Volume 28, Issue 4 (December 2024)                   Physiol Pharmacol 2024, 28(4): 400-408 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassan A, Safuan S, Abdullah Z, Tan N J. Cholic acid enhanced hypercholesterol parameters in high cholesterol diet fed Sprague-Dawley rats. Physiol Pharmacol 2024; 28 (4) : 3
URL: http://ppj.phypha.ir/article-1-2296-en.html
Abstract:   (1155 Views)

Introduction: Hypercholesterolemia is a condition in which the blood contains elevated levels of low-density lipoprotein (LDL) and non-high-density lipoprotein (HDL). There are varieties of different diets used by different laboratories as a recipe for induction with varying levels of hypercholesterolemia. This study aims to investigate the role of cholic acids in enhancing hypercholesterolemia parameters in Sprague Dawley rats.
Methods: Nine Sprague Dawley rats (250 g ± 50 g BW) were used to investigate the most effective diet that is cost-effective for inducing hypercholesterolemia. The rats were randomly divided into 3 groups: normal diet (ND) (n=3), high cholesterol diet (HCD 1), a combination of 2% cholesterol and 0.5% cholic acid (n=3), and high HCD 2, a combination of 2% cholesterol and 30% ghee (n=3). After 4 weeks of feeding, blood samples were collected for lipid profiling, which included total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). The liver, kidney, and brain were removed for histopathological examination using hematoxylin and eosin (H&E) staining.
Results: The lipid profile measurements show significant differences between the HCD 1 group for total cholesterol, LDL cholesterol, non-HDL cholesterol, and total cholesterol/ HDL ratio compared to the normal group. HCD 2 shows no significant changes in lipid profiles compared to the normal group.
Conclusion: Cholic acid helps in the absorption of cholesterol and enhances the hypercholesterol parameters in diet-induced SD rats based on lipid profile analysis and histology of the liver and kidney.

Article number: 3
Full-Text [PDF 1052 kb]   (132 Downloads)    

References
1. Águila M B, Loureiro C C, Pinheiro A d R, Mandarim-de-Lacerda C A. Lipid metabolism in rats fed diets containing different types of lipids. Arquivos Brasileiros de Cardiologia 2002; 78: 32-38. [DOI:10.1590/S0066-782X2002000100003]
2. Aminlari L, Shekarforoush S S, Hosseinzadeh S, Nazifi S, Sajedianfard J, Eskandari M H. Effect of probiotics Bacillus coagulans and Lactobacillus plantarum on lipid profile and feces bacteria of rats fed cholesterol-enriched diet. Probiotics Antimicrob Proteins 2019; 11: 1163-1171. [DOI:10.1007/s12602-018-9480-1]
3. Antona M E, Ramos C, Stranges A, Monteiro A F, Chaves M M G, Mandalunis P, et al. Fish oil diet effects on alveolar bone loss, in hypercholesterolemic rats. Arch Oral Biol 2020; 109: 104553. [DOI:10.1016/j.archoralbio.2019.104553]
4. Ardiana M, Harsoyo P M, Hermawan H O, Sufiyah I M, Firmanda D R, Desita S R, et al. Higher cardiovascular risks and Atherogenic Index of Plasma found in police officers of developing country in Surabaya, East Java, Indonesia. Clin Epidemiol Glob Health 2022; 17: 101132. [DOI:10.1016/j.cegh.2022.101132]
5. Basheer S, Malik I R, Awan F R, Sughra K, Roshan S, Khalil A, et al. Histological and microscopic analysis of fats in heart, liver tissue, and blood parameters in experimental mice. Genes 2023; 14: 515. [DOI:10.3390/genes14020515]
6. Bentzon J F, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circulation research 2014; 114: 1852-1866. [DOI:10.1161/CIRCRESAHA.114.302721]
7. Bethesda L. Clinical and research information on drug-induced liver injury [internet]. National Institute of Diabetes and Digestive and Kidney Diseases 2012.
8. Coelho R P, Feksa D L, Oliveira P M, da Costa Güllich A A, Pilar B C, Piccoli J d C E, et al. Protective effect of the hydroalcoholic extract of Tripodanthus acutifolius in hypercholesterolemic Wistar rats. Biomed Pharmacother 2018; 97: 300-309. [DOI:10.1016/j.biopha.2017.10.003]
9. Corso G, Russo A D, Gelzo M. Liver and the defects of cholesterol and bile acids biosynthesis: rare disorders many diagnostic pitfalls. World J Gastroenterol 2017; 23: 5257. [DOI:10.3748/wjg.v23.i29.5257]
10. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harbor perspectives in biology 2015; 7: a020412. [DOI:10.1101/cshperspect.a020412]
11. Devi S, Singh R. Assessment of lipid lowering effect of Nepeta hindostana herb extract in experimentally induced dyslipidemia. J Nutr Intermed Metab 2017; 9: 17-23. [DOI:10.1016/j.jnim.2017.08.002]
12. El-Sayyad H I, El-Shershaby E M, El-Mansi A A, El-Ashry N E. Anti-hypercholesterolemic impacts of barley and date palm fruits on the ovary of Wistar albino rats and their offspring. Reproductive Biology 2018; 18: 236-251. [DOI:10.1016/j.repbio.2018.07.003]
13. Gajda A M, Pellizzon M A, Ricci M R, Ulman E A. Diet-induced metabolic syndrome in rodent models. Animal Lab News 2007; 74: 775-793.
14. Gonzales E, Matarazzo L, Franchi-Abella S, Dabadie A, Cohen J, Habes D, et al. Cholic acid for primary bile acid synthesis defects: a life-saving therapy allowing a favorable outcome in adulthood. Orphanet J Rare Dis 2018; 13: 1-8. [DOI:10.1186/s13023-018-0920-5]
15. Hackam D G, Hegele R A. Cholesterol lowering and prevention of stroke: An overview. Stroke 2019; 50: 537-541. [DOI:10.1161/STROKEAHA.118.023167]
16. Hassan A, Abdullah Z, Safuan S. Induction of hypercholesterolemia in rodents based on different dietary requirements: a systematic review. Malays J Med Res 2023; 19.
17. Hofmann A. Bile acid secretion, bile flow and biliary lipid secretion in humans. Hepatology (Baltimore, Md.) 1990; 12: 17S-22S; discussion 22S.
18. Kazemi T, Hajihosseini M, Moossavi M, Hemmati M, Ziaee M. Cardiovascular risk factors and atherogenic indices in an Iranian population: Birjand East of Iran. Clinical Medicine Insights: Cardiology 2018; 12: 1179546818759286. [DOI:10.1177/1179546818759286]
19. Nadig P, Asanaliyar M, Salis K M. Establishment of long-term high-fat diet and low dose streptozotocin-induced experimental type-2 diabetes mellitus model of insulin resistance and evaluation of seed extracts of Syzygium cumini. J Herbmed Pharmacol 2021; 10: 331-338. [DOI:10.34172/jhp.2021.38]
20. Pan X. Cholesterol metabolism in chronic kidney disease: physiology, pathologic mechanisms, and treatment. Sphingolipid Metabolism and Metabolic Disease: Springer, 2022: 119-143. [DOI:10.1007/978-981-19-0394-6_9]
21. Pandya V, Rao A, Chaudhary K. Lipid abnormalities in kidney disease and management strategies. World J Nephrol 2015; 4: 83. [DOI:10.5527/wjn.v4.i1.83]
22. Rodrigues M S, de Paula G C, Duarte M B, de Rezende V L, Possato J C, Farias H R, et al. Nanotechnology as a therapeutic strategy to prevent neuropsychomotor alterations associated with hypercholesterolemia. Colloids and Surfaces B: Biointerfaces 2021; 201: 111608. [DOI:10.1016/j.colsurfb.2021.111608]
23. Romain C, Piemontese A, Battista S, Bernini F, Ossoli A, Strazzella A, et al. Anti-atherosclerotic effect of a polyphenol-rich ingredient, Oleactiv®, in a hypercholesterolemia-induced Golden Syrian hamster model. Nutrients 2018; 10: 1511. [DOI:10.3390/nu10101511]
24. Suman R K, Ray Mohanty I, Borde M K, Maheshwari U, Deshmukh Y. Development of an experimental model of diabetes co-existing with metabolic syndrome in rats. Adv Pharmacol Sci 2016; 2016: 9463476. [DOI:10.1155/2016/9463476]
25. Udomkasemsab A, Prangthip P. High fat diet for induced dyslipidemia and cardiac pathological alterations in Wistar rats compared to Sprague Dawley rats. Clínica e Investigación en Arteriosclerosis 2019; 31: 56-62. [DOI:10.1016/j.artere.2019.03.001]
26. Veteläinen R L, Bennink R J, de Bruin K, van Vliet A, van Gulik T M. Hepatobiliary function assessed by 99m Tc-mebrofenin cholescintigraphy in the evaluation of severity of steatosis in a rat model. Eur J Nucl Med Mol Imaging 2006; 33: 1107-1114. [DOI:10.1007/s00259-006-0125-3]
27. Wong S K, Chin K-Y, Suhaimi F H, Fairus A, Ima-Nirwana S. Animal models of metabolic syndrome: a review. Nutrition & metabolism 2016; 13: 1-12. [DOI:10.1186/s12986-016-0123-9]
28. Woollett L A, Buckley D D, Yao L, Jones P J, Granholm N A, Tolley E A, et al. Cholic acid supplementation enhances cholesterol absorption in humans. Gastroenterology 2004; 126: 724-731. [DOI:10.1053/j.gastro.2003.11.058]
29. Wu J-H, Lv C-F, Guo X-J, Zhang H, Zhang J, Xu Y, et al. Low dose of emodin inhibits hypercholesterolemia in a rat model of high cholesterol. Med Sci Monit 2021; 27: e929346-1. [DOI:10.12659/MSM.929346]
30. Yin W, Carballo-Jane E, McLaren D G, Mendoza V H, Gagen K, Geoghagen N S, et al. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J Lipid Res 2012; 53: 51-65. [DOI:10.1194/jlr.M019927]
31. Yu L, Lu H, Yang X, Li R, Shi J, Yu Y, et al. Diosgenin alleviates hypercholesterolemia via SRB1/CES-1/CYP7A1/FXR pathway in high-fat diet-fed rats. Toxicol Appl Pharmacol 2021; 412: 115388. [DOI:10.1016/j.taap.2020.115388]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.