Volume 28, Issue 4 (December 2024)                   Physiol Pharmacol 2024, 28(4): 363-388 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarei M, Sahebi vaihan N, Shiravand S, Mohammadvali-samani S, Sheikholeslami M A, Roudbari Z. The impact of antidiabetic medications on COVID-19 outcomes in diabetic patients: an overview. Physiol Pharmacol 2024; 28 (4) : 1
URL: http://ppj.phypha.ir/article-1-2278-en.html
Abstract:   (1262 Views)

The advent of Coronavirus Disease 2019 (COVID-19), first identified in Wuhan, China, has led to significant mortality and morbidity worldwide, disproportionately affecting individuals with comorbidities such as diabetes mellitus (DM), cardiovascular diseases (CVDs), and obesity. Evidence suggests a strong correlation between DM and heightened risk of severe COVID-19 complications, which is thought to be exacerbated by factors such as hyperglycemia, systemic inflammation, immune dysregulation, and the increased expression of the angiotensin-converting enzyme 2 (ACE2) receptor in pancreatic cells. The interaction of COVID-19 with antidiabetic medications is complex, with varying reports on how these drugs may influence the disease trajectory in diabetic patients. This article seeks to synthesize the current literature on the role of antidiabetic agents in managing COVID-19 in patients with diabetes, elucidating their potential protective or adverse effects and providing a comprehensive overview of the evolving understanding of this critical interface.

Article number: 1
Full-Text [PDF 1286 kb]   (161 Downloads)    
Type of Manuscript: Review | Subject: Endocrine Physiology/Pharmacology

References
1. Abdallah D M, Nassar N N, Abd-El-Salam R M. Glibenclamide ameliorates ischemia-reperfusion injury via modulating oxidative stress and inflammatory mediators in the rat. hippocampus. Brain Res 2011; 1385: 257-262. [DOI:10.1016/j.brainres.2011.02.007]
2. Ajjan RA G P. Cardiovascular disease prevention in patients with type 2 diabetes: the role of oral antidiabetic agents. Diab Vas Dis Res 2006; 3: 147-158. [DOI:10.3132/dvdr.2006.023]
3. Al-lami H C A, Rizij F A, Hussein A A. Effect of bromocriptine on anthropometric, metabolic and inflammatory parameters in obese women. Thi-Qar Medical Journal 2018; 16.
4. Aljada A, Ghanim H, Mohanty P, Kapur N, Dandona P. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab 2002; 87: 1419-1422. [DOI:10.1210/jcem.87.3.8462]
5. Association A D. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2020. Diabetes care 2020; 43: S98-S110. [DOI:10.2337/dc20-S009]
6. Avogaro A, Bonora B, Fadini G P. Managing diabetes in diabetic patients with COVID: where do we start from? Acta Diabetol 2021; 58: 1441-1450. [DOI:10.1007/s00592-021-01739-1]
7. Baggio L L, Varin E M, Koehler J A, Cao X, Lokhnygina Y, Stevens S R, et al. Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans. Nat Commun 2020; 11: 3766. [DOI:10.1038/s41467-020-17556-z]
8. Barbarin V. N A, Misson P. The role of pro- and anti-inflammatory responses in silica-induced lung fibrosis Respir Res 2005; 6: 112. [DOI:10.1186/1465-9921-6-112]
9. Basra R, Whyte M, Karalliedde J, Vas P. What is the impact of microvascular complications of diabetes on severe COVID-19? Microvasc Res 2021: 104310. [DOI:10.1016/j.mvr.2021.104310]
10. Bassendine MF B S, McCaughan G W, Gorrell M D. COVID-19 and comorbidities: a role for dipeptidyl peptidase 4 (DPP4) in disease severity? J Diabetes 2020; 12: 649_658. [DOI:10.1111/1753-0407.13052]
11. Batista D V, Vieira C A F d A, Costa T A, Lima E G. COVID-19-associated euglycemic diabetic ketoacidosis in a patient with type 2 diabetes on SGLT2 inhibitor: a case report. Diabetol Int 2021; 12: 313-316. [DOI:10.1007/s13340-020-00473-3]
12. Belančić A, Kresović A, Troskot Dijan M. Glucagon-like peptide-1 receptor agonists in the era of COVID-19: Friend or foe? Clin Obes 2021; 11: e12439. [DOI:10.1111/cob.12439]
13. Ben-Chetrit E, Ben-Ya’acov A, Quitina A, Atia O, Regev E, Shteyer E, et al. Anosmia and dysgeusia amongst COVID-19 patients are associated with low levels of serum glucagon-like peptide 1. Int J Clin Pract 2021: e14996. [DOI:10.22541/au.162580954.40299908/v1]
14. Bharath L P, Nikolajczyk B S. The intersection of metformin and inflammation. Am J Physiol Cell Physiol 2021; 320: C873-C879. [DOI:10.1152/ajpcell.00604.2020]
15. Bibi N, Farid A, Gul S, Ali J, Amin F, Kalathiya U, et al. Drug repositioning against COVID-19: a first line treatment. J Biomol Struct Dyn 2021: 115. [DOI:10.1080/07391102.2021.1977698]
16. Birnbaum Y, Bajaj M, Qian J, Ye Y. Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome. BMJ Open Diabetes Res Care 2016; 4: e000227. [DOI:10.1136/bmjdrc-2016-000227]
17. Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 2020; 583: 469-472. [DOI:10.1038/s41586-020-2332-7]
18. Bornstein S R, Rubino F, Khunti K, Mingrone G, Hopkins D, Birkenfeld A L, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 2020; 8: 546-550. [DOI:10.1016/S2213-8587(20)30152-2]
19. Bossi A C, Forloni F, Colombelli P L. Lack of efficacy of SGLT2-i in severe pneumonia related to novel coronavirus (nCoV) infection: no little help from our friends. Diabetes Therapy 2020; 11: 1605-1606. [DOI:10.1007/s13300-020-00844-8]
20. Cariou B, Hadjadj S, Wargny M, Pichelin M, Al-Salameh A, Allix I, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia 2020; 63: 1500-1515. [DOI:10.1007/s00125-020-05180-x]
21. Catrinoiu D, Ceriello A, Rizzo M, Serafinceanu C, Montano N, Stoian A P, et al. Diabetes and renin-angiotensin-aldosterone system: implications for covid-19 patients with diabetes treatment management. Farmacia 2020; 68: 377-383. [DOI:10.31925/farmacia.2020.3.1]
22. Ceriello A, Esposito K, Testa R, Bonfigli A R, Marra M, Giugliano D. The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes care 2011; 34: 697-702. [DOI:10.2337/dc10-1949]
23. Ceriello A, Standl E, Catrinoiu D, Itzhak B, Lalic N M, Rahelic D, et al. Issues of cardiovascular risk management in people with diabetes in the COVID-19 era. Diabetes Care 2020a; 43: 1427-1432. [DOI:10.2337/dc20-0941]
24. Ceriello A, Stoian A P, Rizzo M. COVID-19 and diabetes management: What should be considered? Diabetes Res Clin Pract 2020b; 163. [DOI:10.1016/j.diabres.2020.108151]
25. Chamarthi B, Ezrokhi M, Rutty D, Cincotta A H. Impact of bromocriptine-QR therapy on cardiovascular outcomes in type 2 diabetes mellitus subjects on metformin. Postgrad Med 2016; 128: 761-769. [DOI:10.1080/00325481.2016.1243003]
26. Chamarthi B, Gaziano J M, Blonde L, Vinik A, Scranton R E, Ezrokhi M, et al. Timed bromocriptine-QR therapy reduces progression of cardiovascular disease and dysglycemia in subjects with well-controlled type 2 diabetes mellitus. J Diabetes Res 2015; 2015. [DOI:10.1155/2015/157698]
27. Chan J F-W, Chik K K-H, Yuan S, Yip C C-Y, Zhu Z, Tee K-M, et al. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res 2017; 141: 29-37. [DOI:10.1016/j.antiviral.2017.02.002]
28. Chang Y-S, Ko B-H, Ju J-C, Chang H-H, Huang S-H, Lin C-W. SARS unique domain (SUD) of severe acute respiratory syndrome coronavirus induces NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation. Int J Mol Sci 2020; 21: 317-319. [DOI:10.3390/ijms21093179]
29. Chaudhuri A, Umpierrez G E. Oxidative stress and inflammation in hyperglycemic crises and resolution with insulin: implications for the acute and chronic complications of hyperglycemia. J Diabetes Complications 2012; 26: 257. [DOI:10.1016/j.jdiacomp.2012.04.016]
30. Cheema A K, Kaur P, Fadel A, Younes N, Zirie M, Rizk N M. Integrated datasets of proteomic and metabolomic biomarkers to predict its impacts on comorbidities of type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2020; 13: 2409. [DOI:10.2147/DMSO.S244432]
31. Chen H-Y, Huang J-Y, Siao W-Z, Jong G-P. The association between SGLT2 inhibitors and new-onset arrhythmias: a nationwide population-based longitudinal cohort study. Cardiovasc Diabetol 2020a; 19: 1-8. [DOI:10.1186/s12933-020-01048-x]
32. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The lancet 2020b; 395: 507-513. [DOI:10.1016/S0140-6736(20)30211-7]
33. Chen W-R, Shen X-Q, Zhang Y, Chen Y-D, Hu S-Y, Qian G, et al. Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction. Endocrine 2016; 52: 516-526. [DOI:10.1007/s12020-015-0798-0]
34. Chen Y, Yang D, Cheng B, Chen J, Peng A, Yang C, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes care 2020c; 43: 1399-1407. [DOI:10.2337/dc20-0660]
35. Cheng F, He M, Jung J U, Lu C, Gao S-J. Suppression of Kaposi’s sarcoma-associated herpesvirus infection and replication by 5′-AMP-activated protein kinase. J Virol 2016; 90: 6515-6525. [DOI:10.1128/JVI.00624-16]
36. Chisholm-Burns M A, Schwinghammer T L, Malone P M, Kolesar J M, Lee K C, Bookstaver P B. Pharmacotherapy principles and practice: McGraw Hill Professional, 2019.
37. Control D, Group C T R. Hypoglycemia in the diabetes control and complications trial. Diabetes 1997; 46: 271-286. [DOI:10.2337/diab.46.2.271]
38. Cory T J, Emmons R S, Yarbro J R, Davis K L, Pence B D. Metformin suppresses monocyte immunometabolic activation by SARS-CoV-2 spike protein subunit 1. Front Immunol 2021a; 12: 733921. [DOI:10.3389/fimmu.2021.733921]
39. Cory T J, Emmons R S, Yarbro J R, Davis K L, Pence B D. Metformin suppresses monocyte immunometabolic activation by SARS-CoV-2 spike protein subunit 1. Front Immunol 2021b: 4785. [DOI:10.1101/2021.05.27.445991]
40. Cowie M R, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 2020; 17: 761-772. [DOI:10.1038/s41569-020-0406-8]
41. Crouse A B, Grimes T, Li P, Might M, Ovalle F, Shalev A. Metformin use is associated with reduced mortality in a diverse population with COVID-19 and diabetes. Front Endocrinol 2021: 1081. [DOI:10.1101/2020.07.29.20164020]
42. Cui W, Zhang S, Cai Z, Hu X, Zhang R, Wang Y, et al. The antidiabetic agent glibenclamide protects airway hyperresponsiveness and inflammation in mice. Inflammation 2015; 38: 835-845. [DOI:10.1007/s10753-014-9993-z]
43. Cure E C C M. Comment on: “High released lactate by epicardial fat from coronary artery disease patients is reduced by dapagliflozin treatment”. Atherosclerosis 2020; 292, 60-69. [DOI:10.1016/j.atherosclerosis.2019.11.016]
44. Cure E, Cure M C. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes and Metabolic Syndrome: Clinical Research and Reviews 2020; 14: 405-406. [DOI:10.1016/j.dsx.2020.04.024]
45. Dalan R, Ang L W, Tan W Y, Fong S-W, Tay W C, Chan Y-H, et al. The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: an observational study. Eur Heart J Cardiovasc Pharmacother 2021; 7: e48-e51. [DOI:10.1093/ehjcvp/pvaa098]
46. Dandona P, Aljada A, Mohanty P, Ghanim H, Bandyopadhyay A, Chaudhuri A. Insulin suppresses plasma concentration of vascular endothelial growth factor and matrix metalloproteinase-9. Diabetes care 2003; 3310-3314. [DOI:10.2337/diacare.26.12.3310]
47. Dandona P, Ghanim H. Diabetes, obesity, COVID-19, Insulin, and other antidiabetes drugs. Diabetes care 2021; 44: 1929-1933. [DOI:10.2337/dci21-0003]
48. Darwish I, Mubareka S, Liles W C. Immunomodulatory therapy for severe influenza. Expert Rev Anti Infect Ther 2011; 9: 807-822. [DOI:10.1586/eri.11.56]
49. Darwish I M, S.; Liles, W.C. Immunomodulatory therapy for severe influenza. Expert Rev Anti-Infect Ther 2011; 9: 807-822. [DOI:10.1586/eri.11.56]
50. Davidson M A, Mattison D R, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Critical reviews in toxicology 2018; 48: 52-108. [DOI:10.1080/10408444.2017.1351420]
51. Donath M Y. Glucose or insulin, which is the culprit in patients with covid-19 and diabetes? Cell Metabolism 2021; 33: 2-4. [DOI:10.1016/j.cmet.2020.11.015]
52. Dror E, Dalmas E, Meier D T, Wueest S, Thévenet J, Thienel C, et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol 2017; 18: 283-292. [DOI:10.1038/ni.3659]
53. Erem C O H, Nuhoglu I, Deger O, Civan N, Ersoz H O. Comparison of effects of gliclazide, metformin and pioglitazone monotherapies on glycemic control and cardiovascular risk factors in patients with newly diagnosed uncontrolled type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2014; 122: 295-302. [DOI:10.1055/s-0034-1370989]
54. Fadini GP M M, Longato E, et al. Exposure to dipeptidylpeptidase 4 inhibitors and COVID-19 among people with type 2 diabetes: a case-control study. Diabetes Obes Metab 2020; 22: 1946-1950. [DOI:10.1111/dom.14097]
55. Fandiño J, Toba L, González-Matías L C, Diz-Chaves Y, Mallo F. GLP-1 receptor agonist ameliorates experimental lung fibrosis. Sci Rep 2020; 10: 1-15. [DOI:10.1038/s41598-020-74912-1]
56. Fernandez-Fernandez B, D’Marco L, Górriz J L, Jacobs-Cacha C, Kanbay M, Luis-Lima S, et al. Exploring sodium glucose co-transporter-2 (SGLT2) inhibitors for organ protection in COVID-19. J Clin Med 2020; 9: 2030. [DOI:10.3390/jcm9072030]
57. Filgueiras L R, Capelozzi V L, Martins J O, Jancar S. Sepsis-induced lung inflammation is modulated by insulin. BMC pulmonary medicine 2014; 14: 1-8. [DOI:10.1186/1471-2466-14-177]
58. Finfer S, Chittock D, Yu-Shuo S. Intensive versus Conventional Glucose Control in Critically Ill Patients. n engl j med. 2009; 36013360 (26): 1283-1297. [DOI:10.1056/NEJMoa0810625]
59. Gao M H Z, Zheng Y, Zeng Y, Shen X, Zhong D, He F. Peroxisome proliferator activated receptor c agonist troglitazone inhibits high mobility group box 1 expression in endothelial cells via suppressing transcriptional activity of nuclear factor jB and activator protein 1. Shock 2011; 36: 228-234. [DOI:10.1097/SHK.0b013e318225b29a]
60. Gao Y, Liu T, Zhong W, Liu R, Zhou H, Huang W, et al. Risk of metformin in patients with type 2 diabetes with COVID-19: a preliminary retrospective report. Clin Transl Res 2020; 13: 1055-1059. [DOI:10.1111/cts.12897]
61. Gaziano J M, Cincotta A H, O’Connor C M, Ezrokhi M, Rutty D, Ma Z, et al. Randomized clinical trial of quick-release bromocriptine among patients with type 2 diabetes on overall safety and cardiovascular outcomes. Diabetes care 2010; 33: 1503-1508. [DOI:10.2337/dc09-2009]
62. Gaziano J M, Cincotta A H, Vinik A, Blonde L, Bohannon N, Scranton R. Effect of bromocriptine-QR (a quick-release formulation of bromocriptine mesylate) on major adverse cardiovascular events in type 2 diabetes subjects. J Am Heart Assoc 2012; 1: e002279. [DOI:10.1161/JAHA.112.002279]
63. Ghanim H, Korzeniewski K, Sia C L, Abuaysheh S, Lohano T, Chaudhuri A, et al. Suppressive effect of insulin infusion on chemokines and chemokine receptors. Diabetes care 2010; 33: 1103-1108. [DOI:10.2337/dc09-2193]
64. Górriz J L, Navarro-González J F, Ortiz A, Vergara A, Nunez J, Jacobs-Cachá C, et al. Sodium-glucose cotransporter 2 inhibition: towards an indication to treat diabetic kidney disease. Nephrol Dial Transplant 2020; 35: i13-i23. [DOI:10.1093/ndt/gfz237]
65. Goyal P, Choi J J, Pinheiro L C, Schenck E J, Chen R, Jabri A, et al. Clinical characteristics of Covid-19 in New York city. N Engl J Med 2020; 382: 2372-2374. [DOI:10.1056/NEJMc2010419]
66. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. Jama 2020; 323: 1574-1581. [DOI:10.1001/jama.2020.5394]
67. Groop L C, Bonadonna R C, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 1989; 84: 205-213. [DOI:10.1172/JCI114142]
68. Group A t C C R i D S. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358: 2545-2559. [DOI:10.1056/NEJMoa0802743]
69. Grzegorowska O, Lorkowski J. Possible correlations between atherosclerosis, acute coronary syndromes and COVID-19. J Clin Med 2020; 9: 3746. [DOI:10.3390/jcm9113746]
70. Gupta R, Ghosh A, Singh A K, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr 2020; 14: 211-212. [DOI:10.1016/j.dsx.2020.04.023]
71. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 2020; 9: 1123-1130. [DOI:10.1080/22221751.2020.1770129]
72. Hariyanto T I, Kurniawan A. Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: a systematic review, meta-analysis, and meta-regression. Journal of Diabetes & Metabolic Disorders 2021; 20: 543-550. [DOI:10.1007/s40200-021-00777-4]
73. Heerspink H J, Perco P, Mulder S, Leierer J, Hansen M K, Heinzel A, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 2019; 62: 1154-1166. [DOI:10.1007/s00125-019-4859-4]
74. Hill J R, Coll R C, Sue N, Reid J C, Dou J, Holley C L, et al. Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. Chem Med Chem 2017; 12: 1449-1457. [DOI:10.1002/cmdc.201700270]
75. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell 2020; 181: 271-280. e8. [DOI:10.1016/j.cell.2020.02.052]
76. Holman N, Knighton P, Kar P, O’Keefe J, Curley M, Weaver A, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol 2020; 8: 823-833. [DOI:10.1016/S2213-8587(20)30271-0]
77. Horio T S M, Takamisawa I, Suzuki K, Hiuge A, Yoshimasa Y, Kawano Y. Pioglitazone-induced insulin sensitization improves vascular endothelial function in nondiabetic patients with essential hypertension. Am J Hypertens 2005; 18: 1626-1630. [DOI:10.1016/j.amjhyper.2005.02.003]
78. Huang I, Pranata R, Lim M A, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis 2020; 14:1753466620937175. [DOI:10.1177/1753466620937175]
79. Iacobellis G. COVID-19 and diabetes: can DPP4 inhibition play a role? Diabetes Res Clin Pract 2020; 162. [DOI:10.1016/j.diabres.2020.108125]
80. Inzucchi SE B R, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2012; 55: 1577-1596. [DOI:10.1007/s00125-012-2534-0]
81. Iqbal A, Prince L R, Novodvorsky P, Bernjak A, Thomas M R, Birch L, et al. Effect of hypoglycemia on inflammatory responses and the response to low-dose endotoxemia in humans. J Clin Endocrinol Metab 2019; 104: 1187-1199. [DOI:10.1210/jc.2018-01168]
82. Israelsen S B, Pottegård A, Sandholdt H, Madsbad S, Thomsen R W, Benfield T. Comparable COVID-19 outcomes with current use of GLP-1 receptor agonists, DPP-4 inhibitors or SGLT-2 inhibitors among patients with diabetes who tested positive for SARS-CoV-2. Diabetes, Obesity and Metabolism2021; 23: 1397-1401. [DOI:10.1111/dom.14329]
83. Izzi-Engbeaya C, Distaso W, Amin A, Yang W, Idowu O, Kenkre J S, et al. Severe COVID-19 and diabetes-A retrospective cohort study from three London Teaching Hospitals. medRxiv 2020. [DOI:10.1101/2020.08.07.20160275]
84. Jacob S, Hauer B, Becker R, Artzner S, Grauer P, Löblein K, et al. Lipolysis in skeletal muscle is rapidly regulated by low physiological doses of insulin. Diabetologia 1999; 42: 1171-1174. [DOI:10.1007/s001250051288]
85. Ji M-H, Jiao-Jiao Y, Lin-Sha J, Zhu S-H, Yang J-J. Glibenclamide pretreatment attenuates acute lung injury by inhibiting the inflammatory responses and oxidative stress in a polymicrobial sepsis animal model. J Educ Perioper Med 2014; 1: 36. [DOI:10.24015/JAPM.2014.0006]
86. Jin T, Liu M. Letter to the editor: Comment on GLP-1-based drugs and COVID-19 treatment. Acta Pharmacol Sin 2020; 10: 1249. [DOI:10.1016/j.apsb.2020.05.006]
87. Kahkoska A R, Abrahamsen T J, Alexander G C, Bennett T D, Chute C G, Haendel M A, et al. Association Between Glucagon-Like Peptide 1 Receptor Agonist and Sodium-Glucose Cotransporter 2 Inhibitor Use and COVID-19 Outcomes. Diabetes Care 2021; 44: 1564-1572. [DOI:10.2337/dc21-0065]
88. Kahn N N, Bauman W A, Hatcher V B, Sinha A K. Inhibition of platelet aggregation and the stimulation of prostacyclin synthesis by insulin in humans. Am J Physiol Heart Circ Physiol 1993;265: H2160-H2167. [DOI:10.1152/ajpheart.1993.265.6.H2160]
89. Kalbhande J G, Kuldeep V. Use of Insulin in treatment of COVID-19: A proposal to explore feasibility. Journal of Medical Science And clinical Research 2020; 8: 628-634. https://dx.doi.org/10.18535/jmscr/v8i7.103
90. Kamath V, Jones C N, Yip J C, Varasteh B B, Cincotta A H, Reaven G M, et al. Effects of a quick-release form of bromocriptine (Ergoset) on fasting and postprandial plasma glucose, insulin, lipid, and lipoprotein concentrations in obese nondiabetic hyperinsulinemic women. Diabetes Care 1997; 20: 1697-1701. [DOI:10.2337/diacare.20.11.1697]
91. Kan C, Zhang Y, Han F, Xu Q, Ye T, Hou N, et al. Mortality risk of antidiabetic agents for type 2 diabetes with COVID-19: a systematic review and meta-analysis. Front Endocrinol 2021: 1158. [DOI:10.3389/fendo.2021.708494]
92. Kato F, Ishida Y, Oishi S, Fujii N, Watanabe S, Vasudevan S G, et al. Novel antiviral activity of bromocriptine against dengue virus replication. Antiviral research 2016; 131: 141-147. [DOI:10.1016/j.antiviral.2016.04.014]
93. Kawasaki T, Chen W, Htwe Y M, Tatsumi K, Dudek S M. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2018; 315: L834-L845. [DOI:10.1152/ajplung.00031.2018]
94. Kewcharoenwong C, Rinchai D, Utispan K, Suwannasaen D, Bancroft G J, Ato M, et al. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection. Sci. Rep 2013; 3: 1-8. [DOI:10.1038/srep03363]
95. Khunti K, Knighton P, Zaccardi F, Bakhai C, Barron E, Holman N, et al. Prescription of glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: a nationwide observational study in England. Lancet Diabetes Endocrinol 2021; 9: 293-303. [DOI:10.1016/S2213-8587(21)00050-4]
96. Kim M, Platt M J, Shibasaki T, Quaggin S E, Backx P H, Seino S, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med 2013; 19: 567-575. [DOI:10.1038/nm.3128]
97. Kim M K, Jeon J-H, Kim S-W, Moon J S, Cho N H, Han E, et al. The clinical characteristics and outcomes of patients with moderate-to-severe coronavirus disease 2019 infection and diabetes in Daegu, South Korea. Diabetes Metab J 2020; 44: 602-613. [DOI:10.4093/dmj.2020.0146]
98. Kolb H, Kempf K, Röhling M, Martin S. Insulin: too much of a good thing is bad. BMC medicine 2020; 18: 1-12. [DOI:10.1186/s12916-020-01688-6]
99. Komajda M G J, Biswas N, Jones N P. Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in Diabetes (RECORD): study design and protocol. Diabetologia 2005; 48: 1726-1735. [DOI:10.1007/s00125-005-1869-1]
100. Kosinski C, Zanchi A, Wojtusciszyn A. Diabetes and COVID-19 infection. Rev Med Suisse 2020; 16: 939-943. [DOI:10.53738/REVMED.2020.16.692.0939]
101. Kothari V, Galdo J A, Mathews S T. Hypoglycemic agents and potential anti-inflammatory activity. Journal of inflammation research 2016; 9: 27. [DOI:10.2147/JIR.S86917]
102. Krysiak R, Okopien B. Different effects of cabergoline and bromocriptine on metabolic and cardiovascular risk factors in patients with elevated prolactin levels. Basic Clin Pharmacol Toxicol 2015; 116: 251-256. [DOI:10.1111/bcpt.12307]
103. Krysiak R, Samborek M, Stojko R. Anti-inflammatory effects of bromocriptine in a patient with autoimmune polyglandular syndrome type 2. Neuroendocrinol Lett 2014; 35.
104. Kumar V, Aithal S, Baleed S, Patil U. Bromocriptine, a dopamine (d2) receptor agonist, used alone and in combination with glipizide in sub-therapeutic doses to ameliorate hyperglycaemia. J Clin Diagn Res 2013; 7: 1904-1907.
105. Lambert G W, Straznicky N E, Lambert E A, Dixon J B, Schlaich M P. Sympathetic nervous activation in obesity and the metabolic syndrome-causes, consequences and therapeutic implications. Pharmacology & therapeutics 2010; 126: 159-172. [DOI:10.1016/j.pharmthera.2010.02.002]
106. Lamkanfi M, Mueller J L, Vitari A C, Misaghi S, Fedorova A, Deshayes K, et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 2009; 187: 61-70. [DOI:10.1083/jcb.200903124]
107. Lee J H. Potential therapeutic effect of glucagon-like peptide-1 receptor agonists on COVID-19-induced pulmonary arterial hypertension. Medical hypotheses 2022; 158: 110739. [DOI:10.1016/j.mehy.2021.110739]
108. Lee Y-S, Jun H-S. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm 2016; 2016. [DOI:10.1155/2016/3094642]
109. Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab 2020; 22: 1935-1941. [DOI:10.1111/dom.14057]
110. Li K W-L C, Perlman S, et al. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis 2016; 213: 712-722. [DOI:10.1093/infdis/jiv499]
111. Li L, Konishi Y, Morikawa T, Zhang Y, Kitabayashi C, Kobara H, et al. Effect of a SGLT2 inhibitor on the systemic and intrarenal renin-angiotensin system in subtotally nephrectomized rats. J pharmacol sci 2018; 137: 220-223. [DOI:10.1016/j.jphs.2017.10.006]
112. Li S-x, Li C, Pang X-r, Zhang J, Yu G-c, Yeo A J, et al. Metformin Attenuates Silica-Induced Pulmonary Fibrosis by Activating Autophagy via the AMPK-mTOR Signaling Pathway. Front pharmacol 2021: 2010. [DOI:10.3389/fphar.2021.719589]
113. Li W, Cui M, Wei Y, Kong X, Tang L, Xu D. Inhibition of the Expression of TGF-β1 and CTGF in Human Mesangial Cells byExendin-4, a Glucagon-like Peptide-1Receptor Agonist. Cell Physiol Biochem 2012; 30: 749-757. [DOI:10.1159/000341454]
114. Lim MA P R, Huang I, Yonas E, Soeroto AY, Supriyadi R. Multiorgan failure with emphasis on acute kidney injury and severity of COVID-19: systematic review and meta-analysis. Can J Kidney Heal Dis 2020; 7: 7-11. [DOI:10.1177/2054358120938573]
115. Lim S, Bae J H, Kwon H-S, Nauck M A. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol 2021; 17: 11-30. [DOI:10.1038/s41574-020-00435-4]
116. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020; 55: 102763. [DOI:10.1016/j.ebiom.2020.102763]
117. Liu X M T, Chen W, Ye S. Comparison of antidiabetic medications during the treatment of atherosclerosis in T2DM patients. Mediators Inflamm 2017; 55. [DOI:10.1155/2017/5032708]
118. Longo M, Caruso P, Maiorino M I, Bellastella G, Giugliano D, Esposito K. Treating type 2 diabetes in COVID-19 patients: the potential benefits of injective therapies. Cardiovascular Diabetology 2020; 19: 1-5. [DOI:10.1186/s12933-020-01090-9]
119. Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 2013; 500: 227-231. [DOI:10.1038/nature12328]
120. Luo P, Qiu L, Liu Y, Liu X-l, Zheng J-l, Xue H-y, et al. Metformin treatment was associated with decreased mortality in COVID-19 patients with diabetes in a retrospective analysis. Am J Trop Med Hyg 2020; 103: 69. [DOI:10.4269/ajtmh.20-0375]
121. Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol 2020; 11: 191. [DOI:10.3389/fendo.2020.00191]
122. Makdissi A G H, Vora M, Green K, Abuaysheh S, Chaudhuri A et al Sitagliptin exerts an antinflammatory action. J Clin Endocrinol Metab 2012; 97: 3333-3341. [DOI:10.1210/jc.2012-1544]
123. Malhotra A, Hepokoski M, McCowen K C, Shyy J Y. ACE2, metformin, and COVID-19. Iscience 2020; 23: 101425. [DOI:10.1016/j.isci.2020.101425]
124. Marfella R, Di Filippo C, Portoghese M, Ferraraccio F, Rizzo M R, Siniscalchi M, et al. Tight glycemic control reduces heart inflammation and remodeling during acute myocardial infarction in hyperglycemic patients. J Am Coll Cardiol 2009; 53: 1425-1436. [DOI:10.1016/j.jacc.2009.01.041]
125. Martin-Montalvo A, Mercken E M, Mitchell S J, Palacios H H, Mote P L, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nat Commun 2013; 4: 1-9. [DOI:10.1038/ncomms3192]
126. Martin B, Maudsley S, White C M, Egan J M. Hormones in the naso-oropharynx: endocrine modulation of taste and smell. Trends Endocrinol Metab 2009; 20: 163-170. [DOI:10.1016/j.tem.2009.01.006]
127. Mazidi M, Karimi E, Rezaie P, Ferns G A. Treatment with GLP1 receptor agonists reduce serum CRP concentrations in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Complications 2017; 31: 1237-1242. [DOI:10.1016/j.jdiacomp.2016.05.022]
128. McCormack F X, Whitsett J A. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. The Journal of clinical investigation 2002; 109: 707-712. [DOI:10.1172/JCI0215293]
129. Mei J, Sun J, Wu J, Zheng X. Liraglutide suppresses TNF-α-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. Am J Transl Res 2019; 11: 4800.
130. Menon R, Otto E A, Sealfon R, Nair V, Wong A K, Theesfeld C L, et al. SARS-CoV-2 receptor networks in diabetic and COVID-19-associated kidney disease. Kidney international 2020; 98: 1502-1518. [DOI:10.1016/j.kint.2020.09.015]
131. Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 1999; 403: 261-280. https://doi.org/10.1002/(SICI)1096-9861(19990111)403:2<261::AID-CNE8>3.0.CO;2-5 [DOI:10.1002/(SICI)1096-9861(19990111)403:23.0.CO;2-5]
132. Mirabelli M, Chiefari E, Puccio L, Foti D P, Brunetti A. Potential benefits and harms of novel antidiabetic drugs during COVID-19 crisis. I Int J Environ Res Public Health 2020; 17: 3664. [DOI:10.3390/ijerph17103664]
133. Mirani M, Favacchio G, Carrone F, Betella N, Biamonte E, Morenghi E, et al. Impact of comorbidities and glycemia at admission and dipeptidyl peptidase 4 inhibitors in patients with type 2 diabetes with COVID-19: a case series from an academic hospital in Lombardy, Italy. Diabetes Care 2020; 43: 3042-3049. [DOI:10.2337/dc20-1340]
134. Morimoto C S S. The structure and function of CD26 in the T-cell immune response. Immunol Rev 1998; 161: 55-70. [DOI:10.1111/j.1600-065X.1998.tb01571.x]
135. Mortada Y, Khojasteh K, Zarei M, Mansouri A, Jorjani M. How nitric oxide increases in diabetic morphine tolerated male rats. Iran J Pharm Res 2017; 16: 630.
136. Mudaliar S, Henry R R. Effects of incretin hormones on β-cell mass and function, body weight, and hepatic and myocardial function. Am J Med 2010; 123: S19-S27. [DOI:10.1016/j.amjmed.2009.12.006]
137. Müller T D, Finan B, Bloom S, D’Alessio D, Drucker D J, Flatt P, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30: 72-130. [DOI:10.1016/j.molmet.2019.09.010]
138. Nissen SE N S, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, De Larochelli_ere R, Staniloae CS, Mavromatis K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 2008; 299: 1561-1573. [DOI:10.1001/jama.299.13.1561]
139. Nomoto H K K, Miyoshi H, Kameda H, Cho KY, Nakamura A et al Effects of 50 mg vildagliptin twice daily vs 50g sitagliptin once daily on blood glucose fluctuations evaluated by long-term self-monitoring of blood glucose. Endocr J 2017; 64: 417-424. [DOI:10.1507/endocrj.EJ16-0546]
140. Oda K, Yatera K, Izumi H, Ishimoto H, Yamada S, Nakao H, et al. Profibrotic role of WNT10A via TGF-β signaling in idiopathic pulmonary fibrosis. Respir Res 2016; 17: 1-14. [DOI:10.1186/s12931-016-0357-0]
141. Orioli L, Servais T, Belkhir L, Laterre P-F, Thissen J-P, Vandeleene B, et al. Clinical characteristics and short-term prognosis of in-patients with diabetes and COVID-19: a retrospective study from an academic center in Belgium. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2021; 15: 149-157. [DOI:10.1016/j.dsx.2020.12.020]
142. P.A. Sarafidis P C S, P.I. Georgianos, A.N. Saratzis, A.N. Lasaridis. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: A meta-analysis. Am. J. Kidney Dis 2010; 55: 835-847. [DOI:10.1053/j.ajkd.2009.11.013]
143. Pal R, Bhadada S K. Should anti-diabetic medications be reconsidered amid COVID-19 pandemic? Diabetes Res Clin Pract 2020; 163. [DOI:10.1016/j.diabres.2020.108146]
144. Palermo N E, Sadhu A R, McDonnell M E. Diabetic ketoacidosis in COVID-19: unique concerns and considerations. J Clin Endocrinol Metab 2020; 105: 2819-2829. [DOI:10.1210/clinem/dgaa360]
145. Pascal KE C C, Mujica AO, et al. pre-and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci U S A 2015; 112: 8738-8743. [DOI:10.1073/pnas.1510830112]
146. Patoulias D, Boulmpou A, Imprialos K, Stavropoulos K, Papadopoulos C, Doumas M. Meta-analysis evaluating the risk of respiratory tract infections and acute respiratory distress syndrome with glucagon-like peptide-1 receptor agonists in cardiovascular outcome trials: Useful implications for the COVID-19 pandemic. Revista Clínica Española (English Edition) 2021. [DOI:10.1016/j.rceng.2021.04.002]
147. Petrilli C M, Jones S A, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. Bmj 2020; 369. [DOI:10.1136/bmj.m1966]
148. Philipose Z, Smati N, Wong C S J, Aspey K, Mendall M. Obesity, old age, and frailty are the true risk factors for COVID-19 mortality and not chronic disease or ethnicity. MedRxiv 2020. [DOI:10.1101/2020.08.12.20156257]
149. Piotrowski K, Becker M, Zugwurst J, Biller-Friedmann I, Spoettl G, Greif M, et al. Circulating concentrations of GLP-1 are associated with coronary atherosclerosis in humans. Cardiovasc Diabetol 2013; 12: 1-5. [DOI:10.1186/1475-2840-12-117]
150. Pompermayer K, Souza D G, Lara G G, Silveira K D, Cassali G D, Andrade A A, et al. The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats. Kidney international 2005; 67: 1785-1796. [DOI:10.1111/j.1523-1755.2005.00276.x]
151. Prigeon RL K S, Porte D Jr. Effect of troglitazone on B cell function, insulin sensitivity, and glycemic control in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab. 1998; 83: 819-823. [DOI:10.1210/jc.83.3.819]
152. Rahman M M, Saha T, Islam K J, Suman R H, Biswas S, Rahat E U, et al. Virtual screening, molecular dynamics and structure-activity relationship studies to identify potent approved drugs for Covid-19 treatment. J Biomol Struct Dyn 2021; 39: 6231-6241. [DOI:10.1080/07391102.2020.1794974]
153. Rakhmat I I, Kusmala Y Y, Handayani D R, Juliastuti H, Nawangsih E N, Wibowo A, et al. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19)-a systematic review, meta-analysis, and meta-regression. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2021; 15: 777-782. [DOI:10.1016/j.dsx.2021.03.027]
154. Rayman G, Lumb A, Kennon B, Cottrell C, Nagi D, Page E, et al. Guidance on the management of Diabetic Ketoacidosis in the exceptional circumstances of the COVID-19 pandemic. Diabetic Medicine 2020; 37: 1214-1216. [DOI:10.1111/dme.14328]
155. Riahi S, Sombra L R S, Lo K B, Chacko S R, Neto A G M, Azmaiparashvili Z, et al. Insulin use, diabetes control, and outcomes in patients with COVID-19. Endocrine Research 2021; 46: 45-50. [DOI:10.1080/07435800.2020.1856865]
156. Rizvi A A, Stoian A P, Lessan N, Rizzo M. Endocrinology in the time of COVID-19: a rapid evolution of knowledge and care. Medicina 2021; 57: 805. [DOI:10.3390/medicina57080805]
157. Rogliani P, Matera M G, Calzetta L, Hanania N A, Page C, Rossi I, et al. Long-term observational study on the impact of GLP-1R agonists on lung function in diabetic patients. Respir Med 2019; 154: 86-92. [DOI:10.1016/j.rmed.2019.06.015]
158. Romaní-Pérez M, Outeiriño-Iglesias V, Moya C M, Santisteban P, González-Matías L C, Vigo E, et al. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology 2015; 156: 3559-3569. [DOI:10.1210/en.2014-1685]
159. Romero-Gómez M, Diago M, Andrade R J, Calleja J L, Salmerón J, Fernández-Rodríguez C M, et al. Treatment of insulin resistance with metformin in naïve genotype 1 chronic hepatitis C patients receiving peginterferon alfa-2a plus ribavirin. Hepatology 2009; 50: 1702-1708. [DOI:10.1002/hep.23206]
160. Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol 2020; 16: 308-310. [DOI:10.1038/s41581-020-0284-7]
161. Rosak C, Petzoldt R, Wolf R, Reblin T, Dehmel B, Seidel D. Rosiglitazone plus metformin is effective and well tolerated in clinical practice: results from large observational studies in people with type 2 diabetes. Int J Clin Pract 2005; 59: 1131-1136. [DOI:10.1111/j.1368-5031.2005.00652.x]
162. Salem E S, Grobe N, Elased K M. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. Am J Physiol Renal Physiol 2014; 306: F629-F639. [DOI:10.1152/ajprenal.00516.2013]
163. Samuel S M, Varghese E, Büsselberg D. Therapeutic potential of metformin in COVID-19: reasoning for its protective role. Trends Microbiol 2021; 29: 894-907. [DOI:10.1016/j.tim.2021.03.004]
164. Sandooja R, Vura N V R K, Morocco M. Heightened ACE activity and unfavorable consequences in COVID-19 diabetic subjects. Int J Endocrinol 2020; 2020. [DOI:10.1155/2020/7847526]
165. Sarafidis P, Ferro C J, Morales E, Ortiz A, Malyszko J, Hojs R, et al. SGLT-2 inhibitors and GLP-1 receptor agonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the EURECA-m and the DIABESITY working groups of the ERA-EDTA. Nephrol Dial Transplant 2019; 34: 208-230. [DOI:10.1093/ndt/gfy407]
166. Saraiva F K, Sposito A C. Cardiovascular effects of glucagon-like peptide 1 (GLP-1) receptor agonists. Cardiovasc Diabetol 2014; 13: 1-11. [DOI:10.1186/s12933-014-0142-7]
167. Sardu C, D’Onofrio N, Balestrieri M L, Barbieri M, Rizzo M R, Messina V, et al. Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control? Diabetes care 2020; 43: 1408-1415. [DOI:10.2337/dc20-0723]
168. Sazgarnejad S, Yazdanpanah N, Rezaei N. Anti-inflammatory effects of GLP-1 in patients with COVID-19. Expert Rev Anti Infect Ther 2021: 1-9. [DOI:10.1080/14787210.2021.1964955]
169. Scheen A. Metformin and COVID-19: from cellular mechanisms to reduced mortality. Diabetes Metab 2020; 46: 423-426. [DOI:10.1016/j.diabet.2020.07.006]
170. Scheen A J. An update on the safety of SGLT2 inhibitors. Expert Opin Drug Saf 2019;18: 295-311. [DOI:10.1080/14740338.2019.1602116]
171. Šestan M, Marinović S, Kavazović I, Cekinović Đ, Wueest S, Wensveen T T, et al. Virus-induced interferon-γ causes insulin resistance in skeletal muscle and derails glycemic control in obesity. Immunity 2018; 49: 164-177. e6. [DOI:10.1016/j.immuni.2018.05.005]
172. Shah F A, Mahmud H, Gallego-Martin T, Jurczak M J, O’Donnell C P, McVerry B J. Therapeutic effects of endogenous incretin hormones and exogenous incretin-based medications in sepsis. J Clin Endocrinol Metab 2019; 104: 5274-5284. [DOI:10.1210/jc.2019-00296]
173. Shao S, Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacology & therapeutics 2020; 209: 107503. [DOI:10.1016/j.pharmthera.2020.107503]
174. Sharma S, Ray A, Sadasivam B. Metformin in COVID-19: a possible role beyond diabetes. Diabetes research and clinical practice 2020; 164: 108183. [DOI:10.1016/j.diabres.2020.108183]
175. Shiraki A, Oyama J-i, Komoda H, Asaka M, Komatsu A, Sakuma M, et al. The glucagon-like peptide 1 analog liraglutide reduces TNF-α-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis 2012; 221: 375-382. [DOI:10.1016/j.atherosclerosis.2011.12.039]
176. Si G, Tao Z, Wei W, Min X, Wang X-c, Chen Z-h. Glucagon like peptide-1 attenuates bleomycin-induced pulmonary fibrosis, involving the inactivation of NF-κB in mice. Int Immunopharmacol 2014; 22: 498-504. [DOI:10.1016/j.intimp.2014.07.010]
177. Silverii G A, Monami M, Cernigliaro A, Vigneri E, Guarnotta V, Scondotto S, et al. Are diabetes and its medications risk factors for the development of COVID-19? Data from a population-based study in Sicily. Nutr Metab Cardiovasc Dis 2021; 31: 396-398. [DOI:10.1016/j.numecd.2020.09.028]
178. Siu K L, Yuen K S, Castano-Rodriguez C, Ye Z W, Yeung M L, Fung S Y, et al. Severe acute respiratory syndrome Coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J 2019; 33: 8865-8877. [DOI:10.1096/fj.201802418R]
179. Sola D, Rossi L, Schianca G P C, Maffioli P, Bigliocca M, Mella R, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci 2015; 11: 840. [DOI:10.5114/aoms.2015.53304]
180. Solerte SB D A F, Trevisan R, et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicentre, case-control, retrospective, observational study. Diabetes Care 2020; 43: 2999- 3006. [DOI:10.2337/dc20-1521]
181. Sromova L, Busek P, Posova H, Potockova J, Skrha P, Andel M, et al. The effect of dipeptidyl peptidase-IV inhibition on circulating T cell subpopulations in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2016; 118: 183-192. [DOI:10.1016/j.diabres.2016.06.020]
182. Stoian A P, Banerjee Y, Rizvi A A, Rizzo M. Diabetes and the COVID-19 pandemic: how insights from recent experience might guide future management. Metab Syndr Relat Disord 2020a; 18: 173-175. [DOI:10.1089/met.2020.0037]
183. Stoian A P, Pricop-Jeckstadt M, Pana A, Ileanu B-V, Schitea R, Geanta M, et al. Death by SARS-CoV 2: a Romanian COVID-19 multi-centre comorbidity study. Sci Rep 2020b; 10: 1-11. [DOI:10.1038/s41598-020-78575-w]
184. Takai S, Yasumatsu K, Inoue M, Iwata S, Yoshida R, Shigemura N, et al. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. FASEB J 2015; 29: 2268-2280. [DOI:10.1096/fj.14-265355]
185. Toki S, Goleniewska K, Reiss S, Zhang J, Bloodworth M H, Stier M T, et al. Glucagon-like peptide 1 signaling inhibits allergen-induced lung IL-33 release and reduces group 2 innate lymphoid cell cytokine production in vivo. J Allergy Clin Immunol 2018; 142: 1515-1528. e8. [DOI:10.1016/j.jaci.2017.11.043]
186. Tsurutani Y, Omura M, Matsuzawa Y, Saito J, Higa M, Taniyama M, et al. Efficacy and safety of the dipeptidyl Peptidase-4 inhibitor Sitagliptin on atherosclerosis, β-cell function, and glycemic control in Japanese patients with type 2 diabetes mellitus who are treatment Naïve or poorly responsive to Antidiabetes agents: a multicenter, prospective observational, uncontrolled study. Cur The Res 2017; 84: 26-31. [DOI:10.1016/j.curtheres.2016.12.002]
187. Turner NA M R, Warburton P, O’Regan DJ, Ball SG, Porter KE. Mechanism of TNFalpha-induced IL-1alpha, IL-1beta and IL-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones. Cardiovasc Res 2007; 76: 81-90. [DOI:10.1016/j.cardiores.2007.06.003]
188. Vankadari N W J. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Micro & Infec 2020; 9: 601-604. [DOI:10.1080/22221751.2020.1739565]
189. Verma A K, Beg M M A, Bhatt D, Dev K, Alsahli M A, Rahmani A H, et al. Assessment and Management of Diabetic Patients During the COVID-19 Pandemic. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021; 14: 3131. [DOI:10.2147/DMSO.S285614]
190. Verma S, Jüni P, Mazer C D. Pump, pipes, and filter: do SGLT2 inhibitors cover it all? The Lancet 2019; 393: 3-5. [DOI:10.1016/S0140-6736(18)32824-1]
191. Viby N-E, Isidor M S, Buggeskov K B, Poulsen S S, Hansen J B, Kissow H. Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice. Endocrinology 2013; 154: 4503-4511. [DOI:10.1210/en.2013-1666]
192. Wang L, Liang J, Leung P S. The ACE2/Ang-(1-7)/Mas axis regulates the development of pancreatic endocrine cells in mouse embryos. PLoS One 2015; 10: e0128216. [DOI:10.1371/journal.pone.0128216]
193. Wargny M, Potier L, Gourdy P, Pichelin M, Amadou C, Benhamou P-Y, et al. Predictors of hospital discharge and mortality in patients with diabetes and COVID-19: updated results from the nationwide CORONADO study. Diabetologia 2021; 64: 778-794. [DOI:10.1007/s00125-020-05351-w]
194. Wei Y, Mojsov S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS letters 1995; 358: 219-224. [DOI:10.1016/0014-5793(94)01430-9]
195. Willemen MJ M-T A, Straus SM, Meyboom RH, Egberts TC, Leufkens HG. Use of dipeptidyl peptidase-4 inhibitors and the reporting of infections: a disproportionality analysis in the World Health Organization VigiBase. Diabetes Care 2011; 34: 369-374. [DOI:10.2337/dc10-1771]
196. Wright EM T E. The sodium/glucose cotransport family SLC5. Pflugers Arch 2004; 447: 510-518. [DOI:10.1007/s00424-003-1063-6]
197. Wu J, Huang J, Zhu G, Wang Q, Lv Q, Huang Y, et al. Elevation of blood glucose level predicts worse outcomes in hospitalized patients with COVID-19: a retrospective cohort study. BMJ Open Diabetes Res Care 2020a; 8: e001476. [DOI:10.1136/bmjdrc-2020-001476]
198. Wu L, Girgis C M, Cheung N W. COVID-19 and diabetes: insulin requirements parallel illness severity in critically unwell patients. Clinical Endocrinology 2020b; 93: 390-393. [DOI:10.1111/cen.14288]
199. Wu Z, McGoogan J M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama 2020; 323: 1239-1242. [DOI:10.1001/jama.2020.2648]
200. Xian H, Liu Y, Nilsson A R, Gatchalian R, Crother T R, Tourtellotte W G, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 2021; 54: 1463-1477. e11. [DOI:10.1016/j.immuni.2021.05.004]
201. Xie W, Wang L, Dai Q, Yu H, He X, Xiong J, et al. Activation of AMPK restricts coxsackievirus B3 replication by inhibiting lipid accumulation. J Mol Cell Cardiol 2015; 85: 155-167. [DOI:10.1016/j.yjmcc.2015.05.021]
202. Xie X S S, Yi Z, et al. Role of adipocyte mitochondria in inflammation, lipemia and insulin sensitivity in humans: effects of pioglitazone treatment. Int J Obes 2017. [DOI:10.1038/ijo.2017.192]
203. Xu J, Wei G, Wang J, Zhu J, Yu M, Zeng X, et al. Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. Laboratory Investigation 2019; 99: 577-587. [DOI:10.1038/s41374-018-0170-0]
204. Xun Y H, Zhang Y J, Pan Q C, Mao R C, Qin Y L, Liu H Y, et al. Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells. J Viral Hepat 2014; 21: 597-603. [DOI:10.1111/jvh.12187]
205. Yan H, Valdes A M, Vijay A, Wang S, Liang L, Yang S, et al. Role of drugs used for chronic disease management on susceptibility and severity of COVID19: a large case-control study. Clin Pharmacol Ther 2020; 108: 1185-1194. [DOI:10.1002/cpt.2047]
206. Yang J-K, Lin S-S, Ji X-J, Guo L-M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta diabetologica 2010; 47: 193-199. [DOI:10.1007/s00592-009-0109-4]
207. Yang Y, Cai Z, Zhang J. Insulin Treatment May Increase Adverse Outcomes in Patients With COVID-19 and Diabetes: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology 2021; 12. [DOI:10.3389/fendo.2021.696087]
208. Yaribeygi H, Katsiki N, Butler A E, Sahebkar A. Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug discovery today 2019; 24: 256-262. [DOI:10.1016/j.drudis.2018.08.005]
209. Yu B, Li C, Sun Y, Wang D W. Insulin treatment is associated with increased mortality in patients with COVID-19 and type 2 diabetes. Cell metabolism 2021; 33: 65-77. e2. [DOI:10.1016/j.cmet.2020.11.014]
210. Yudkin J S. Abnormalities of coagulation and fibrinolysis in insulin resistance: evidence for a common antecedent? Diabetes care 1999; 22: C25.
211. Zarei M, Sahebi Vaighan N, Ziai S A. Purinergic receptor ligands: the cytokine storm attenuators, potential therapeutic agents for the treatment of COVID-19. Immunopharmacology and Immunotoxicology 2021; 43: 633-643. [DOI:10.1080/08923973.2021.1988102]
212. Zhang B, Liu Z-Y, Li Y-Y, Luo Y, Liu M-L, Dong H-Y, et al. Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur J Pharm Sci 2011; 44: 573-579. [DOI:10.1016/j.ejps.2011.09.020]
213. Zhang B, Zhou X, Zhu C, Song Y, Feng F, Qiu Y, et al. Immune phenotyping based on the neutrophil-to-lymphocyte ratio and IgG level predicts disease severity and outcome for patients with COVID-19. Front Mol Biosci 2020; 7: 157. [DOI:10.3389/fmolb.2020.00157]
214. Zhang G, Lin X, Zhang S, Xiu H, Pan C, Cui W. A protective role of glibenclamide in inflammation-associated injury. Mediators Inflamm 2017; 2017. [DOI:10.1155/2017/3578702]
215. Zhang W-q, Tian Y, Chen X-m, Wang L-f, Chen C-c, Qiu C-m. Liraglutide ameliorates beta-cell function, alleviates oxidative stress and inhibits low grade inflammation in young patients with new-onset type 2 diabetes. Diabetol Metab Syndr 2018; 10: 1-8. [DOI:10.1186/s13098-018-0392-8]
216. Zhang WY S E, Permana PA, Reaven P D. Pioglitazone inhibits the expression of inflammatory cytokines from both monocytes and lymphocytes in patients with impaired glucose tolerance. Arterioscler Thromb Vasc Biol 2008; 28: 2312-8. [DOI:10.1161/ATVBAHA.108.175687]
217. Zhou F, Zhang Y, Chen J, Hu X, Xu Y. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol 2016; 791: 735-740. [DOI:10.1016/j.ejphar.2016.10.016]
218. Zhou J, Tan J. Diabetes patients with COVID-19 need better blood glucose management in Wuhan, China. Metabolism 2020; 107: 154216. [DOI:10.1016/j.metabol.2020.154216]
219. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020. [DOI:10.1056/NEJMoa2001017]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.