Volume 29, Issue 3 (September 2025)                   Physiol Pharmacol 2025, 29(3): 335-349 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

ahmadzadeh vosta kolaei H, Darvish A, Safari M. Visual attention modulation by the dopaminergic system in the medial prefrontal cortex (mPFC). Physiol Pharmacol 2025; 29 (3) : 11
URL: http://ppj.phypha.ir/article-1-2448-en.html
Abstract:   (1297 Views)
Introduction: Visual attention is a cognitive function that impairment in it can lead to multiple psychological and cognitive disorders such as ADHD, ADD, neglect, Alzheimer and schizophrenia. Dopamine, as a main neuromodulator of attention produced in midbrain neurons that project to the prefrontal cortex (PFC). This research aims to examine the role of dopamine in membrane potential regulation in the prefrontal region in modulating visual attention.
Methods: Eight-week-old mice of both sexes were anesthetized with urethane and then underwent cranial surgery in the mPFC area. The effects of ventral tegmental area (VTA) stimulation, PFC inhibition with muscimol, and local injection of flupentixol on visual attention were investigated using the in vivo whole-cell Patch clamp technique in both anesthetized and awake states. To demonstrate whether dopaminergic receptors in the mPFC area are involved in the observed changes under the current condition, the non-selective antagonist of dopamine receptors (flupentixol) was used.
Results: Our findings indicate that PFC inhibition significantly disrupts visual attention, as evidenced by decreased response accuracy in attention tasks. Conversely, VTA stimulation resulted in reduced neuronal firing rates, further impairing attention. Flupentixol administration resulted in reduced response accuracy and decreased neuronal spike rate, highlighting the importance of dopamine receptor activity in attention modulation
Conclusion: These results underscore the complex role of dopamine as a neuromodulator in visual attention processes and highlight the importance of the PFC in attention regulation. Understanding the interplay between the dopaminergic system and the PFC may provide insights into the pathophysiology of attention-related disorders.
Article number: 11
Full-Text [PDF 1285 kb]   (51 Downloads)    

References
1. Anderson J C, Kennedy H, Martin K A. Pathways of attention: synaptic relationships of frontal eye field to V4, lateral intraparietal cortex, and area 46 in macaque monkey. Journal of Neuroscience 2011; 31: 10872-10881. [DOI:10.1523/JNEUROSCI.0622-11.2011]
2. Artigas F. Serotonin receptors involved in antidepressant effects. Pharmacology & Therapeutics 2013; 137: 119-131. [DOI:10.1016/j.pharmthera.2012.09.006]
3. Bahmani Z, Clark K, Merrikhi Y, Mueller A, Pettine W, Vanegas M I, et al. Prefrontal contributions to attention and working memory. Processes of Visuospatial Attention and Working Memory: Springer, 2019: 129-153. [DOI:10.1007/7854_2018_74]
4. Boekhoudt L, Voets E S, Flores-Dourojeanni J P, Luijendijk M, Vanderschuren L J, Adan R A. Chemogenetic activation of midbrain dopamine neurons affects attention, but not impulsivity, in the five-choice serial reaction time task in rats. Neuropsychopharmacology 2017; 42: 1315-1325. [DOI:10.1038/npp.2016.235]
5. Buchta W C, Mahler S V, Harlan B, Aston-Jones G S, Riegel A C. Dopamine terminal from the ventral tegmental area gate intrinsic inhibition in the prefrontal cortex. Physiological Reports 2017; 5: e13198. [DOI:10.14814/phy2.13198]
6. Burk J A, Blumenthal S A, Maness E B. Neuropharmacology of attention. European Journal of Pharmacology 2018; 835: 162-168. [DOI:10.1016/j.ejphar.2018.08.008]
7. Chudasama Y, Robbins T W. Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology 2004; 29: 1628-1636. [DOI:10.1038/sj.npp.1300490]
8. Clark K, Squire R F, Merrikhi Y, Noudoost B. Visual attention: Linking prefrontal sources to neuronal and behavioral correlates. Progress in Neurobiology 2015; 132: 59-80. [DOI:10.1016/j.pneurobio.2015.06.006]
9. Clark K L, Noudoost B. The role of prefrontal catecholamines in attention and working memory. Frontiers in Neural Circuits 2014a; 8. [DOI:10.3389/fncir.2014.00033]
10. Clark K L, Noudoost B. The role of prefrontal catecholamines in attention and working memory. Frontiers in Neural Circuits 2014b; 8: 33. [DOI:10.3389/fncir.2014.00033]
11. Corbetta M, Miezin F M, Dobmeyer S, Shulman G L, Petersen S E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. Journal of Neuroscience 1991; 11: 2383-2402. [DOI:10.1523/JNEUROSCI.11-08-02383.1991]
12. Dolzani S D, Nakamura S, Cooper D C. A novel variable delay Go/No-Go task to study attention, motivation and working memory in the head-fixed rodent. F1000Research 2014; 2: 125. [DOI:10.12688/f1000research.2-125.v1]
13. Everling S, Tinsley C J, Gaffan D, Duncan J. Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nature Neuroscience 2002; 5: 671-676. [DOI:10.1038/nn874]
14. Flores-Dourojeanni J P, van Rijt C, van den Munkhof M H, Boekhoudt L, Luijendijk M C, Vanderschuren L J, et al. Temporally specific roles of ventral tegmental area projections to the nucleus accumbens and prefrontal cortex in attention and impulse control. Journal of Neuroscience 2021; 41: 4293-4304. [DOI:10.1523/JNEUROSCI.0477-20.2020]
15. Gazzaley A, Nobre A C. Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences 2012; 16: 129-135. [DOI:10.1016/j.tics.2011.11.014]
16. Ghaderi P, Marateb H R, Safari M-S. Electrophysiological profiling of neocortical neural subtypes: a semi-supervised method applied to in vivo whole-cell patch-clamp data. Frontiers in Neuroscience 2018; 12: 374322. [DOI:10.3389/fnins.2018.00823]
17. Gorelova N, Seamans J K, Yang C R. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. Journal of Neurophysiology 2002; 88: 3150-3166. [DOI:10.1152/jn.00335.2002]
18. Granon S, Passetti F, Thomas K L, Dalley J W, Everitt B J, Robbins T W. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. Journal of Neuroscience 2000; 20: 1208-1215. [DOI:10.1523/JNEUROSCI.20-03-01208.2000]
19. Gregoriou G G, Rossi A F, Ungerleider L G, Desimone R. Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nature Neuroscience 2014; 17: 1003-1011. [DOI:10.1038/nn.3742]
20. Howe M W, Dombeck D A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 2016; 535: 505-510. [DOI:10.1038/nature18942]
21. Jonikaitis D, Moore T. The interdependence of attention, working memory and gaze control: behavior and neural circuitry. Current Opinion in Psychology 2019; 29: 126-134. [DOI:10.1016/j.copsyc.2019.01.012]
22. Kahn J B, Ward R D, Kahn L W, Rudy N M, Kandel E R, Balsam P D, et al. Medial prefrontal lesions in mice impair sustained attention but spare maintenance of information in working memory. Learning & Memory 2012; 19: 513-517. [DOI:10.1101/lm.026302.112]
23. Kamigaki T. Prefrontal circuit organization for executive control. Neuroscience Research 2019; 140: 23-36. [DOI:10.1016/j.neures.2018.08.017]
24. Lammel S, Lim B K, Ran C, Huang K W, Betley M J, Tye K M, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 2012; 491: 212-217. [DOI:10.1038/nature11527]
25. Lavin A, Nogueira L, Lapish C C, Wightman R M, Phillips P E, Seamans J K. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. Journal of Neuroscience 2005; 25: 5013-5023. [DOI:10.1523/JNEUROSCI.0557-05.2005]
26. Li S, May C, Hannan A, Johnson K, Burrows E. Assessing attention orienting in mice: a novel touchscreen adaptation of the Posner-style cueing task. Neuropsychopharmacology 2021; 46: 432-441. [DOI:10.1038/s41386-020-00873-8]
27. McNab F, Klingberg T. Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience 2008; 11: 103-107. [DOI:10.1038/nn2024]
28. Mueller A, Krock R M, Shepard S, Moore T. Dopamine receptor expression among local and visual cortex-projecting frontal eye field neurons. Cerebral Cortex 2020; 30: 148-164. [DOI:10.1093/cercor/bhz078]
29. Muñoz-Redondo C, Parras G G, Andreu-Sánchez C, Martín-Pascual M Á, Delgado-García J M, Gruart A. Functional states of prelimbic and related circuits during the acquisition of a GO/noGO task in rats. Cerebral Cortex 2024; 34: 271. [DOI:10.1093/cercor/bhae271]
30. Noudoost B, Moore T. The role of neuromodulators in selective attention. Trends in Cognitive Sciences 2011; 15: 585-591. [DOI:10.1016/j.tics.2011.10.006]
31. Oakeshott S, Farrar A, Port R, Cummins-Sutphen J, Berger J, Watson-Johnson J, et al. Deficits in a simple visual Go/No-go discrimination task in two mouse models of Huntington’s disease. PLoS Currents 2013; 5. [DOI:10.1371/currents.hd.fe74c94bdd446a0470f6f905a30b5dd1]
32. Ott T, Nieder A. Dopamine and Cognitive Control in Prefrontal Cortex. Trends in Cognitive Sciences 2019; 23: 213-234. [DOI:10.1016/j.tics.2018.12.006]
33. Paneri S, Gregoriou G G. Top-down control of visual attention by the prefrontal cortex. functional specialization and long-range interactions. Frontiers in Neuroscience 2017; 11: 545. [DOI:10.3389/fnins.2017.00545]
34. Pezze M A, Dalley J W, Robbins T W. Remediation of attentional dysfunction in rats with lesions of the medial prefrontal cortex by intra-accumbens administration of the dopamine D 2/3 receptor antagonist sulpiride. Psychopharmacology 2009; 202: 307-313. [DOI:10.1007/s00213-008-1384-4]
35. Phan J H, Ugwu K, Fong S L E. A Case of overlapping extrapyramidal side effects and neuroleptic malignant syndrome. BJPsych Open 2024; 10: S286-S287. [DOI:10.1192/bjo.2024.683]
36. Romo R, Schultz W. Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements. Journal of Neurophysiology 1990; 63: 592-606. [DOI:10.1152/jn.1990.63.3.592]
37. Rossi M A, Hayrapetyan V Y, Maimon B, Mak K, Je H S, Yin H H. Prefrontal cortical mechanisms underlying delayed alternation in mice. Journal of Neurophysiology 2012; 108: 1211-1222. [DOI:10.1152/jn.01060.2011]
38. Safari M-S, Mirnajafi-Zadeh J, Hioki H, Tsumoto T. Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells. Scientific Reports 2017; 7: 12764. [DOI:10.1038/s41598-017-12958-4]
39. Sakatani T, Isa T. Quantitative analysis of spontaneous saccade-like rapid eye movements in C57BL/6 mice. Neuroscience research 2007; 58: 324-331. [DOI:10.1016/j.neures.2007.04.003]
40. Salkoff D B, Zagha E, McCarthy E, McCormick D A. Movement and performance predict widespread cortical activity in a visual detection task. bioRxiv 2019: 709642. [DOI:10.1101/709642]
41. Santana N, Artigas F. Laminar and cellular distribution of monoamine receptors in rat medial prefrontal cortex. Frontiers in Neuroanatomy 2017; 11: 87. [DOI:10.3389/fnana.2017.00087]
42. Schultz W. Getting formal with dopamine and reward. Neuron 2002; 36: 241-263. [DOI:10.1016/S0896-6273 (02)00967-4]
43. Seamans J K, Yang C R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology 2004; 74: 1-58. [DOI:10.1016/j.pneurobio.2004.05.006]
44. Shimamura A P. The role of the prefrontal cortex in dynamic filtering. Psychobiology 2000; 28: 207-218. [DOI:10.3758/BF03331979]
45. Squire R F, Noudoost B, Schafer R J, Moore T. Prefrontal contributions to visual selective attention. Annual Review of Neuroscience 2013; 36: 451-466. [DOI:10.1146/annurev-neuro-062111-150439]
46. Thiele A, Bellgrove M A. Neuromodulation of attention. Neuron 2018; 97: 769-785. [DOI:10.1016/j.neuron.2018.01.008]
47. Thiele A, Brandt C, Dasilva M, Gotthardt S, Chicharro D, Panzeri S, et al. Attention induced gain stabilization in broad and narrow- spiking cells in the frontal eye-field of macaque monkeys. Journal of Neuroscience 2016; 36: 7601-7612. [DOI:10.1523/JNEUROSCI.0872-16.2016]
48. Veit L, Nieder A. Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nature Communications 2013; 4: 1-11. [DOI:10.1038/ncomms3878]
49. Wang X-J. Decision making in recurrent neuronal circuits. Neuron 2008; 60: 215-234. [DOI:10.1016/j.neuron.2008.09.034]
50. Zhong P, Qin L, Yan Z. Dopamine differentially regulates response dynamics of prefrontal cortical principal neurons and interneurons to optogenetic stimulation of inputs from ventral tegmental area. Cerebral Cortex 2020; 30: 4402-4409. [DOI:10.1093/cercor/bhaa027]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.