenkre J S, et al. Severe COVID-19 and diabetes-A retrospective cohort study from three London Teaching Hospitals. medRxiv 2020. [
DOI:10.1101/2020.08.07.20160275]
84. Jacob S, Hauer B, Becker R, Artzner S, Grauer P, Löblein K, et al. Lipolysis in skeletal muscle is rapidly regulated by low physiological doses of insulin. Diabetologia 1999; 42: 1171-1174. [
DOI:10.1007/s001250051288]
85. Ji M-H, Jiao-Jiao Y, Lin-Sha J, Zhu S-H, Yang J-J. Glibenclamide pretreatment attenuates acute lung injury by inhibiting the inflammatory responses and oxidative stress in a polymicrobial sepsis animal model. J Educ Perioper Med 2014; 1: 36. [
DOI:10.24015/JAPM.2014.0006]
86. Jin T, Liu M. Letter to the editor: Comment on GLP-1-based drugs and COVID-19 treatment. Acta Pharmacol Sin 2020; 10: 1249. [
DOI:10.1016/j.apsb.2020.05.006]
87. Kahkoska A R, Abrahamsen T J, Alexander G C, Bennett T D, Chute C G, Haendel M A, et al. Association Between Glucagon-Like Peptide 1 Receptor Agonist and Sodium-Glucose Cotransporter 2 Inhibitor Use and COVID-19 Outcomes. Diabetes Care 2021; 44: 1564-1572. [
DOI:10.2337/dc21-0065]
88. Kahn N N, Bauman W A, Hatcher V B, Sinha A K. Inhibition of platelet aggregation and the stimulation of prostacyclin synthesis by insulin in humans. Am J Physiol Heart Circ Physiol 1993;265: H2160-H2167. [
DOI:10.1152/ajpheart.1993.265.6.H2160]
89. Kalbhande J G, Kuldeep V. Use of Insulin in treatment of COVID-19: A proposal to explore feasibility. Journal of Medical Science And clinical Research 2020; 8: 628-634. https://dx.doi.org/10.18535/jmscr/v8i7.103
90. Kamath V, Jones C N, Yip J C, Varasteh B B, Cincotta A H, Reaven G M, et al. Effects of a quick-release form of bromocriptine (Ergoset) on fasting and postprandial plasma glucose, insulin, lipid, and lipoprotein concentrations in obese nondiabetic hyperinsulinemic women. Diabetes Care 1997; 20: 1697-1701. [
DOI:10.2337/diacare.20.11.1697]
91. Kan C, Zhang Y, Han F, Xu Q, Ye T, Hou N, et al. Mortality risk of antidiabetic agents for type 2 diabetes with COVID-19: a systematic review and meta-analysis. Front Endocrinol 2021: 1158. [
DOI:10.3389/fendo.2021.708494]
92. Kato F, Ishida Y, Oishi S, Fujii N, Watanabe S, Vasudevan S G, et al. Novel antiviral activity of bromocriptine against dengue virus replication. Antiviral research 2016; 131: 141-147. [
DOI:10.1016/j.antiviral.2016.04.014]
93. Kawasaki T, Chen W, Htwe Y M, Tatsumi K, Dudek S M. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2018; 315: L834-L845. [
DOI:10.1152/ajplung.00031.2018]
94. Kewcharoenwong C, Rinchai D, Utispan K, Suwannasaen D, Bancroft G J, Ato M, et al. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection. Sci. Rep 2013; 3: 1-8. [
DOI:10.1038/srep03363]
95. Khunti K, Knighton P, Zaccardi F, Bakhai C, Barron E, Holman N, et al. Prescription of glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: a nationwide observational study in England. Lancet Diabetes Endocrinol 2021; 9: 293-303. [
DOI:10.1016/S2213-8587(21)00050-4]
96. Kim M, Platt M J, Shibasaki T, Quaggin S E, Backx P H, Seino S, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med 2013; 19: 567-575. [
DOI:10.1038/nm.3128]
97. Kim M K, Jeon J-H, Kim S-W, Moon J S, Cho N H, Han E, et al. The clinical characteristics and outcomes of patients with moderate-to-severe coronavirus disease 2019 infection and diabetes in Daegu, South Korea. Diabetes Metab J 2020; 44: 602-613. [
DOI:10.4093/dmj.2020.0146]
98. Kolb H, Kempf K, Röhling M, Martin S. Insulin: too much of a good thing is bad. BMC medicine 2020; 18: 1-12. [
DOI:10.1186/s12916-020-01688-6]
99. Komajda M G J, Biswas N, Jones N P. Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in Diabetes (RECORD): study design and protocol. Diabetologia 2005; 48: 1726-1735. [
DOI:10.1007/s00125-005-1869-1]
100. Kosinski C, Zanchi A, Wojtusciszyn A. Diabetes and COVID-19 infection. Rev Med Suisse 2020; 16: 939-943. [
DOI:10.53738/REVMED.2020.16.692.0939]
101. Kothari V, Galdo J A, Mathews S T. Hypoglycemic agents and potential anti-inflammatory activity. Journal of inflammation research 2016; 9: 27. [
DOI:10.2147/JIR.S86917]
102. Krysiak R, Okopien B. Different effects of cabergoline and bromocriptine on metabolic and cardiovascular risk factors in patients with elevated prolactin levels. Basic Clin Pharmacol Toxicol 2015; 116: 251-256. [
DOI:10.1111/bcpt.12307]
103. Krysiak R, Samborek M, Stojko R. Anti-inflammatory effects of bromocriptine in a patient with autoimmune polyglandular syndrome type 2. Neuroendocrinol Lett 2014; 35.
104. Kumar V, Aithal S, Baleed S, Patil U. Bromocriptine, a dopamine (d2) receptor agonist, used alone and in combination with glipizide in sub-therapeutic doses to ameliorate hyperglycaemia. J Clin Diagn Res 2013; 7: 1904-1907.
105. Lambert G W, Straznicky N E, Lambert E A, Dixon J B, Schlaich M P. Sympathetic nervous activation in obesity and the metabolic syndrome-causes, consequences and therapeutic implications. Pharmacology & therapeutics 2010; 126: 159-172. [
DOI:10.1016/j.pharmthera.2010.02.002]
106. Lamkanfi M, Mueller J L, Vitari A C, Misaghi S, Fedorova A, Deshayes K, et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 2009; 187: 61-70. [
DOI:10.1083/jcb.200903124]
107. Lee J H. Potential therapeutic effect of glucagon-like peptide-1 receptor agonists on COVID-19-induced pulmonary arterial hypertension. Medical hypotheses 2022; 158: 110739. [
DOI:10.1016/j.mehy.2021.110739]
108. Lee Y-S, Jun H-S. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm 2016; 2016. [
DOI:10.1155/2016/3094642]
109. Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab 2020; 22: 1935-1941. [
DOI:10.1111/dom.14057]
110. Li K W-L C, Perlman S, et al. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis 2016; 213: 712-722. [
DOI:10.1093/infdis/jiv499]
111. Li L, Konishi Y, Morikawa T, Zhang Y, Kitabayashi C, Kobara H, et al. Effect of a SGLT2 inhibitor on the systemic and intrarenal renin-angiotensin system in subtotally nephrectomized rats. J pharmacol sci 2018; 137: 220-223. [
DOI:10.1016/j.jphs.2017.10.006]
112. Li S-x, Li C, Pang X-r, Zhang J, Yu G-c, Yeo A J, et al. Metformin Attenuates Silica-Induced Pulmonary Fibrosis by Activating Autophagy via the AMPK-mTOR Signaling Pathway. Front pharmacol 2021: 2010. [
DOI:10.3389/fphar.2021.719589]
113. Li W, Cui M, Wei Y, Kong X, Tang L, Xu D. Inhibition of the Expression of TGF-β1 and CTGF in Human Mesangial Cells byExendin-4, a Glucagon-like Peptide-1Receptor Agonist. Cell Physiol Biochem 2012; 30: 749-757. [
DOI:10.1159/000341454]
114. Lim MA P R, Huang I, Yonas E, Soeroto AY, Supriyadi R. Multiorgan failure with emphasis on acute kidney injury and severity of COVID-19: systematic review and meta-analysis. Can J Kidney Heal Dis 2020; 7: 7-11. [
DOI:10.1177/2054358120938573]
115. Lim S, Bae J H, Kwon H-S, Nauck M A. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol 2021; 17: 11-30. [
DOI:10.1038/s41574-020-00435-4]
116. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020; 55: 102763. [
DOI:10.1016/j.ebiom.2020.102763]
117. Liu X M T, Chen W, Ye S. Comparison of antidiabetic medications during the treatment of atherosclerosis in T2DM patients. Mediators Inflamm 2017; 55. [
DOI:10.1155/2017/5032708]
118. Longo M, Caruso P, Maiorino M I, Bellastella G, Giugliano D, Esposito K. Treating type 2 diabetes in COVID-19 patients: the potential benefits of injective therapies. Cardiovascular Diabetology 2020; 19: 1-5. [
DOI:10.1186/s12933-020-01090-9]
119. Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 2013; 500: 227-231. [
DOI:10.1038/nature12328]
120. Luo P, Qiu L, Liu Y, Liu X-l, Zheng J-l, Xue H-y, et al. Metformin treatment was associated with decreased mortality in COVID-19 patients with diabetes in a retrospective analysis. Am J Trop Med Hyg 2020; 103: 69. [
DOI:10.4269/ajtmh.20-0375]
121. Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol 2020; 11: 191. [
DOI:10.3389/fendo.2020.00191]
122. Makdissi A G H, Vora M, Green K, Abuaysheh S, Chaudhuri A et al Sitagliptin exerts an antinflammatory action. J Clin Endocrinol Metab 2012; 97: 3333-3341. [
DOI:10.1210/jc.2012-1544]
123. Malhotra A, Hepokoski M, McCowen K C, Shyy J Y. ACE2, metformin, and COVID-19. Iscience 2020; 23: 101425. [
DOI:10.1016/j.isci.2020.101425]
124. Marfella R, Di Filippo C, Portoghese M, Ferraraccio F, Rizzo M R, Siniscalchi M, et al. Tight glycemic control reduces heart inflammation and remodeling during acute myocardial infarction in hyperglycemic patients. J Am Coll Cardiol 2009; 53: 1425-1436. [
DOI:10.1016/j.jacc.2009.01.041]
125. Martin-Montalvo A, Mercken E M, Mitchell S J, Palacios H H, Mote P L, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nat Commun 2013; 4: 1-9. [
DOI:10.1038/ncomms3192]
126. Martin B, Maudsley S, White C M, Egan J M. Hormones in the naso-oropharynx: endocrine modulation of taste and smell. Trends Endocrinol Metab 2009; 20: 163-170. [
DOI:10.1016/j.tem.2009.01.006]
127. Mazidi M, Karimi E, Rezaie P, Ferns G A. Treatment with GLP1 receptor agonists reduce serum CRP concentrations in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Complications 2017; 31: 1237-1242. [
DOI:10.1016/j.jdiacomp.2016.05.022]
128. McCormack F X, Whitsett J A. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. The Journal of clinical investigation 2002; 109: 707-712. [
DOI:10.1172/JCI0215293]
129. Mei J, Sun J, Wu J, Zheng X. Liraglutide suppresses TNF-α-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. Am J Transl Res 2019; 11: 4800.
130. Menon R, Otto E A, Sealfon R, Nair V, Wong A K, Theesfeld C L, et al. SARS-CoV-2 receptor networks in diabetic and COVID-19-associated kidney disease. Kidney international 2020; 98: 1502-1518. [
DOI:10.1016/j.kint.2020.09.015]
131. Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 1999; 403: 261-280. https://doi.org/10.1002/(SICI)1096-9861(19990111)403:2<261::AID-CNE8>3.0.CO;2-5 [
DOI:10.1002/(SICI)1096-9861(19990111)403:23.0.CO;2-5]
132. Mirabelli M, Chiefari E, Puccio L, Foti D P, Brunetti A. Potential benefits and harms of novel antidiabetic drugs during COVID-19 crisis. I Int J Environ Res Public Health 2020; 17: 3664. [
DOI:10.3390/ijerph17103664]
133. Mirani M, Favacchio G, Carrone F, Betella N, Biamonte E, Morenghi E, et al. Impact of comorbidities and glycemia at admission and dipeptidyl peptidase 4 inhibitors in patients with type 2 diabetes with COVID-19: a case series from an academic hospital in Lombardy, Italy. Diabetes Care 2020; 43: 3042-3049. [
DOI:10.2337/dc20-1340]
134. Morimoto C S S. The structure and function of CD26 in the T-cell immune response. Immunol Rev 1998; 161: 55-70. [
DOI:10.1111/j.1600-065X.1998.tb01571.x]
135. Mortada Y, Khojasteh K, Zarei M, Mansouri A, Jorjani M. How nitric oxide increases in diabetic morphine tolerated male rats. Iran J Pharm Res 2017; 16: 630.
136. Mudaliar S, Henry R R. Effects of incretin hormones on β-cell mass and function, body weight, and hepatic and myocardial function. Am J Med 2010; 123: S19-S27. [
DOI:10.1016/j.amjmed.2009.12.006]
137. Müller T D, Finan B, Bloom S, D’Alessio D, Drucker D J, Flatt P, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30: 72-130. [
DOI:10.1016/j.molmet.2019.09.010]
138. Nissen SE N S, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, De Larochelli_ere R, Staniloae CS, Mavromatis K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 2008; 299: 1561-1573. [
DOI:10.1001/jama.299.13.1561]
139. Nomoto H K K, Miyoshi H, Kameda H, Cho KY, Nakamura A et al Effects of 50 mg vildagliptin twice daily vs 50g sitagliptin once daily on blood glucose fluctuations evaluated by long-term self-monitoring of blood glucose. Endocr J 2017; 64: 417-424. [
DOI:10.1507/endocrj.EJ16-0546]
140. Oda K, Yatera K, Izumi H, Ishimoto H, Yamada S, Nakao H, et al. Profibrotic role of WNT10A via TGF-β signaling in idiopathic pulmonary fibrosis. Respir Res 2016; 17: 1-14. [
DOI:10.1186/s12931-016-0357-0]
141. Orioli L, Servais T, Belkhir L, Laterre P-F, Thissen J-P, Vandeleene B, et al. Clinical characteristics and short-term prognosis of in-patients with diabetes and COVID-19: a retrospective study from an academic center in Belgium. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2021; 15: 149-157. [
DOI:10.1016/j.dsx.2020.12.020]
142. P.A. Sarafidis P C S, P.I. Georgianos, A.N. Saratzis, A.N. Lasaridis. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: A meta-analysis. Am. J. Kidney Dis 2010; 55: 835-847. [
DOI:10.1053/j.ajkd.2009.11.013]
143. Pal R, Bhadada S K. Should anti-diabetic medications be reconsidered amid COVID-19 pandemic? Diabetes Res Clin Pract 2020; 163. [
DOI:10.1016/j.diabres.2020.108146]
144. Palermo N E, Sadhu A R, McDonnell M E. Diabetic ketoacidosis in COVID-19: unique concerns and considerations. J Clin Endocrinol Metab 2020; 105: 2819-2829. [
DOI:10.1210/clinem/dgaa360]
145. Pascal KE C C, Mujica AO, et al. pre-and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci U S A 2015; 112: 8738-8743. [
DOI:10.1073/pnas.1510830112]
146. Patoulias D, Boulmpou A, Imprialos K, Stavropoulos K, Papadopoulos C, Doumas M. Meta-analysis evaluating the risk of respiratory tract infections and acute respiratory distress syndrome with glucagon-like peptide-1 receptor agonists in cardiovascular outcome trials: Useful implications for the COVID-19 pandemic. Revista Clínica Española (English Edition) 2021. [
DOI:10.1016/j.rceng.2021.04.002]
147. Petrilli C M, Jones S A, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. Bmj 2020; 369. [
DOI:10.1136/bmj.m1966]
148. Philipose Z, Smati N, Wong C S J, Aspey K, Mendall M. Obesity, old age, and frailty are the true risk factors for COVID-19 mortality and not chronic disease or ethnicity. MedRxiv 2020. [
DOI:10.1101/2020.08.12.20156257]
149. Piotrowski K, Becker M, Zugwurst J, Biller-Friedmann I, Spoettl G, Greif M, et al. Circulating concentrations of GLP-1 are associated with coronary atherosclerosis in humans. Cardiovasc Diabetol 2013; 12: 1-5. [
DOI:10.1186/1475-2840-12-117]
150. Pompermayer K, Souza D G, Lara G G, Silveira K D, Cassali G D, Andrade A A, et al. The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats. Kidney international 2005; 67: 1785-1796. [
DOI:10.1111/j.1523-1755.2005.00276.x]
151. Prigeon RL K S, Porte D Jr. Effect of troglitazone on B cell function, insulin sensitivity, and glycemic control in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab. 1998; 83: 819-823. [
DOI:10.1210/jc.83.3.819]
152. Rahman M M, Saha T, Islam K J, Suman R H, Biswas S, Rahat E U, et al. Virtual screening, molecular dynamics and structure-activity relationship studies to identify potent approved drugs for Covid-19 treatment. J Biomol Struct Dyn 2021; 39: 6231-6241. [
DOI:10.1080/07391102.2020.1794974]
153. Rakhmat I I, Kusmala Y Y, Handayani D R, Juliastuti H, Nawangsih E N, Wibowo A, et al. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19)-a systematic review, meta-analysis, and meta-regression. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2021; 15: 777-782. [
DOI:10.1016/j.dsx.2021.03.027]
154. Rayman G, Lumb A, Kennon B, Cottrell C, Nagi D, Page E, et al. Guidance on the management of Diabetic Ketoacidosis in the exceptional circumstances of the COVID-19 pandemic. Diabetic Medicine 2020; 37: 1214-1216. [
DOI:10.1111/dme.14328]
155. Riahi S, Sombra L R S, Lo K B, Chacko S R, Neto A G M, Azmaiparashvili Z, et al. Insulin use, diabetes control, and outcomes in patients with COVID-19. Endocrine Research 2021; 46: 45-50. [
DOI:10.1080/07435800.2020.1856865]
156. Rizvi A A, Stoian A P, Lessan N, Rizzo M. Endocrinology in the time of COVID-19: a rapid evolution of knowledge and care. Medicina 2021; 57: 805. [
DOI:10.3390/medicina57080805]
157. Rogliani P, Matera M G, Calzetta L, Hanania N A, Page C, Rossi I, et al. Long-term observational study on the impact of GLP-1R agonists on lung function in diabetic patients. Respir Med 2019; 154: 86-92. [
DOI:10.1016/j.rmed.2019.06.015]
158. Romaní-Pérez M, Outeiriño-Iglesias V, Moya C M, Santisteban P, González-Matías L C, Vigo E, et al. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology 2015; 156: 3559-3569. [
DOI:10.1210/en.2014-1685]
159. Romero-Gómez M, Diago M, Andrade R J, Calleja J L, Salmerón J, Fernández-Rodríguez C M, et al. Treatment of insulin resistance with metformin in naïve genotype 1 chronic hepatitis C patients receiving peginterferon alfa-2a plus ribavirin. Hepatology 2009; 50: 1702-1708. [
DOI:10.1002/hep.23206]
160. Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol 2020; 16: 308-310. [
DOI:10.1038/s41581-020-0284-7]
161. Rosak C, Petzoldt R, Wolf R, Reblin T, Dehmel B, Seidel D. Rosiglitazone plus metformin is effective and well tolerated in clinical practice: results from large observational studies in people with type 2 diabetes. Int J Clin Pract 2005; 59: 1131-1136. [
DOI:10.1111/j.1368-5031.2005.00652.x]
162. Salem E S, Grobe N, Elased K M. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. Am J Physiol Renal Physiol 2014; 306: F629-F639. [
DOI:10.1152/ajprenal.00516.2013]
163. Samuel S M, Varghese E, Büsselberg D. Therapeutic potential of metformin in COVID-19: reasoning for its protective role. Trends Microbiol 2021; 29: 894-907. [
DOI:10.1016/j.tim.2021.03.004]
164. Sandooja R, Vura N V R K, Morocco M. Heightened ACE activity and unfavorable consequences in COVID-19 diabetic subjects. Int J Endocrinol 2020; 2020. [
DOI:10.1155/2020/7847526]
165. Sarafidis P, Ferro C J, Morales E, Ortiz A, Malyszko J, Hojs R, et al. SGLT-2 inhibitors and GLP-1 receptor agonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the EURECA-m and the DIABESITY working groups of the ERA-EDTA. Nephrol Dial Transplant 2019; 34: 208-230. [
DOI:10.1093/ndt/gfy407]
166. Saraiva F K, Sposito A C. Cardiovascular effects of glucagon-like peptide 1 (GLP-1) receptor agonists. Cardiovasc Diabetol 2014; 13: 1-11. [
DOI:10.1186/s12933-014-0142-7]
167. Sardu C, D’Onofrio N, Balestrieri M L, Barbieri M, Rizzo M R, Messina V, et al. Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control? Diabetes care 2020; 43: 1408-1415. [
DOI:10.2337/dc20-0723]
168. Sazgarnejad S, Yazdanpanah N, Rezaei N. Anti-inflammatory effects of GLP-1 in patients with COVID-19. Expert Rev Anti Infect Ther 2021: 1-9. [
DOI:10.1080/14787210.2021.1964955]
169. Scheen A. Metformin and COVID-19: from cellular mechanisms to reduced mortality. Diabetes Metab 2020; 46: 423-426. [
DOI:10.1016/j.diabet.2020.07.006]
170. Scheen A J. An update on the safety of SGLT2 inhibitors. Expert Opin Drug Saf 2019;18: 295-311. [
DOI:10.1080/14740338.2019.1602116]
171. Šestan M, Marinović S, Kavazović I, Cekinović Đ, Wueest S, Wensveen T T, et al. Virus-induced interferon-γ causes insulin resistance in skeletal muscle and derails glycemic control in obesity. Immunity 2018; 49: 164-177. e6. [
DOI:10.1016/j.immuni.2018.05.005]
172. Shah F A, Mahmud H, Gallego-Martin T, Jurczak M J, O’Donnell C P, McVerry B J. Therapeutic effects of endogenous incretin hormones and exogenous incretin-based medications in sepsis. J Clin Endocrinol Metab 2019; 104: 5274-5284. [
DOI:10.1210/jc.2019-00296]
173. Shao S, Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacology & therapeutics 2020; 209: 107503. [
DOI:10.1016/j.pharmthera.2020.107503]
174. Sharma S, Ray A, Sadasivam B. Metformin in COVID-19: a possible role beyond diabetes. Diabetes research and clinical practice 2020; 164: 108183. [
DOI:10.1016/j.diabres.2020.108183]
175. Shiraki A, Oyama J-i, Komoda H, Asaka M, Komatsu A, Sakuma M, et al. The glucagon-like peptide 1 analog liraglutide reduces TNF-α-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis 2012; 221: 375-382. [
DOI:10.1016/j.atherosclerosis.2011.12.039]
176. Si G, Tao Z, Wei W, Min X, Wang X-c, Chen Z-h. Glucagon like peptide-1 attenuates bleomycin-induced pulmonary fibrosis, involving the inactivation of NF-κB in mice. Int Immunopharmacol 2014; 22: 498-504. [
DOI:10.1016/j.intimp.2014.07.010]
177. Silverii G A, Monami M, Cernigliaro A, Vigneri E, Guarnotta V, Scondotto S, et al. Are diabetes and its medications risk factors for the development of COVID-19? Data from a population-based study in Sicily. Nutr Metab Cardiovasc Dis 2021; 31: 396-398. [
DOI:10.1016/j.numecd.2020.09.028]
178. Siu K L, Yuen K S, Castano-Rodriguez C, Ye Z W, Yeung M L, Fung S Y, et al. Severe acute respiratory syndrome Coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J 2019; 33: 8865-8877. [
DOI:10.1096/fj.201802418R]
179. Sola D, Rossi L, Schianca G P C, Maffioli P, Bigliocca M, Mella R, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci 2015; 11: 840. [
DOI:10.5114/aoms.2015.53304]
180. Solerte SB D A F, Trevisan R, et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicentre, case-control, retrospective, observational study. Diabetes Care 2020; 43: 2999- 3006. [
DOI:10.2337/dc20-1521]
181. Sromova L, Busek P, Posova H, Potockova J, Skrha P, Andel M, et al. The effect of dipeptidyl peptidase-IV inhibition on circulating T cell subpopulations in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2016; 118: 183-192. [
DOI:10.1016/j.diabres.2016.06.020]
182. Stoian A P, Banerjee Y, Rizvi A A, Rizzo M. Diabetes and the COVID-19 pandemic: how insights from recent experience might guide future management. Metab Syndr Relat Disord 2020a; 18: 173-175. [
DOI:10.1089/met.2020.0037]
183. Stoian A P, Pricop-Jeckstadt M, Pana A, Ileanu B-V, Schitea R, Geanta M, et al. Death by SARS-CoV 2: a Romanian COVID-19 multi-centre comorbidity study. Sci Rep 2020b; 10: 1-11. [
DOI:10.1038/s41598-020-78575-w]
184. Takai S, Yasumatsu K, Inoue M, Iwata S, Yoshida R, Shigemura N, et al. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. FASEB J 2015; 29: 2268-2280. [
DOI:10.1096/fj.14-265355]
185. Toki S, Goleniewska K, Reiss S, Zhang J, Bloodworth M H, Stier M T, et al. Glucagon-like peptide 1 signaling inhibits allergen-induced lung IL-33 release and reduces group 2 innate lymphoid cell cytokine production in vivo. J Allergy Clin Immunol 2018; 142: 1515-1528. e8. [
DOI:10.1016/j.jaci.2017.11.043]
186. Tsurutani Y, Omura M, Matsuzawa Y, Saito J, Higa M, Taniyama M, et al. Efficacy and safety of the dipeptidyl Peptidase-4 inhibitor Sitagliptin on atherosclerosis, β-cell function, and glycemic control in Japanese patients with type 2 diabetes mellitus who are treatment Naïve or poorly responsive to Antidiabetes agents: a multicenter, prospective observational, uncontrolled study. Cur The Res 2017; 84: 26-31. [
DOI:10.1016/j.curtheres.2016.12.002]
187. Turner NA M R, Warburton P, O’Regan DJ, Ball SG, Porter KE. Mechanism of TNFalpha-induced IL-1alpha, IL-1beta and IL-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones. Cardiovasc Res 2007; 76: 81-90. [
DOI:10.1016/j.cardiores.2007.06.003]
188. Vankadari N W J. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Micro & Infec 2020; 9: 601-604. [
DOI:10.1080/22221751.2020.1739565]
189. Verma A K, Beg M M A, Bhatt D, Dev K, Alsahli M A, Rahmani A H, et al. Assessment and Management of Diabetic Patients During the COVID-19 Pandemic. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021; 14: 3131. [
DOI:10.2147/DMSO.S285614]
190. Verma S, Jüni P, Mazer C D. Pump, pipes, and filter: do SGLT2 inhibitors cover it all? The Lancet 2019; 393: 3-5. [
DOI:10.1016/S0140-6736(18)32824-1]
191. Viby N-E, Isidor M S, Buggeskov K B, Poulsen S S, Hansen J B, Kissow H. Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice. Endocrinology 2013; 154: 4503-4511. [
DOI:10.1210/en.2013-1666]
192. Wang L, Liang J, Leung P S. The ACE2/Ang-(1-7)/Mas axis regulates the development of pancreatic endocrine cells in mouse embryos. PLoS One 2015; 10: e0128216. [
DOI:10.1371/journal.pone.0128216]
193. Wargny M, Potier L, Gourdy P, Pichelin M, Amadou C, Benhamou P-Y, et al. Predictors of hospital discharge and mortality in patients with diabetes and COVID-19: updated results from the nationwide CORONADO study. Diabetologia 2021; 64: 778-794. [
DOI:10.1007/s00125-020-05351-w]
194. Wei Y, Mojsov S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS letters 1995; 358: 219-224. [
DOI:10.1016/0014-5793(94)01430-9]
195. Willemen MJ M-T A, Straus SM, Meyboom RH, Egberts TC, Leufkens HG. Use of dipeptidyl peptidase-4 inhibitors and the reporting of infections: a disproportionality analysis in the World Health Organization VigiBase. Diabetes Care 2011; 34: 369-374. [
DOI:10.2337/dc10-1771]
196. Wright EM T E. The sodium/glucose cotransport family SLC5. Pflugers Arch 2004; 447: 510-518. [
DOI:10.1007/s00424-003-1063-6]
197. Wu J, Huang J, Zhu G, Wang Q, Lv Q, Huang Y, et al. Elevation of blood glucose level predicts worse outcomes in hospitalized patients with COVID-19: a retrospective cohort study. BMJ Open Diabetes Res Care 2020a; 8: e001476. [
DOI:10.1136/bmjdrc-2020-001476]
198. Wu L, Girgis C M, Cheung N W. COVID-19 and diabetes: insulin requirements parallel illness severity in critically unwell patients. Clinical Endocrinology 2020b; 93: 390-393. [
DOI:10.1111/cen.14288]
199. Wu Z, McGoogan J M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama 2020; 323: 1239-1242. [
DOI:10.1001/jama.2020.2648]
200. Xian H, Liu Y, Nilsson A R, Gatchalian R, Crother T R, Tourtellotte W G, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 2021; 54: 1463-1477. e11. [
DOI:10.1016/j.immuni.2021.05.004]
201. Xie W, Wang L, Dai Q, Yu H, He X, Xiong J, et al. Activation of AMPK restricts coxsackievirus B3 replication by inhibiting lipid accumulation. J Mol Cell Cardiol 2015; 85: 155-167. [
DOI:10.1016/j.yjmcc.2015.05.021]
202. Xie X S S, Yi Z, et al. Role of adipocyte mitochondria in inflammation, lipemia and insulin sensitivity in humans: effects of pioglitazone treatment. Int J Obes 2017. [
DOI:10.1038/ijo.2017.192]
203. Xu J, Wei G, Wang J, Zhu J, Yu M, Zeng X, et al. Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. Laboratory Investigation 2019; 99: 577-587. [
DOI:10.1038/s41374-018-0170-0]
204. Xun Y H, Zhang Y J, Pan Q C, Mao R C, Qin Y L, Liu H Y, et al. Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells. J Viral Hepat 2014; 21: 597-603. [
DOI:10.1111/jvh.12187]
205. Yan H, Valdes A M, Vijay A, Wang S, Liang L, Yang S, et al. Role of drugs used for chronic disease management on susceptibility and severity of COVID19: a large case-control study. Clin Pharmacol Ther 2020; 108: 1185-1194. [
DOI:10.1002/cpt.2047]
206. Yang J-K, Lin S-S, Ji X-J, Guo L-M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta diabetologica 2010; 47: 193-199. [
DOI:10.1007/s00592-009-0109-4]
207. Yang Y, Cai Z, Zhang J. Insulin Treatment May Increase Adverse Outcomes in Patients With COVID-19 and Diabetes: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology 2021; 12. [
DOI:10.3389/fendo.2021.696087]
208. Yaribeygi H, Katsiki N, Butler A E, Sahebkar A. Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug discovery today 2019; 24: 256-262. [
DOI:10.1016/j.drudis.2018.08.005]
209. Yu B, Li C, Sun Y, Wang D W. Insulin treatment is associated with increased mortality in patients with COVID-19 and type 2 diabetes. Cell metabolism 2021; 33: 65-77. e2. [
DOI:10.1016/j.cmet.2020.11.014]
210. Yudkin J S. Abnormalities of coagulation and fibrinolysis in insulin resistance: evidence for a common antecedent? Diabetes care 1999; 22: C25.
211. Zarei M, Sahebi Vaighan N, Ziai S A. Purinergic receptor ligands: the cytokine storm attenuators, potential therapeutic agents for the treatment of COVID-19. Immunopharmacology and Immunotoxicology 2021; 43: 633-643. [
DOI:10.1080/08923973.2021.1988102]
212. Zhang B, Liu Z-Y, Li Y-Y, Luo Y, Liu M-L, Dong H-Y, et al. Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur J Pharm Sci 2011; 44: 573-579. [
DOI:10.1016/j.ejps.2011.09.020]
213. Zhang B, Zhou X, Zhu C, Song Y, Feng F, Qiu Y, et al. Immune phenotyping based on the neutrophil-to-lymphocyte ratio and IgG level predicts disease severity and outcome for patients with COVID-19. Front Mol Biosci 2020; 7: 157. [
DOI:10.3389/fmolb.2020.00157]
214. Zhang G, Lin X, Zhang S, Xiu H, Pan C, Cui W. A protective role of glibenclamide in inflammation-associated injury. Mediators Inflamm 2017; 2017. [
DOI:10.1155/2017/3578702]
215. Zhang W-q, Tian Y, Chen X-m, Wang L-f, Chen C-c, Qiu C-m. Liraglutide ameliorates beta-cell function, alleviates oxidative stress and inhibits low grade inflammation in young patients with new-onset type 2 diabetes. Diabetol Metab Syndr 2018; 10: 1-8. [
DOI:10.1186/s13098-018-0392-8]
216. Zhang WY S E, Permana PA, Reaven P D. Pioglitazone inhibits the expression of inflammatory cytokines from both monocytes and lymphocytes in patients with impaired glucose tolerance. Arterioscler Thromb Vasc Biol 2008; 28: 2312-8. [
DOI:10.1161/ATVBAHA.108.175687]
217. Zhou F, Zhang Y, Chen J, Hu X, Xu Y. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol 2016; 791: 735-740. [
DOI:10.1016/j.ejphar.2016.10.016]
218. Zhou J, Tan J. Diabetes patients with COVID-19 need better blood glucose management in Wuhan, China. Metabolism 2020; 107: 154216. [
DOI:10.1016/j.metabol.2020.154216]
219. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020. [
DOI:10.1056/NEJMoa2001017]