1. Anderson J C, Kennedy H, Martin K A. Pathways of attention: synaptic relationships of frontal eye field to V4, lateral intraparietal cortex, and area 46 in macaque monkey. Journal of Neuroscience 2011; 31: 10872-10881. [
DOI:10.1523/JNEUROSCI.0622-11.2011]
2. Artigas F. Serotonin receptors involved in antidepressant effects. Pharmacology & Therapeutics 2013; 137: 119-131. [
DOI:10.1016/j.pharmthera.2012.09.006]
3. Bahmani Z, Clark K, Merrikhi Y, Mueller A, Pettine W, Vanegas M I, et al. Prefrontal contributions to attention and working memory. Processes of Visuospatial Attention and Working Memory: Springer, 2019: 129-153. [
DOI:10.1007/7854_2018_74]
4. Boekhoudt L, Voets E S, Flores-Dourojeanni J P, Luijendijk M, Vanderschuren L J, Adan R A. Chemogenetic activation of midbrain dopamine neurons affects attention, but not impulsivity, in the five-choice serial reaction time task in rats. Neuropsychopharmacology 2017; 42: 1315-1325. [
DOI:10.1038/npp.2016.235]
5. Buchta W C, Mahler S V, Harlan B, Aston-Jones G S, Riegel A C. Dopamine terminal from the ventral tegmental area gate intrinsic inhibition in the prefrontal cortex. Physiological Reports 2017; 5: e13198. [
DOI:10.14814/phy2.13198]
6. Burk J A, Blumenthal S A, Maness E B. Neuropharmacology of attention. European Journal of Pharmacology 2018; 835: 162-168. [
DOI:10.1016/j.ejphar.2018.08.008]
7. Chudasama Y, Robbins T W. Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology 2004; 29: 1628-1636. [
DOI:10.1038/sj.npp.1300490]
8. Clark K, Squire R F, Merrikhi Y, Noudoost B. Visual attention: Linking prefrontal sources to neuronal and behavioral correlates. Progress in Neurobiology 2015; 132: 59-80. [
DOI:10.1016/j.pneurobio.2015.06.006]
9. Clark K L, Noudoost B. The role of prefrontal catecholamines in attention and working memory. Frontiers in Neural Circuits 2014a; 8. [
DOI:10.3389/fncir.2014.00033]
10. Clark K L, Noudoost B. The role of prefrontal catecholamines in attention and working memory. Frontiers in Neural Circuits 2014b; 8: 33. [
DOI:10.3389/fncir.2014.00033]
11. Corbetta M, Miezin F M, Dobmeyer S, Shulman G L, Petersen S E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. Journal of Neuroscience 1991; 11: 2383-2402. [
DOI:10.1523/JNEUROSCI.11-08-02383.1991]
12. Dolzani S D, Nakamura S, Cooper D C. A novel variable delay Go/No-Go task to study attention, motivation and working memory in the head-fixed rodent. F1000Research 2014; 2: 125. [
DOI:10.12688/f1000research.2-125.v1]
13. Everling S, Tinsley C J, Gaffan D, Duncan J. Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nature Neuroscience 2002; 5: 671-676. [
DOI:10.1038/nn874]
14. Flores-Dourojeanni J P, van Rijt C, van den Munkhof M H, Boekhoudt L, Luijendijk M C, Vanderschuren L J, et al. Temporally specific roles of ventral tegmental area projections to the nucleus accumbens and prefrontal cortex in attention and impulse control. Journal of Neuroscience 2021; 41: 4293-4304. [
DOI:10.1523/JNEUROSCI.0477-20.2020]
15. Gazzaley A, Nobre A C. Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences 2012; 16: 129-135. [
DOI:10.1016/j.tics.2011.11.014]
16. Ghaderi P, Marateb H R, Safari M-S. Electrophysiological profiling of neocortical neural subtypes: a semi-supervised method applied to in vivo whole-cell patch-clamp data. Frontiers in Neuroscience 2018; 12: 374322. [
DOI:10.3389/fnins.2018.00823]
17. Gorelova N, Seamans J K, Yang C R. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. Journal of Neurophysiology 2002; 88: 3150-3166. [
DOI:10.1152/jn.00335.2002]
18. Granon S, Passetti F, Thomas K L, Dalley J W, Everitt B J, Robbins T W. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. Journal of Neuroscience 2000; 20: 1208-1215. [
DOI:10.1523/JNEUROSCI.20-03-01208.2000]
19. Gregoriou G G, Rossi A F, Ungerleider L G, Desimone R. Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nature Neuroscience 2014; 17: 1003-1011. [
DOI:10.1038/nn.3742]
20. Howe M W, Dombeck D A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 2016; 535: 505-510. [
DOI:10.1038/nature18942]
21. Jonikaitis D, Moore T. The interdependence of attention, working memory and gaze control: behavior and neural circuitry. Current Opinion in Psychology 2019; 29: 126-134. [
DOI:10.1016/j.copsyc.2019.01.012]
22. Kahn J B, Ward R D, Kahn L W, Rudy N M, Kandel E R, Balsam P D, et al. Medial prefrontal lesions in mice impair sustained attention but spare maintenance of information in working memory. Learning & Memory 2012; 19: 513-517. [
DOI:10.1101/lm.026302.112]
23. Kamigaki T. Prefrontal circuit organization for executive control. Neuroscience Research 2019; 140: 23-36. [
DOI:10.1016/j.neures.2018.08.017]
24. Lammel S, Lim B K, Ran C, Huang K W, Betley M J, Tye K M, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 2012; 491: 212-217. [
DOI:10.1038/nature11527]
25. Lavin A, Nogueira L, Lapish C C, Wightman R M, Phillips P E, Seamans J K. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. Journal of Neuroscience 2005; 25: 5013-5023. [
DOI:10.1523/JNEUROSCI.0557-05.2005]
26. Li S, May C, Hannan A, Johnson K, Burrows E. Assessing attention orienting in mice: a novel touchscreen adaptation of the Posner-style cueing task. Neuropsychopharmacology 2021; 46: 432-441. [
DOI:10.1038/s41386-020-00873-8]
27. McNab F, Klingberg T. Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience 2008; 11: 103-107. [
DOI:10.1038/nn2024]
28. Mueller A, Krock R M, Shepard S, Moore T. Dopamine receptor expression among local and visual cortex-projecting frontal eye field neurons. Cerebral Cortex 2020; 30: 148-164. [
DOI:10.1093/cercor/bhz078]
29. Muñoz-Redondo C, Parras G G, Andreu-Sánchez C, Martín-Pascual M Á, Delgado-García J M, Gruart A. Functional states of prelimbic and related circuits during the acquisition of a GO/noGO task in rats. Cerebral Cortex 2024; 34: 271. [
DOI:10.1093/cercor/bhae271]
30. Noudoost B, Moore T. The role of neuromodulators in selective attention. Trends in Cognitive Sciences 2011; 15: 585-591. [
DOI:10.1016/j.tics.2011.10.006]
31. Oakeshott S, Farrar A, Port R, Cummins-Sutphen J, Berger J, Watson-Johnson J, et al. Deficits in a simple visual Go/No-go discrimination task in two mouse models of Huntington’s disease. PLoS Currents 2013; 5. [
DOI:10.1371/currents.hd.fe74c94bdd446a0470f6f905a30b5dd1]
32. Ott T, Nieder A. Dopamine and Cognitive Control in Prefrontal Cortex. Trends in Cognitive Sciences 2019; 23: 213-234. [
DOI:10.1016/j.tics.2018.12.006]
33. Paneri S, Gregoriou G G. Top-down control of visual attention by the prefrontal cortex. functional specialization and long-range interactions. Frontiers in Neuroscience 2017; 11: 545. [
DOI:10.3389/fnins.2017.00545]
34. Pezze M A, Dalley J W, Robbins T W. Remediation of attentional dysfunction in rats with lesions of the medial prefrontal cortex by intra-accumbens administration of the dopamine D 2/3 receptor antagonist sulpiride. Psychopharmacology 2009; 202: 307-313. [
DOI:10.1007/s00213-008-1384-4]
35. Phan J H, Ugwu K, Fong S L E. A Case of overlapping extrapyramidal side effects and neuroleptic malignant syndrome. BJPsych Open 2024; 10: S286-S287. [
DOI:10.1192/bjo.2024.683]
36. Romo R, Schultz W. Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements. Journal of Neurophysiology 1990; 63: 592-606. [
DOI:10.1152/jn.1990.63.3.592]
37. Rossi M A, Hayrapetyan V Y, Maimon B, Mak K, Je H S, Yin H H. Prefrontal cortical mechanisms underlying delayed alternation in mice. Journal of Neurophysiology 2012; 108: 1211-1222. [
DOI:10.1152/jn.01060.2011]
38. Safari M-S, Mirnajafi-Zadeh J, Hioki H, Tsumoto T. Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells. Scientific Reports 2017; 7: 12764. [
DOI:10.1038/s41598-017-12958-4]
39. Sakatani T, Isa T. Quantitative analysis of spontaneous saccade-like rapid eye movements in C57BL/6 mice. Neuroscience research 2007; 58: 324-331. [
DOI:10.1016/j.neures.2007.04.003]
40. Salkoff D B, Zagha E, McCarthy E, McCormick D A. Movement and performance predict widespread cortical activity in a visual detection task. bioRxiv 2019: 709642. [
DOI:10.1101/709642]
41. Santana N, Artigas F. Laminar and cellular distribution of monoamine receptors in rat medial prefrontal cortex. Frontiers in Neuroanatomy 2017; 11: 87. [
DOI:10.3389/fnana.2017.00087]
42. Schultz W. Getting formal with dopamine and reward. Neuron 2002; 36: 241-263. [
DOI:10.1016/S0896-6273 (02)00967-4]
43. Seamans J K, Yang C R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology 2004; 74: 1-58. [
DOI:10.1016/j.pneurobio.2004.05.006]
44. Shimamura A P. The role of the prefrontal cortex in dynamic filtering. Psychobiology 2000; 28: 207-218. [
DOI:10.3758/BF03331979]
45. Squire R F, Noudoost B, Schafer R J, Moore T. Prefrontal contributions to visual selective attention. Annual Review of Neuroscience 2013; 36: 451-466. [
DOI:10.1146/annurev-neuro-062111-150439]
46. Thiele A, Bellgrove M A. Neuromodulation of attention. Neuron 2018; 97: 769-785. [
DOI:10.1016/j.neuron.2018.01.008]
47. Thiele A, Brandt C, Dasilva M, Gotthardt S, Chicharro D, Panzeri S, et al. Attention induced gain stabilization in broad and narrow- spiking cells in the frontal eye-field of macaque monkeys. Journal of Neuroscience 2016; 36: 7601-7612. [
DOI:10.1523/JNEUROSCI.0872-16.2016]
48. Veit L, Nieder A. Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nature Communications 2013; 4: 1-11. [
DOI:10.1038/ncomms3878]
49. Wang X-J. Decision making in recurrent neuronal circuits. Neuron 2008; 60: 215-234. [
DOI:10.1016/j.neuron.2008.09.034]
50. Zhong P, Qin L, Yan Z. Dopamine differentially regulates response dynamics of prefrontal cortical principal neurons and interneurons to optogenetic stimulation of inputs from ventral tegmental area. Cerebral Cortex 2020; 30: 4402-4409. [
DOI:10.1093/cercor/bhaa027]