Volume 29, Issue 4 (December 2025)                   Physiol Pharmacol 2025, 29(4): 398-407 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdi A. Aerobic training and royal jelly enhance thermogenesis genes in the visceral adipose tissue of high-fat diet-induced obese rats. Physiol Pharmacol 2025; 29 (4) :398-407
URL: http://ppj.phypha.ir/article-1-2416-en.html
Abstract:   (1618 Views)
Introduction: The crucial role of adipose tissue (AT) in energy balance has sparked significant interest in researching this tissue as a potential target for obesity treatment. Exercise and dietary interventions are promising strategies for addressing obesity. This study aimed to examine the impact of aerobic training and royal jelly on the expression of thermogenesis-related genes in the visceral adipose tissue (VAT) of obese rats.
Methods: Rats (n=45) were divided into five groups: normal diet (ND), high-fat diet (HFD), high-fat diet-training (HFDT), high-fat diet-royal jelly (HFDRJ), and high-fat diet-training royal jelly (HFDTRJ). Royal jelly treatment was administered at a dosage of 100 mg/kg body weight. The training was conducted at an intensity of 50-60% VO2max, five days a week for eight weeks. Thermogenesis gene expression was evaluated by the real-time PCR method.
Results: Induction of an HFD significantly reduced the expression of UCP-1, PRDM16, and CREB-1 compared to the normal diet (ND) group (p=0.001). Aerobic training and RJ significantly increased the levels of UCP-1, PRDM16 and CREB-1 in the VAT of HFD rats (p=0.0001). The combined intervention of aerobic training with RJ had no significant effect on the levels of UCP-1, PRDM16 and CREB-1 in the VAT of HFD rats.
Conclusion: It appears that aerobic training and RJ are effective methods for positively regulating the gene expression related to thermogenesis in AT, which may mitigate obesity induced by a high-fat diet.
Full-Text [PDF 473 kb]   (40 Downloads)    
Type of Manuscript: Experimental research article | Subject: Others

References
1. Altarejos J Y, Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nature Reviews Molecular Cell Biology 2011; 12: 141-151. [DOI:10.1038/nrm3072]
2. Bartelt A, Bruns O T, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nature Medicine 2011; 17: 200-205. [DOI:10.1038/nm.2297]
3. Bi P, Shan T, Liu W, Yue F, Yang X, Liang X-R, et al. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nature Medicine 2014; 20: 911-918. [DOI:10.1038/nm.3615]
4. Bonet M L, Oliver P, Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 2013; 1831: 969-985. [DOI:10.1016/j.bbalip.2012.12.002]
5. Crichton P G, Lee Y, Kunji E R. The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie 2017; 134: 35-50. [DOI:10.1016/j.biochi.2016.12.016]
6. Daneshyar S, OmidAli F, Feizipour S A. The combined effect of long-term feeding of high-fat diet and regular aerobic training on gene expression of uncoupling protein 1 (Ucp1) in brown adipose tissue and sarcolipin (sln) in soleus muscle of mice: an experimental study. Studies in Medical Sciences 2021; 32: 290-302.
7. El-Nekeety A A, El-Kholy W, Abbas N F, Ebaid A, Amra H A, Abdel-Wahhab M A. Efficacy of royal jelly against the oxidative stress of fumonisin in rats. Toxicon 2007; 50: 256-269. [DOI:10.1016/j.toxicon.2007.03.017]
8. Fathi R, Ebrahimi M, Khenar Sanami S. Effects of high fat diet and high intensity aerobic training on interleukin 6 plasma levels in rats. Pathobiology Research 2015; 18: 109-116.
9. Ghorbani M. A review of type 2 diabetes and obesity. New Cellular and Molecular Biotechnology Journal 2015; 5: 9-14.
10. Grimes M T, Powell M, Gutierrez S M, Darby-King A, Harley C W, McLean J H. Epac activation initiates associative odor preference memories in the rat pup. Learning & Memory 2015; 22: 74-82. [DOI:10.1101/lm.037101.114]
11. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nature Medicine 2013; 19: 1252-1263. [DOI:10.1038/nm.3361]
12. Heckman P, Blokland A, Bollen E, Prickaerts J. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: clinical overview and translational considerations. Neuroscience & Biobehavioral Reviews 2018; 87: 233-254. [DOI:10.1016/j.neubiorev.2018.02.007]
13. Hruby A, Hu F B. The epidemiology of obesity: a big picture. Pharmacoeconomics 2015; 33: 673-689. [DOI:10.1007/s40273-014-0243-x]
14. Inagaki T, Sakai J, Kajimura S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nature Reviews Molecular Cell Biology 2016; 17: 480-495.
15. Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper M P, Ruas J L, et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes & Development 2008; 22: 1397-1409. [DOI:10.1101/gad.1666108]
16. Kajimura S, Spiegelman B M, Seale P. Brown and beige fat: physiological roles beyond heat generation. Cell Metabolism 2015; 22: 546-559. [DOI:10.1016/j.cmet.2015.09.007]
17. Kang J G, Park C-Y. Anti-obesity drugs: a review about their effects and safety. Diabetes & Metabolism Journal 2012; 36: 13-25. [DOI:10.4093/dmj.2012.36.1.13]
18. Karimi F, Daryanoosh F, Salesi M, Nemati J. The effect of eight weeks of high intensity interval training on creb and crtc2 proteins levels in subcutaneous adipose tissue of obese rats with type 2 diabetes. Iranian Journal of Diabetes and Metabolism 2020; 19: 329-336.
19. Kjær M. Adrenal gland: fight or flight implications for exercise and sports. The Endocrine System in Sports and Exercise 2005: 194-199. [DOI:10.1002/9780470757826.ch15]
20. Mesri Alamdari N, Irandoost P, Roshanravan N, Vafa M, Asghari Jafarabadi M, Alipour S, et al. Effects of Royal Jelly and Tocotrienol Rich Fraction in obesity treatment of calorie-restricted obese rats: a focus on white fat browning properties and thermogenic capacity. Nutrition & Metabolism 2020; 17: 1-13. [DOI:10.1186/s12986-020-00458-8]
21. Mostafavian M, Abdi A, Mehrabani J, Barari A. Effect of eight weeks of aerobic progressive training with capsaicin on changes in PGC-1α and UPC-1 expression in visceral adipose tissue of obese rats with diet. Complementary Medicine Journal 2020; 10: 106-117. [DOI:10.32598/cmja.10.2.627.4]
22. Najafi G, Nejati V, Shalizar Jalali A, Zahmatkesh E. Protective role of royal jelly in oxymetholone-induced oxidative injury in mouse testis. Iranian Journal of Toxicology 2014; 8: 1073-1080.
23. Roca-Rivada A, Castelao C, Senin L L, Landrove M O, Baltar J, Crujeiras A B, et al. FNDC5/irisin is not only a myokine but also an adipokine. PloS One 2013; 8: e60563. [DOI:10.1371/journal.pone.0060563]
24. Rocha-Rodrigues S, Rodríguez A, Gouveia A M, Gonçalves I O, Becerril S, Ramírez B, et al. Effects of physical exercise on myokines expression and brown adipose-like phenotype modulation in rats fed a high-fat diet. Life Sciences 2016; 165: 100-108. [DOI:10.1016/j.lfs.2016.09.023]
25. Sabatini A G, Marcazzan G L, Caboni M F, Bogdanov S, Almeida-Muradian L B d. Quality and standardisation of royal jelly. Journal of ApiProduct and ApiMedical Science 2009; 1: 1-6. [DOI:10.3896/IBRA.4.01.1.04]
26. Shabani M, Daryanoosh F, Salesi M, Kooshki Jahromi M, Fallahi A A. Effect of continuous training on the level of PPAR-γ and PRDM16 proteins in adipose tissue in overweight diabetes rats. The Journal of Qazvin University of Medical Sciences 2018; 22: 4-12. [DOI:10.29252/qums.22.3.4]
27. Shao M, Ishibashi J, Kusminski C M, Wang Q A, Hepler C, Vishvanath L, et al. Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metabolism 2016; 23: 1167-1184. [DOI:10.1016/j.cmet.2016.04.023]
28. Shirkhani S, Marandi M, Kazeminasab F, Ghaedi K, Esfarajani F, Nasr-Esfahani M. The effect of endurance training and high-fat diet on the expression of Pgc1α and Ucp1 in subcutaneous adipose and brown tissues of C57BL/6 male mice. Journal of Applied Exercise Physiology 2019; 15: 89-102.
29. Takikawa M, Kumagai A, Hirata H, Soga M, Yamashita Y, Ueda M, et al. 10-Hydroxy-2-decenoic acid, a unique medium-chain fatty acid, activates 5’-AMP-activated protein kinase in L 6 myotubes and mice. Molecular Nutrition & Food Research 2013; 57: 1794-1802.
30. Terada Y, Narukawa M, Watanabe T. Specific hydroxy fatty acids in royal jelly activate TRPA1. Journal of Agricultural and Food Chemistry 2011; 59: 2627-2635. [DOI:10.1021/jf1041646]
31. Vidal P, Stanford K I. Exercise-induced adaptations to adipose tissue thermogenesis. Frontiers in Endocrinology 2020; 11: 270. [DOI:10.3389/fendo.2020.00270]
32. Viru A A, Viru M. Biochemical monitoring of sport training: Human Kinetics, 2001.
33. Wankhade U D, Shen M, Yadav H, Thakali K M. Novel browning agents, mechanisms, and therapeutic potentials of brown adipose tissue. BioMed Research International 2016; 2016: 2365609. [DOI:10.1155/2016/2365609]
34. Whittle A J, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez M J, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 2012; 149: 871-885. [DOI:10.1016/j.cell.2012.02.066]
35. Wu M V, Bikopoulos G, Hung S, Ceddia R B. Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure. Journal of Biological Chemistry 2014; 289: 34129-34140. [DOI:10.1074/jbc.M114.591008]
36. Xu X, Ying Z, Cai M, Xu Z, Li Y, Jiang S Y, et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2011; 300: R1115-R1125. [DOI:10.1152/ajpregu.00806.2010]
37. Yoneshiro T, Kaede R, Nagaya K, Aoyama J, Saito M, Okamatsu-Ogura Y, et al. Royal jelly ameliorates diet-induced obesity and glucose intolerance by promoting brown adipose tissue thermogenesis in mice. Obesity Research & Clinical Practice 2018; 12: 127-137. [DOI:10.1016/j.orcp.2016.12.006]
38. Zamani Z, Reisi P, Alaei H, Pilehvarian A A. Effect of Royal Jelly on spatial learning and memory in rat model of streptozotocin-induced sporadic Alzheimer’s disease. Advanced Biomedical Research 2012; 1: 26. [DOI:10.4103/2277-9175.98150]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.