Volume 28, Issue 3 (September 2024)                   Physiol Pharmacol 2024, 28(3): 324-337 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Singh S, Sarma S, Kashyap A, Chakrabarti A. Alteration of melatonin receptor expression associated with melatonin-mediated amelioration of oxidative stress in the spleen of hyperthyroid mice. Physiol Pharmacol 2024; 28 (3) : 9
URL: http://ppj.phypha.ir/article-1-2282-en.html
Abstract:   (1024 Views)

Introduction: Excessive synthesis of thyroid hormone in hyperthyroidism is related to the imbalance of oxidative status in living organisms. Melatonin mediates its effects either directly through scavenging free radicals or indirectly through the activation of melatonin receptors (MT1 and MT2). The present study investigated the involvement of melatonin receptors in the melatonin-mediated attenuation of hyperthyroidism-induced oxidative stress in the spleen of laboratory mice.
Methods: The hyperthyroidism was induced by L-thyroxine (0.6µg/g B. wt.) supplementation. The experimental mice were supplemented with melatonin (25 µg/100g B. wt.) subcutaneously. Oxidative stress, melatonin receptor expression in the spleen tissues, and circulatory levels of thyroid hormone were determined. 
Results: L-thyroxine treatment caused a significant increase in serum T3 and T4 levels. Melatonin supplementation caused a significant decrease in serum T3 and T4 levels in L-thyroxine-treated mice. L-thyroxine treatment increased MDA levels and suppressed catalase and SOD enzyme activities. Melatonin treatment caused suppression of MDA levels and an increase in SOD and catalase activities. L-thyroxine treatment caused significant suppression in MT1 receptor expression and a significant increase in MT2 receptor expression. Melatonin supplementation significantly induced the MT2 receptor protein expression in the spleen tissues of experimental mice.
Conclusion: This study suggests that alterations in MT2 melatonin receptor expression may be associated with melatonin-mediated attenuation of oxidative stress in the spleen tissues of hyperthyroid mice.

Article number: 9
Full-Text [PDF 1688 kb]   (82 Downloads)    

References
1. Acharjee S, Singh S S. In-vivo thermal stress induces melatonin receptors and heat shock protein expression in the spleen of mice in a time and temperature dependent manner. J Stress Physiol Biochem 2023; 19(3): 125-142.
2. Ahmad R, Gupta S, Haldar C. Age dependent expression of melatonin membrane receptor (MT1, MT2) and its role in regulation of nitrosative stress in tropical rodent Funambulus pennanti. Free Radic Res 2012; 46(2): 194-203. [DOI:10.3109/10715762.2011.647690.]
3. Asayama K, Kato K. Oxidative muscular injury and its relevance to hyperthyroidism. Free Radic Biol Med 1990; 8: 293-303. [DOI:10.1016/0891-5849(90)90077-V]
4. Brix T H, Kyvik KO, Hegedus L. What is the evidence of genetic factors in the etiology of Graves’ disease? A brief review. Thyroid 1998; 8: 627–634. [DOI:10.1089/thy.1998.8.627]
5. Catala M D, Quay W B, Timiras P S. Effects of thyroid hormone on light/dark melatonin synthesis and release by young and maturing rat pineal glands in vitro. Int J Dev Neurosci 1988; 6(3): 285-288. [DOI:10.1016/0736-5748(88)90008-1]
6. Chainy G B, Sahoo D K. Hormones and oxidative stress: an overview. Free Redic Res 2020; 54(1): 1-26. [DOI:10.1080/10715762.2019.1702656]
7. Chattopadhyay S, Sahoo D K, Subudhi U, Chainy G B N. Differential expression profiles of antioxidant enzymes and glutathione redox status in hyperthyroid rats: A temporal analysis. Comp Biochem Physiol Part C 2007; 146: 383-391. [DOI:10.1016/j.cbpc.2007.04.010]
8. Costilla M, Macri Delbono R, Klecha A, Cremaschi G A, Barreiro Arcos M L. Oxidative stress produced by hyperthyroidism status induces the antioxidant enzyme transcription through the activation of the Nrf-2 factor in lymphoid tissues of Balb/c mice. Oxid Med Cell Longev 2019; 2019. [DOI:10.1155/2019/7471890]
9. Das K, Samanta L, Chainy G B. A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J Biochem Biophys 2000; 37: 201–204.
10. Dhabhar F S. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res 2014; 58: 193-210. [DOI:10.1007/s12026-014-8517-0]
11. El-Sokkary G H, Omar H M, Hassanein A F, Cuzzocrea S, Reiter R J. Melatonin reduces oxidative damage and increases survival of mice infected with Schistosoma mansoni. Free Radic Biol Med 2002; 32(4): 319-332. [DOI:10.1016/S0891-5849(01)00753-5]
12. Ghosh G, De K, Maity S, Bandyopadhyay D, Bhattacharya S, Reiter R J, et al. Melatonin protects against oxidative damage and restores expression of GLUT4 gene in the hyperthyroid rat heart. J Pineal Res 2007; 42(1): 71–82. [DOI:10.1111/j.1600-079X.2006.00386.x]
13. Ghosh H, Rai S, Manzar Md D, Pandi-Perumal S R, Brown G M, Reiter R J, Cardinali D P. Differential expression and interaction of melatonin and thyroid hormone receptors with estrogen receptor α improve ovarian functions in letrozole-induced rat polycystic ovary syndrome. Life Sci 2022; 295:120086. [DOI:10.1016/j.lfs.2021.120086]
14. Giavarotti S K A, Rodrigues L, Rodrigues T, Junqueira V B, Videla L A. Liver microsomal parameters related to oxidative stress and antioxidant systems in hyperthyroid rats subjected to acute lindane treatment. Free Radic Res 1998; 29(1): 35-42. [DOI:10.1080/10715769800300051]
15. Grisanti L A, Perez D M, Porter J E. Modulation of immune cell function by α1-adrenergic receptor activation. Curr Opin Solid ST M 2011; 67:113-138. [DOI:10.1016/B978-0-12-384921-2.00006-9]
16. Guerrero A, Pamplona R, Portero-Otin M, Barja G, LopezTorres M. Effect of thyroid status on lipid composition and peroxidation in the mouse liver. Free Radic Biol Med 1999; 26: 73-80. [DOI:10.1016/S0891-5849(98)00173-7]
17. Guria S, Bose M, Mondal J, Majumder N. Alteration of cytomorphology of mice peritoneal macrophages, spleen cell and histological analysis of liver and pancreas under eltroxin induced condition: A preliminary study of “Thyroid Diabetes”. GJLSBR 2015; 2395:115X.
18. Hadwan M H. New method for assessment of serum catalase activity. Indian J Sci Technol 2016; 9(4): 1-5. [DOI:10.17485/ijst/2016/v9i4/80499]
19. Ilardo M, dos Santos M C F, Beverborg N G, Ranjan M, Said M A, Veweij N, Harst P V D, Meer P V D, Leibold E A. An erythropoietin-independent mechanism of erythrocytic precursor proliferation underlies hypoxia tolerance in sea nomads. Front Physiol 2021; 12: 760851. [DOI:10.3389/fphys.2021.760851]
20. Jezek P, Hlavata L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell B 2005; 37: 2478–2503. [DOI:10.1016/j.biocel.2005.05.013]
21. Laskar P, Singh S S. Melatonin modulates thyroid hormones and splenocytes proliferation through mediation of its MT1 and MT2 receptors in hyperthyroid mice. Proc Zool Soc 2018; 71: 186-193. [DOI:10.1007/s12595-017-0244-9]
22. Leo S D, Lee S Y, Braverman LE. Hyperthyroidism. Lancet 2016; 2016388 (10047): 906-918. [DOI:10.1016/S0140-6736(16)00278-6]
23. Mogulkoc R, Baltaci A K, Oztekin E, Aydin L, Sivrikaya A. Melatonin prevents oxidant damage in various tissues of rats with hyperthyroidism. Life Sci 2006; 79(3): 311-315. [DOI:10.1016/j.lfs.2006.01.009]
24. Mullur R, Liu Y Y, Brent G A. Thyroid hormone regulation of metabolism. Physiol Rev 2014; 94(2): 355–382. [DOI:10.1152/physrev.00030.2013]
25. Niedowicz D M, Wang W X, Price D A, Nelson P T. Modulating thyroid hormone levels in adult mice: impact on behavior and compensatory brain changes. J Thyroid Res 2021; 2021. [DOI:10.1155/2021/9960188]
26. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351-358. [DOI:10.1016/0003-2697(79)90738-3]
27. Pereira B, Rosa L F, Safi D A, Bechara E J H, Curi R. Control of superoxide dismutase, catalase and glutathione peroxidase activities in rat lymphoid organs by thyroid hormones. J Endocrinol 1994; 140(1): 73–77.
28. Petrulea M, Muresan A, Duncea I. Oxidative stress and antioxidant status in hypo-and hyperthyroidism. Antioxidant enzyme 2012; 8:197-236. [DOI:10.5772/51018]
29. Ramadan H M, Taha N A, Ahmed H H. Melatonin enhances antioxidant defenses but could not ameliorate the reproductive disorders in induced hyperthyroidism model in male rats. Environ Sci Pollut Res Int 2021; 28:4790-4804. [DOI:10.1007/s11356-020-10682-7]
30. Rastogi S, Haldar C. Comparative effect of melatonin and quercetin in counteracting LPS induced oxidative stress in bone marrow mononuclear cells and spleen of Funambulus pennanti. Food Chem Toxicol 2018; 120: 243-252. [DOI:10.1016/j.fct.2018.06.062]
31. Reiter R J, Carneiro R C, Oh C S. Melatonin in relation to cellular antioxidative defense mechanisms. Horm Metab Res 1997; 29(8): 363-372. [DOI:10.1055/s-2007-979057]
32. Robinson M V, Obut T A, Melnikova E V, Trufakin V A. Parameters of cellular and humoral immunity in experimental hyperthyroidism and its correction. Bull Exp Biol Med 2014; 156(4): 473-476.
33. Rodriguez C, Mayo J C, Sainz R M, Antolín I, Herrera F, Martín V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004; 36(1): 1-9. [DOI:10.1046/j.1600-079X.2003.00092.x]
34. Sawant B U, Nadkarni G D, Thakare U R, Joseph L J, Rajan M G. Changes in lipid peroxidation and free radical scavengers in kidney of hypothyroid and hyperthyroid rats. Indian J Exp Biol 2003; 41(1): 1334-1337.
35. Sewerynek E, Wiktorska J, Lewinski A. Effects of melatonin on the oxidative stress induced by thyrotoxicosis in rats. Neuro Endocrinol lett 1999; 20: 157-161.
36. Shinohara R, Mano T, Nagasaka A, Hayashi R, Uchimura K, Nakano I, et al. Lipid peroxidation levels in rat cardiac muscle are affected by age and thyroid status. J Endocrinol 2000; 164(1): 97.
37. Singh S S, Deb A, Sutradhar S. Melatonin modulates melatonin MT2 receptor expression in splenic tissue and humoral immune response in mice. Biol Rhythm Res 2017; 48(3): 425-435. [DOI:10.1080/09291016.2016.1268330]
38. Singh S S, Laskar P, Acharjee S. Age-and sex-dependent effect of exogenous melatonin on expression pattern of melatonin receptor (MT1 and MT2) proteins in spleen of mice. Biol Rhythm Res 2015; 46(3): 403-415. [DOI:10.1080/09291016.2015.1020198]
39. Sinha A K. Colorimetric assay of catalase. Anal Biochem 1972; 47(2): 389-394. [DOI:10.1016/0003-2697(72)90132-7]
40. Sutradhar S, Deb A, Singh S S. Melatonin attenuates diabetes-induced oxidative stress in spleen and suppression of splenocyte proliferation in laboratory mice. Arch Physiol Biochem 2022; 128(5): 1401-1412. [DOI:10.1080/13813455.2020.1773506]
41. Taleux N, Guigas B, Dubouchaud H, Moreno M, Weitzel JM, Goglia F, et al. High expression of thyroid hormone receptors and mitochondrial glycerol-3-phosphate dehydrogenase in the liver is linked to enhanced fatty acid oxidation in Lou/C, a rat strain resistant to obesity. J Biol Chem 2008; 284: 4308–4316. [DOI:10.1074/jbc.M806187200]
42. Treeck O, Haldar C, Ortmann O. Antiestrogens modulate MT1 melatonin receptor expression in breast and ovarian cancer cell lines. Oncol Rep 2006; 15(1): 231-235. [DOI:10.3892/or.15.1.231]
43. Watanabe K, Iwatani Y, Hidaka Y, Watanabe M, Amino N. Long-term effects of thyroid hormone on lymphocyte subsets in spleens and thymuses of mice. J Endocrinol 1995; 42(5): 661-668. [DOI:10.1507/endocrj.42.661]
44. Wiersinga W M, Poppe K G, Effraimidis G. Hyperthyroidism: aetiology, pathogenesis, diagnosis, management, complications, and prognosis. Lancet Diabetes Endocrinol 2023; 11(4): 282-298. [DOI:10.1016/S2213-8587(23)00005-0]
45. Zhang M, Jiang W, Lu G, Wang R, Lv ZLi D. Insight into mouse models of hyperthyroidism. Front Endocrinol 2022b; 13: 929750. [DOI:10.3389/fendo.2022.929750]
46. Zhang X, Zhang L, Xia K, Dai J, Huang J, Wang Y, et al. Effects of dietary selenium on immune function of spleen in mice. J Funct Foods 2022a; 89: 104914. [DOI:10.1016/j.jff.2021.104914]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.