Volume 29, Issue 4 (December 2025)                   Physiol Pharmacol 2025, 29(4): 464-475 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

jahanabadi S, Safshekan P, Moradi A. Exploring the antidepressant-like effects of atorvastatin in ovariectomized mice: involvement of the nitric oxide pathway. Physiol Pharmacol 2025; 29 (4) :464-475
URL: http://ppj.phypha.ir/article-1-2388-en.html
Abstract:   (2122 Views)
Introduction: Atorvastatin, a lipid-soluble statin, is commonly used in managing high cholesterol levels and has been demonstrated to possess pleiotropic effects, such as antidepressant and neuroprotective properties. Women are more likely to suffer from depression because hormone levels change during ovariectomy and menopause. However, the role of statins in the treatment of ovariectomy-induced depressive behavior has not been adequately studied. We explored atorvastatin’s potential antidepressant effects as well as the potential function of the nitric oxide pathway in ovariectomized (OVX) mice.
Methods: Female mice underwent ovary removal, followed by administration of varying doses of atorvastatin alone or in conjunction with either a non-specific NO synthase inhibitor (L-NAME) or an NO precursor (L-arginine). Behavioral alterations were assessed using the Tail Suspension Test (TST), Forced Swim Test (FST), and Open Field Test (OFT), while hippocampal nitrite levels were also measured.
Results: One week post-procedure, OVX mice displayed a notably longer period of immobility in comparison to the sham group. OVX animals treated with atorvastatin (0.1 and 1 mg/kg) demonstrated antidepressant properties; additionally, OVX mice that received a sub effective dose of atorvastatin plus a sub-effective dose of L–NAME demonstrated pronounced antidepressant-like effects (P<0.05). L-arginine counteracted the antidepressant-like effects of a high dose of atorvastatin in OVX mice but did not affect their levels of locomotor activity in the OFT. Furthermore, atorvastatin administration prevented the increased hippocampal nitrite concentrations caused by ovariectomy (P<0.05).
Conclusion: The research revealed that atorvastatin exhibits significant antidepressant properties in OVX mice, potentially by suppressing the nitric oxide pathway.
Full-Text [PDF 799 kb]   (39 Downloads)    

References
1. Akyol m, Herken H, Uz E, Fadıllıoǧlu E, nal S, Sǧt S, et al. The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2002; 26(5):995-1005. [DOI:10.1016/S0278-5846(02)00220-8]
2. Amiri S, Amini-Khoei H, Haj-Mirzaian A, Rahimi-Balaei M, Naserzadeh P, Dehpour A R, et al. Tropisetron attenuated the anxiogenic effects of social isolation by modulating nitrergic system and mitochondrial function. Biochimica et Biophysica Acta - General Subjects 2015 ;1850(12):2464-2475. [DOI:10.1016/j.bbagen.2015.09.009]
3. Asahi M, Huang Z, Thomas S, Yoshimura S I, Sumii T, Mori T, et al. Protective effects of statins involving both eNOS and tPA in focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism 2005; 25(6):722-729. [DOI:10.1038/sj.jcbfm.9600070]
4. Avis N E, Brambilla D, McKinlay S M, Vass K. A longitudinal analysis of the association between menopause and depression results from the Massachusetts women’s health study. Annals of Epidemiology 1994; 4(3):214-220. [DOI:10.1016/1047-2797(94)90099-X]
5. Banach M, Piskorska B a. Nitric oxide, epileptic seizures, and action of antiepileptic drugs. CNS & Neurological Disorders-Drug Targets-CNS & Neurological Disorders 2012; 10(7):808-819. [DOI:10.2174/187152711798072347]
6. Boulton C L, Irving A J, Southam E, Potier B, Garthwaite J, Collingridge G L. the nitric oxide-cyclic GMP pathway and synaptic depression in rat hippocampal slices. European Journal of Neuroscience 1994; 6(10):1528-1535. [DOI:10.1111/j.1460-9568.1994.tb00543.x]
7. Castro A A, Wiemes B P, Matheus F C, Lapa F R, Viola G G, Santos A R, et al. Atorvastatin improves cognitive, emotional and motor impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats, an experimental model of Parkinson’s disease. Brain Research 2013; 4:1513:103-116. [DOI:10.1016/j.brainres.2013.03.029]
8. Chrapko W E, Jurasz P, Radomski M W, Lara N, Archer S L a. Decreased platelet nitric oxide synthase activity and plasma nitric oxide metabolites in major depressive disorder. Biological Psychiatry 2004; 15;56(2):129-134. [DOI:10.1016/j.biopsych.2004.03.003]
9. da Silva G D, Matteussi A S, dos Santos A R, Calixto J B, Rodrigues A L. Evidence for dual effects of nitric oxide in the forced swimming test and in the tail suspension test in mice. Neuroreport 2000; 11: 3699-3702. [DOI:10.1097/00001756-200011270-00022]
10. David D J P, Renard C E, Jolliet P, Hascot M, Bourin M. Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology 2003; 166(4):373-382. [DOI:10.1007/s00213-002-1335-4]
11. De Giorgi R, Rizzo Pesci N, Rosso G, Maina G, Cowen P J, Harmer C J. The pharmacological bases for repurposing statins in depression: a review of mechanistic studies. Translational Psychiatry 2023; 13: 253. [DOI:10.1038/s41398-023-02533-z]
12. Eckeli A L, Dach F, Rodrigues A L S. Acute treatments with GMP produce antidepressant-like effects in mice. NeuroReport 2000;11(9):1839-1843. [DOI:10.1097/00001756-200006260-00008]
13. Esplugues J V. NO as a signalling molecule in the nervous system. British Pharmacological Society 2002; 135(5):1079-1095. [DOI:10.1038/sj.bjp.0704569]
14. Ghasemi M, Sadeghipour H, Mosleh A, Sadeghipour H R, Mani A R, Dehpour A R. Nitric oxide involvement in the antidepressant-like effects of acute lithium administration in the mouse forced swimming test. European Neuropsychopharmacology 2008 ;18(5):323-332 . [DOI:10.1016/j.euroneuro.2007.07.011]
15. Gotti S, Martini M, Pradotto M, Viglietti-Panzica C, Panzica G C. Rapid changes on nitrinergic system in female mouse hippocampus during the ovarian cycle. Journal of Chemical Neuroanatomy 2009; 38(2):117-123. [DOI:10.1016/j.jchemneu.2009.06.006]
16. Gutlapalli S D, Chaudhuri D, Khan K I a. Statins and antidepressants: a comprehensive review and clinical outlook of the risks and benefits of co-prescription. Cureus 2022 ;14(12):e32331. [DOI:10.7759/cureus.32331]
17. Gutlapalli S D, Farhat H, Irfan H, Muthiah K, Pallipamu N, Taheri S, et al. The anti-depressant effects of statins in patients with major depression post-myocardial infarction: an updated review Cureus 2022; 14(12):e32323. [DOI:10.7759/cureus.32323]
18. Harkin A J, Bruce K H, Craft B, Paul I A. Nitric oxide synthase inhibitors have antidepressant-like properties in mice: 1. Acute treatments are active in the forced swim test. European Journal of Pharmacology 1999; 372: 207-213. [DOI:10.1016/S0014-2999(99)00191-0]
19. Heydarpour P, Salehi-Sadaghiani M, Javadi-Paydar M, Rahimian R, Fakhfouri G, Khosravi M, et al. Estradiol reduces depressive-like behavior through inhibiting nitric oxide/cyclic GMP pathway in ovariectomized mice. Hormones and Behavior 2013; 63(2):361-369. [DOI:10.1016/j.yhbeh.2012.12.005]
20. Hu Y, Wu D L, Luo C X, Zhu L J, Zhang J, Wu H Y, et al. Hippocampal nitric oxide contributes to sex difference in affective behaviors. Proceedings of the National Academy of Sciences of the United States of America 2012; 109(35):14224-14229. [DOI:10.1073/pnas.1207461109]
21. Joca S R L, Guimares F S. Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology 2006; 185(3):298-305. [DOI:10.1007/s00213-006-0326-2]
22. Kalbasi Anaraki D, Sianati S, Sadeghi M, Ghasemi M, Paydar M J, Ejtemaei Mehr S, et al. Modulation by female sex hormones of the cannabinoid-induced catalepsy and analgesia in ovariectomized mice. European Journal of Pharmacology 2008; 586: 189-196. [DOI:10.1016/j.ejphar.2008.02.055]
23. Khler-Forsberg O, Otte C, Gold S M, stergaard S D. Statins in the treatment of depression: Hype or hope? Pharmacology & therapeutics 2020; 215:107625. [DOI:10.1016/j.pharmthera.2020.107625]
24. Khoshnoodi M, Fakhraei N, Dehpour A R. Possible involvement of nitric oxide in antidepressant-like effect of silymarin in male mice. Pharmaceutical Biology 2015; 53: 739-745. [DOI:10.3109/13880209.2014.942787]
25. Kordjazy N, Haj-Mirzaian A, Amiri S, Ostadhadi S, Kordjazy M, Sharifzadeh M, et al. Elevated level of nitric oxide mediates the anti-depressant effect of rubidium chloride in mice. European Journal of Pharmacology 2015; 26: 995-1005. [DOI:10.1016/j.ejphar.2015.06.030]
26. Kumar A, Sharma N, Gupta A, Kalonia H, Mishra J. Neuroprotective potential of atorvastatin and simvastatin (HMG-CoA reductase inhibitors) against 6-hydroxydopamine (6-OHDA) induced Parkinson-like symptoms. Brain Research 2012; 1471:13-22. [DOI:10.1016/j.brainres.2012.06.050]
27. Lim S W, Shiue Y L, Liao J C, Wee H Y, Wang C C, Chio C C, et al. Simvastatin therapy in the acute stage of traumatic brain injury attenuates brain trauma-induced depression-like behavior in rats by reducing neuroinflammation in the hippocampus. Neurocritical Care 2017; 26(1):122-132. [DOI:10.1007/s12028-016-0290-6]
28. Lisboa S F, Gomes F V, Silva A L, Uliana D L, Camargo L H A, Guimars F S, et al. Increased contextual fear conditioning in inos knockout mice: Additional evidence for the involvement of nitric oxide in stress-related disorders and contribution of the endocannabinoid system. International Journal of Neuropsychopharmacology 2015; 18(8):pyv005. [DOI:10.1093/ijnp/pyv005]
29. Lu D, Mahmood A, Qu C, Goussev A, Lu M, Chopp M. Atorvastatin reduction of intracranial hematoma volume in rats subjected to controlled cortical impact. Journal of Neurosurgery 2004; 101(5):822-825. [DOI:10.3171/jns.2004.101.5.0822]
30. Ludka F K, Zomkowski A D E, Cunha M P, Dal-Cim T, Zeni A L B, Rodrigues A L S, et al. Acute atorvastatin treatment exerts antidepressant-like effect in mice via the l-arginine-nitric oxide-cyclic guanosine monophosphate pathway and increases BDNF levels. European Neuropsychopharmacology 2013; 23(5):400-412. [DOI:10.1016/j.euroneuro.2012.05.005]
31. Maes M. Major depression and activation of the inflammatory response system. 1999; 461:25-46. [DOI:10.1007/978-0-585-37970-8_2]
32. Martins W C, dos Santos V V, dos Santos A A, Vandresen-Filho S, Dal-Cim T A, de Oliveira K A, et al. atorvastatin prevents cognitive deficits induced by intracerebroventricular amyloid-beta1-40 administration in mice: involvement of glutamatergic and antioxidant systems. Neurotoxicity Research 2015; ;28(1):32-42. [DOI:10.1007/s12640-015-9527-y]
33. Menze E T, Ezzat H, Shawky S, Sami M, Selim E H, Ahmed S, et al. Simvastatin mitigates depressive-like behavior in ovariectomized rats: Possible role of NLRP3 inflammasome and estrogen receptors’ modulation. International Immunopharmacology 2021; 95:107582. [DOI:10.1016/j.intimp.2021.107582]
34. Mirbaha H, Tabaeizadeh M, Shaterian-Mohammadi H, Tahsili-Fahadan P, Dehpour A R. Estrogen pretreatment modulates morphine-induced conditioned place preference in ovariectomized mice. Pharmacology Biochemistry and Behavior 2009; 92(3):399-403. [DOI:10.1016/j.pbb.2009.01.009]
35. Montezuma K, Biojone C, Lisboa S F, Cunha F Q, Guimarães F S, Joca S R L. Inhibition of iNOS induces antidepressant-like effects in mice: Pharmacological and genetic evidence. Neuropharmacology 2012; 62(1):485-491. [DOI:10.1016/j.neuropharm.2011.09.004]
36. Nasyrova R F, Ivashchenko D V, Ivanov M V, Neznanov N G. Role of nitric oxide and related molecules in schizophrenia pathogenesis: biochemical, genetic and clinical aspects. Frontiers in Physiology 2015; 6:139. [DOI:10.3389/fphys.2015.00139]
37. Nathan C, wen Xie Q. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994; 78(6):915-918. [DOI:10.1016/0092-8674(94)90266-6]
38. Olivenza R, Moro M A, Lizasoain I, Lorenzo P, Fernndez A P, Rodrigo J, et al. Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. Journal of Neurochemistry 2000; 74(2):785-791. [DOI:10.1046/j.1471-4159.2000.740785.x]
39. Pang P T, Teng H K, Zaitsev E, Woo N T, Sakata K, Zhen S, et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 2004; 306(5695):487-491. [DOI:10.1126/science.1100135]
40. Panzica G C, Viglietti-Panzica C, Sica M, Gotti S, Martini M, Pinos H, et al. Effects of gonadal hormones on central nitric oxide producing systems. Neuroscience 2006; 138(3):987-95. [DOI:10.1016/j.neuroscience.2005.07.052]
41. Peng Y L, Liu Y N, Liu L, Wang X, Jiang C L, Wang Y X. Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress. Journal of Neuroinflammation 2012; 9:75. [DOI:10.1186/1742-2094-9-75]
42. Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology 2005; 177(3):245-255. [DOI:10.1007/s00213-004-2048-7]
43. Piermartiri T C B, Figueiredo C P, Rial D, Duarte F S, Bezerra S C, Mancini G, et al. Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-beta1-40 administration in mice: Evidence for dissociation between cognitive deficits and neuronal damage. Experimental Neurology 2010; 226(2):274-284. [DOI:10.1016/j.expneurol.2010.08.030]
44. Piermartiri T C B, Vandresen-Filho S a. Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing akt phosphorylation and glutamate uptake. Neurotoxicity Research 2009; 16(2):106-115. [DOI:10.1007/s12640-009-9057-6]
45. Reif A, Schmitt A, Fritzen S, Chourbaji S, Bartsch C, Urani A, et al. Differential effect of endothelial nitric oxide synthase (NOS-III) on the regulation of adult neurogenesis and behaviour. European Journal of Neuroscience 2004; 20(4):885-895. [DOI:10.1111/j.1460-9568.2004.03559.x]
46. Renshaw P F, Parsegian A, Yang C K, Novero A, Yoon S J, Lyoo I K, et al. Lovastatin potentiates the antidepressant efficacy of fluoxetine in rats. Pharmacology Biochemistry and Behavior 2009; 92(1):88-92. [DOI:10.1016/j.pbb.2008.10.017]
47. Rostamian A, Gharedaghi A, Norouzi-Javidan A, Dehpour A R. Involvement of the nitric oxide pathway in the anti-depressant-like effects of thalidomide in mice. Physiology and Behavior 2019; 208: 112572. [DOI:10.1016/j.physbeh.2019.112572]
48. Sadeghi M, Sianati S, Anaraki D K, Ghasemi M, Paydar M J, Sharif B, et al. Study of morphine-induced dependence in gonadectomized male and female mice. Pharmacology Biochemistry and Behavior 2009; 91(4):604-609. [DOI:10.1016/j.pbb.2008.09.015]
49. Saeedi Saravi S S, Arefidoust A, Saeedi Saravi S S, Yaftian R, Bayati M, Salehi M, et al. Mammalian target of rapamycin (mTOR)/nitric oxide system possibly modulate antidepressant-like effect of 17α-ethinyl estradiol in ovariectomized mice. Biomedicine & Pharmacotherapy 2017; 89: 591-604. [DOI:10.1016/j.biopha.2017.02.078]
50. Saeedi Saravi S S, Arefidoust A, Yaftian R, Saeedi Saravi S S, Dehpour A R. 17α-ethinyl estradiol attenuates depressive-like behavior through GABAA receptor activation/nitrergic pathway blockade in ovariectomized mice. Psychopharmacology 2016; 233: 1467-1485. [DOI:10.1007/s00213-016-4242-9]
51. Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: An update. Fundamental & Clinical Pharmacology 2005; 19(1):117-125 . [DOI:10.1111/j.1472-8206.2004.00299.x]
52. Seidaha N G, Benjannet S, Pareek S, Chrtien M, Murphy R A. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Letters 1996; 379(3):247-250. [DOI:10.1016/0014-5793(95)01520-5]
53. Shahsavarian A, Javadi S, Jahanabadi S, Khoshnoodi M, Shamsaee J, Shafaroodi H, et al. Antidepressant-like effect of atorvastatin in the forced swimming test in mice: The role of PPAR-gamma receptor and nitric oxide pathway. European Journal of Pharmacology 2014; 745:52-58. [DOI:10.1016/j.ejphar.2014.10.004]
54. Suzuki E, Yagi G, Nakaki T, Kanba S, Asai M. Elevated plasma nitrate levels in depressive states. Journal of Affective Disorders 2001; 63(1-3):221-224. [DOI:10.1016/S0165-0327(00)00164-6]
55. Taniguti E, Ferreira Y, Stupp I, Fraga-Junior E, Doneda D, Lopes L, et al. Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Research Bulletin 2019; 146: 279-286. [DOI:10.1016/j.brainresbull.2019.01.018]
56. Vandresen-Filho S, Martins W C, Bertoldo D B, Mancini G, Herculano B A. Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurochemistry International 2013; 62(7):948-955. [DOI:10.1016/j.neuint.2013.03.002]
57. Young-Xu Y, Chan K A, Liao J K, Ravid S, Blatt C M. Long-term statin use and psychological well-being. Journal of the American College of Cardiology 2003; 42(4):690-697. [DOI:10.1016/S0735-1097(03)00785-X]
58. Zhang Y Y, Fan Y C, Wang M, Wang D, Li X H. Atorvastatin attenuates the production of IL-1beta, IL-6, and TNF-alpha in the hippocampus of an amyloid beta 1-42-induced rat model of Alzheimer’s disease. Clinical Interventions in Aging 2013; 8:103-110. [DOI:10.2147/CIA.S40405]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.